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INTEGRATION OF MULTISENSOR MEASUREMENTS
USING MODIFIED KALMAN FILTER'

J6zEF KORBICZ*, VLADIMIR PODLADCHIKOV**, PETRO BIDYUK**,

The problem of integrating measurement data that come from various navigation
sources at different moments of time is considered. An algorithm is established
which uses modified Kalman filter to process separately scalar data even in ca-
ses of vector input. This approach allows us to construct unified estimation
algorithm for processing variable dimension measurement vectors and to decre-
ase covariances of estimate errors if extra measurement appears at the filter
input from a new source and with different sampling interval. A simple method
is also proposed to avoid filter divergence resulting from computational errors.
Statistical simulation of the algorithm proving its applicability is presented.

1. vIntroducti‘on

The theoretical basis providing the way to develop algorithms for data processing
in multisensor complex navigation systems is still in the process of development.
Integration of multisensor measurements in many fields of engineering and especially
in complex navigation systems that aim at detecting exact position location of moving
objects still creates serious scientific and technical problems. This happens mainly
because measurements come from various sources at different time moments.

There are numerous publications devoted to the analysis of approaches to po-
sition location estimation using one or several measurements from various sources
that are in nonlinear relation with the moving object coordinates. One of the first
publications devoted to the solution to the classic navigation problem, i.e. determi-
nation of an object position using measurements of two angles, employed maximum
likelihood approach with some simplifications (Stansfield, 1947). In papers (Daniels,
1951) and (Marchand, 1964) this approach was generalized to difference-ranging sys-
tems, and Groginski (1959) considered position estimation problem employing range
measurements.

The problem of combined processing of measurement data of various origin using
generalized least squares approach was first considered by Fay (1976). The statistical
analysis of the method for combined processing of information coming from multi-
ple sources was presented by Wax (1983). The measurement stations location was
considered to be not exactly defined, i.e. the spatial position of sensors was indefinite.
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The Kalman filter is considered as an alternative approach to determine the
moving object location coordinates in conditions of indefiniteness in the sensors posi-
tion. The most often used are: linearized, extended and so called iterational extended
- Kalman filters (Anderson and Moor, 1984; Korbicz .and Bidyuk, 1993; Leondes,
1980; Puzyrev and Gostukhina, 1981). The weighting coefficients of the linearized
Kalman filter do not depend on the current state estimates and it is possible to com-
pute them in advance using nominal steady—state solution. But on the other hand
such an approach may result in a substantial deviation of state estimates from no-
minal values. The extended Kalman filter equations are linearized with respect to
the last (in time) estimate of state. This means that weighting coeflicients should
be computed in real time. The iterational extended Kalman filter suggests existence
of iterations for improving the estimates with each new measurement until change in
the estimate value is nonsignificantly small.

Rao (1987) considered application of the Kalman filter to estimation of parame-
ters characterizing Indian macroeconomy. He stated explicitly the problem of inte-
grating the information coming from multiple sources but did not show an efficient
way to solve the problem. Rauch et al. (1983) proposed a computer—based expert
system for tactical data fusion. This system can be used to enhance the ability of
decision makers in military command and control centers. The derivation of rules for
the expert system requires extensive interaction between the computer scientist and
human experts; formalizing the knowledge of such experts can be quite difficult.

A comparison of the Kalman filter based approach with nonlinear least squares
one is given by Springarm (1987). But today there is no general theoretical sub-
stantiation for advantages of any of the approaches mentioned above for solving the
problem of integrating multiple sensor data generated by various sources at different
time moments. A particular method for data processing and corresponding estima-
tion of states selected separately following each practical situation. Generally the
convergence of the above-mentioned methods is also not guaranteed. According to
examples given by Foy (1976) and Springarm (1987) convergence of estimates to the
true values depends substantially on initial conditions.

In this paper we propose a modified computational algorithm for extended Kal-
man filter convenient for real-time realization. The filter convergence is considered
on specific examples of the moving object coordinates estimation using measurements
generated by multiple sources.

2. Moving Object Model and Modified Kalman
Filter Algorithm

To characterize current state of a moving object we choose state vector = including
three Cartesian coordinates z, y, z and velocity components along each of these

coordinates, i.e.

z=[r v, yuvy zv,]7
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It is supposed that measurement data are coming to the central processing station at
different time moments from the following sources:

— radar system measuring spherical coordinates of a moving object such as range
D, azimuth B and elevation angle € (these coordinates are measured with mean
square errors op, os and o, respectively),

— independent channel for azimuth measurements § (mean square error is og),

— channel for radial velocity vg measurements (mean square error is o).

Let us introduce the following notation:
t(1) — a set of discrete time moments at which measurements of spherical coordi-
nates are coming with sampling interval T(1),

t(?) — a set of time moments at which azimuth is measured independently with
sampling period 72,

t(®) — a set of time moments at which radial velocity is measured with sampling
interval T().

The state and measurement vectors are in nonlinear relation which results in the
following measurements model with a structure nonstationary in time:

where

( hp (k)] + 1D (k)
(O®) = | hole®)] +ns(k) | ot e €10,
z(k) — he[z(k)] + T/e(k) (1)
2®)(k) = hglz(k)] + np(k) at ty €%,
{ z(s)(/c) = hy[z(k)] + 9y (k) at  ty €3,
D™ (k)
z(l)(k) = | A™(k) is the measurement vector for data source 1;
e™ (k)

np(k), na(k), n:(k)  are measurement errors for data source 1;

z(z)(k) = g™ (k) are independent measurements of azimuth with

error ng(k);

23)(k) = v (k) are radial velocity measurements with error

My (k).

Nonlinear functions relating state vector to measurements are

hola(k)] = (22(k) + v2(k) + 2%(k))

hglz(k)] = arctg——

y(k)
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h.[z(k)] = arcsin z(k) T
(a2(k) + y2(k) + 22(k) )

z(k)vz (k) + y(k)vy (k) + 2(k)v. (k)

hofa (k)] = :
(2(8) + y2(k) + 22(0))

The state equation is linear if Cartesian coordinates are used, 1.e.
2(k +1) = da(k) + w(k) @)

where ¢ is state transition matrix, w(k) — a sequence of state noise with zero mean
and covariance matrix Q(k).

Estimate of state vector x(k) can be found using equations of linear Kalman
filter (Korbicz and Bidyuk, 1993). Prediction equations are as follows:

2(k + 1,k) = ¢pa(k, k) 3)
P(k+1,k) = ¢P(k, k)¢ +Q (4)

where P(k, k) is a covariance matrix for state estimate errors determined at previous
recursion step of the filter. Equation for computing the state estimates can be created
as a result of linearization of functions h(-) with respect to predictions z(k + 1, k)
and has the form:

a(k+1,k+1):a(k+1,k)+K(k+1)){z(k+1)—h[a(k+1,k)]}

where h [':i(k +1, k)} is defined by equation (1).

The matrix of gain coefficients K(k + 1) is computed using usual appropriate
equation of linear filter:

Kk+1)=Pk+1,kH (k+1)R™'(k+1)
= P(k+ 1, )H" (k + 1) [H(k + )Pk + 1,0 HT(k+1) + R(k + n]”

where H(k+ 1) is measurement matrix and R(-) is covariance matrix for measu-
rement errors. Finally, covariance matrix for errors of filtering is defined by equation:

Pk+1,k+1)= [1- K(k+ 1)H(k41)] Pk + 1,k)
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Matrices H and R may have different structures that depend upon specific
measurements being processed currently, i.e.

( -

h Z 0 L o0 Z o
D ) D 5
0| hs 7 g
he d2 P y k€
Oz lp=zrtrp) | -2 _Y¥ ) _Ad_ 0
L D2d D2d D2
H k 1)= n -
(k+1)=1 0hg :[io_—f—ooo],tket(?) (5)
0T |.—z(k41) L2 d?
ah" _ mR _ ﬁ/ﬁz _33:_ fﬁ?}z - ﬁ’ﬁy :y;
0T |3k +1,k) D? D D? D
zvr — Dv, é - c®
\ Dz D
where D = (82 + 7° + 2%)1/2, d= (22 + )2
f e 0 0
0 rf% 0 |, t, €t
0 0 2
R(k+1)= e (6)
2
(a;,) , 4 € 1@
L 03’ ty € t(s)

3. Algorithm for Computing the State Vector Estimates

The variable structure of matrices H and R, used in the computations process,
complicates substantially realization of the filter algorithm given above. To simplify
the process of computing the estimates we propose to replace one multivariable mea-
surement by a sequence of scalar measurements appearing at the filter input with zero
time intervals. Such an approach to processing of measurements allows us to avoid
processing of measurement vector having variable dimension as well as computing
of gain matrix, innovation vector and other parameters with dimensions that may
change from one iteration to another. It should be noted that the same method of
Kalman filter realization is used in cases when dimension of measurement vector is
high so that to avoid matrix inverse calculation for the matrix (HPH T4+ R) used
to compute filter gains (Marchuk, 1980).

To create the filter algorithm of the type under consideration we propose to
introduce n—dimensional vector of indicators showing what kind of navigation infor-
mation is available at the beginning of each main loop of the filter. Dimension n
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is determined by a number of parameters of various nature generated by all available
navigation means (on the sea, on the ground and in the air). All these measurements
are supposed to improve estimates of a moving object state.

For our case n = 4, because four parameters are measured: range, azimuth,
elevation angle and radial velocity. The vector #(4) accepts values given in Table 1.

Tab. 1. Values of vector ¢.

Parameter, measured at
arbitrary moment of time

Value of vector
2

W N =

range D
azimuth £
angle ¢

velocity vg

i=[1000]
i=[0100]
i=[0010]
i=[0001]

(+ combinations) .

This approach allows a simplification of the measurement equation structure, i.e.

(k)

hp[=(k)] + 1o (k),
hg(z (k)] + s (k),
helz (k)] + ne(k),
hy[@(k)] + 10 (K),

1=1000
t=0100
i=0010
t=0001

(7)

Measurement matrix H becomes a row matrix; measurement error covariance matrix

R and innovation vector v(k) = {z(k) — h{z(k)]} become scalars, i.e.:

1.

i=1000: R:a%, v=vp = D™— hp[Z]
, F 7z
H=Hp=|=0%0 =0
S I > B }
i=0100: R =0}, v=uvg =™ — hg[Z]
H,=Hz=|% 0 ~£000]
| &2 &z
i=0010: R =2, v=v, =™ — h[F]
Hy=H.=|-22 0 - oL
| Dxd D2d ~ D2
i=0001: R =02, v =y, = v~ h,[E]
HowH — | =Do: 2 g9, — Do, § %0, — Dy,
T p2 D D2 D D?

(8)
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Thus, the Kalman filter is modified for processing measurements separately though
the same equations of filter are used. At the same time two or more measurements
may come simultaneously from sensors. Measurements that appear at the filter in-

put simultaneously are considered as ones received with zero time interval, and the
extrapolation equations used are as follows:

Z(k+1,k) =2k, k)
P(k+1,k) = P(k, k)
The flowchart of the modified filter is presented in Figure 1.

z(k)

k=k+1
l
Set flags f

H«— Hp H «— Hg H «— H, H— H,
R4—0'2D R<—U"[23 R<—o'52 R%U’?]
vV «— Vp Ve—vg V — Ve V— Uy
f(1)=0 f(2)=0 f(3)=0 f4)=0

| — 1= -

Compute gain

Filtering

0 Z(k + 1, k) — Z(k,k)
Pk+1,k) — P(k,k) |
Zk+1,k+1); Plk+1,k+1)

U

Fig. 1. Flow—chart of the modified estimation algorithm.
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When new measurement vector (of scalar) enters the filter input at moment #;,,
vector ¢ is set to an appropriate value that corresponds to specific measurements
received. Then flags contained in vector 4 are tested to determine what kind of para-
meter is to be processed currently, and to select appropriate values for H, R, and v
according to (8)-(11). Assoon as values for H, R and v are selected respective flag
of vector % isset to zero, and filtering is performed for the measured parameter accor-
ding to the unified procedure considered above. Then vector & is tested again to de-
termine if there are some unprocessed parameters left that come at the moment #4;.
If there are some unprocessed parameters (z # 0) extrapolation is performed for a
zero time interval and next measured parameter is processed. Otherwise, if (2 = 0)
extrapolation is performed for Z(k +1,k) and P(k+ 1,k) using equations (3), (4)
and state estimates are read for further usage.

4. Initial Conditions and Covariances

Transition period of the Kalman filter can be substantially decreased and its perfor-
mance made more stable if initial state vector estimate and covariance of its error are
known.

Consider a case when spherical coordinates and radial velocity are measured. If
information characterizing initial state of moving object is not available (it is usually
the case), its estimate can be found using results of the first measurement as follws:

&(1,1) = [z™(1) v (1) y™ (1) vy (1) 2™ (1) v (V)] (12)
where
2™ (1) = D™(1) sin[8™(1)] cosfe™(1)],  y™(1) = D™ (1) cos[8™(1)] cos[e™(1)]
z™(1) = D™(1) sin[e™(1)]

are pseudomeasurements of Cartesian coordinates, and v[*(1), vy*(1), v;*(1) are
pseudomeasurements of velocity components along Cartesian coordinates, that are
determined as follows:

(1) = (D sinffm (W] cosle™ (D], (1) = (1) cos[8™ (1)] cosle™(1)]
v (1) = v*(1) sin[e™(1)]
The last expressions are true when the object is moving towards observation point.

Let us determine the covariance matrix for the initial state estimate error:

P(1,1) = E{[a(1) - #(1, Dlf=(1) - (1, I |

[ 0'3 Ty Try Tzvy Trz Try,
Tovs 0'121, Tygy Tvzvy Tvez  Tugu,
| ey 7o, 05 Tyw, Tyz Tyo. (13)
Tzvy, Tvzvy Tyvy 0'12)!’ Tvyz  Toyv,
Trz 7‘uaﬂz ryz rvy 012 TZU:
ervz Togv, Tyv. Toyw, Tzu, 0'3; |
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Diagonal elements of this matrix are variances of pseudomeasurement errors for
Cartesian coordinates and respective velocity components, and non—diagonal elements
are mutual correlations for these pseudomeasurements.

The elements of matrix (13) can be determined by making use of complete dif-
ferentials for pseudomeasurements of Cartesian coordinates and velocity components
as follows:

Oz Oz Oz
6’03 6’[13 67)1:

Taking into consideration that measurement errors of spherical coordinates and
radial velocity are relatively small it is possible to replace differentials (14), (15) by
their increments:

Aa(1) = sinlg(V)] coslo(D]AD + D(1) cos[A(1)] coslo (D] A5
~D(VsinfA(1)]sials(V]A¢
Ava(1) = snfB(1)) osle (D] 0r + tr (1) cos[3(1) osle(1)) A8
o (Dsinfp(V]sinfs(D]Ae
Hence
o = BlAe?) = sin?[§(1)] cos’[e(V]oh + D (1) os?[5(1)] cos? ()]}
+DX(1) s B(1)] s (L)
o2, = BlAvE) = sin?[F(1)] cos'[o(V]e?, + vE(1) cos? (1) cos? (V]
(1) s [B(1) sinfe(1))o?
row = BlAva]= D()ur (1) {eos? [B(1)] cos?[e(1)] +sin? [B(D)] sn’[e(1)])
Expressions for all other elements of matrix P(1,1) can be found in a similar way.
As far as true values of D(1), A(1), e(1) and v.(1) are unknown numeric values

for the elements of matrix P(1,1) they are computed by making use of respective
measurements.

5. Computer Simulation

Computer simulation of the algorithm considered above was carried out to estimate
the moving object position. The simulation was performed statistically and with
initial conditions determined by (12) and (13). It was supposed that measurements
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of spherical coordinates and radial velocity enter the filter input with sampling interval
Ts1 = ws. The mean square measurement errors were chosen as follows:

op = 60m, op = 0.008 rad, ce = 0.006rad, Oy =6m/s

Figures 2 and 3 illustrate (curve 1) time history of mean square errors of filtering
for angle coordinates (azimuth and elevation angle). It can be seen that the gene-
ralized Kalman filter under consideration does not provide convergence of estimates
to their true values and clearly exhibits divergence. Analysis of some intermediate
simulation results showed that with time “k” growing and number of processed me-
asurements increased the covariance matrix of estimate errors P(k, k) looses its
positive definiteness. It happens because at each step of filtering the covariance ma-
trix is updated according to recursive equation:

P(k, k) = P(k,k — 1) — K(k)H(k)P(k, k — 1)

Computational errors become -substantial when nonlinear operations on (6 x6)
dimension matrices are performed.

The method of square-root filtering usually allows to improve the computational
properties of estimation algorithm (Leondes, 1980) but simpler approaches exist. It
can be easily shown that a simple method of decreasing the computational conditio-
ning of the problem is in adding to the covariance matrix some diagonal matrix ol
(a > 0, I is unity matrix) (Marchuk, 1980), as

cond [P (k, k) + al] < cond [P(k, k)]

With parameter a increasing (its value is usually tuned in the process of modeling)
the computational conditioning of the problem is decreased but optimality of estimates
decreases, too.

In the process of simulation we used a simple method of decreasing conditioning
of matrix P(k, k) that results in an improvement of computational properties of the
filter. The method is based on the choice of diagonal matrix for initial covariances:

88

g

P(1,1) = y \ (16)

L Vg

Such a choice leads to a decrease in optimality of the algorithm at the first several
steps of filtering.

The simulation results with this choice of initial estimate error covariance matrix
are represented by curve 2 in Figures 2 and 3, and by Figure 4. As it can be seen
from the figures diagonalization of covariance matrix of initial estimate error provi-
des a substantial improvement of computational stability of the filter and prevents
divergence of estimates.
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Fig. 2. Mean square error of Fig. 3. Mean square error of
azimuth filtering. elevation angle filtering.

At the time moment t = 85s the second source of data begins to work and
generates extra measurements of angle coordinates (3 and ¢) with sampling period
Ts, = 2s, and two times lower measurement errors. This additional information of
angle coordinates does not affect errors of range measurement filtering (c.f. Fig. 4)
but it makes it possible to decrease errors of filtering for the angle coordinates more
than two times.
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Fig. 4. Mean square error of range filtering.

6. Conclusions

A version of modified linearized Kalman filter was considered to integrate of multi-
sensor data characterizing current position of a moving object like an aircraft. The
filter represents a unified computing algorithm for integrating measurements of va-
rious origin with the purpose of improving observed object state estimates. A simple
method for decreasing conditioning of the filter was proposed that ensures substan-
tial enhancement of estimates quality and computational stability of the algorithm.
Statistical simulation of the algorithm should result in substantial improvement of
estimates when a new source of measurement information enters the filter. It was
also shown that the filter successfully processes measurements that have different
sampling periods. ' '

It can be suggested that this kind of Kalman filter may be applied in other areas
not considered here, e.g. for integrating economic data, processing multiple origin
information on satellites and space stations, processing measurements in seismology
and ecology.
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