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ON STATISTICAL RECONSTRUCTION
OF VECTOR RANDOM FIELDS

Macies NIEDZWIECKI*

The problem of statistical reconstruction of missing samples arbitrarily located
within the rectangular segment of a Gaussian vector random field is considered.
It is shown that the reconstruction is made up of the deterministic (predicta-
ble and hence unique) component and the stochastic (unpredictable and hence
nonunique) component. First, the reconstruction procedure is briefly sketched
for general homogenous random fields. Next, it is shown that a major com-
putational simplifications can be achieved if the unilateral conditional Markov
(CM) model of the field is adopted. For CM fields the possibility of decompo-
sing the restoration procedure into a number of computationally less demanding
sub-problems is also discussed.

1. Introduction

The paper deals with the problem of statistical reconstruction of missing samples
arbitrarily located within the N; x Ny rectangular segment of a homogenous vector
random field (see Fig. 1(a))

Y={yGi), 1<i <N, 1<V}

Since one of the possible applications of the presented theory as well as the main
motivation behind its development commes from the area of image processing (texture
analysis and synthesis, masking techniques, etc.), we will further regard YV as a
vectorially scaned (from left to right and from top to bottom) image and the
n-dimensional vector y(i,j) — as the intensity of the corresponding vector of
pixels.
By statistical reconstruction we will mean the process of generating the missing sam-
ples in such a way that the reconstructed (“patched”) image remains statistically
“indistinguishable” from the original one, i.e. it is not possible to locate missing
parts of the image by looking at its reconstructed version.
Samples may be scheduled for reconstruction for several different reasons such

as:

e degradation of the recording medium due to aging or mishandling (old photogra-

phs, scratched optical disks), '

e uncorrectable transmission errors in modern image coding systems,

e intentional deletion of some fragments of the image performed as a part of the
editing process (as an example consider the task of “closing up” the background
after removing a specific object). :
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Depending on the case the patterns of missing samples may range from small,
isolated spots to large clusters consisting of tens or even hundreds of pixels.

We note that the formulation of the reconstruction problem stated above is consi-
derably more general than the classic attempt to minimize a certain distance between
the original signal and its reconstructed version. There is a number of applications
where reconstruction based on distance minimization may be not satisfactory as it
fails, in general, to satisfy the indistinguishibility test mentioned earlier. For example,
when parts of the image missing due to the physical damage or human intervention are
filled up it is usually demanded that such cosmetic changes should be unnoticeable.

We will show that the optimal reconstruction is made up of two components.
The first (predictable) component is unique and can be interpreted as the orthogonal
projection of known samples on the space spanned by unknown samples. The second
component removes the “covariance defect” which results if the unknown samples
are replaced simply by their predictions (or, more precisely, extrapolations). Since
this component can be obtained as any realization of a random variable with pre-
specified covariance matrix, it is nonunique (many such corrections can be generated
infinitely). The nonunique component can play an important role if the reconstruc-
tion procedure is applied to weakly correlated images (fields) or images with large
clusters of unknown samples. The paper extends results derived for multivariate time
series (NiedZwiecki, 1993).

2. Results for General Random Fields

2.1. Notation

Let Yo = {y(i,7),(2,7) € Q} where Qo C Q= {(4,j) : 1 <i < Ny,1 <j < Ny}
denote the set of do observed (known) samples and let Yar = {y(4,7),(%, ) € Qum},
Qur = Q — Qq, be the set of dps missing samples

VoUVm =Y
do+du=d

where d = N; x No and all dimensions are specified in terms of nx 1 blocks.

Denote by i@ j = Na(i — 1) +j the lexicographical coordinate of any cell
(z,7) €  and let

K= {z’@j, (3,5) € Q} - {1,...,d}
Ko = {i@ja (4,7) € Qo}
Kn={i®3, (i) € U}
The vector of lexicographically ordered array of samples Y will be written as
z= [«7(1),. ..,zT(d)]T

where z(i® j) = y(4,7), (i,5) € Q (see Fig. 1(b)).
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Fig. 1. A rectangular segment of a homogenous vector random field (a) and its
lexicographically ordered counterpart (b).

Consider matrices A[dx d;], B[d, x d] and C[dx d], made up of identical blocks
of arbitrary dimensions and let Z = {ry,...,rg,} CK, J ={r1,...,7q,} CK. We
will denote by Az the [(d— d3)xdi] block matrix obtained after removing from
A dy block rows indicated by the set Z. Similarly, by Bjz) we will denote the
[d1 x (d—d2)] block matrix obtained from B after removing its dy columns. Finally,
by

2

Cir1y = (Ciaigy = (Cly iz

we will denote the [(d—d3) x (d—d3)] block matrix obtained from C' after removing
simultaneously the corresponding dy rows and ds columns.

The following notation will be also used
A
Al = (AT = (AT
BT 2 (BT — (BT
iz = (B )iz = (Bi))

A
i = (Cam = (Cn)”
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Note that the operations of matrix transpose and block (row or column) deletion
do not commute (i.e., generally, (AT)7) # (Ai7y)T etc.) which means that some
caution is needed when using the above shorthands.

Using the notation introduced above the vectors of observed samples zo and missing
samples zp can be written down as

To = .’l}(K;M|, IpM = z(lCoI

2.2. The Case of a Known Covariance Structure of the Field

Consider the problem of reconstruction of missing samples coming from a homogenous,
Gaussian random field {y(7,j)} with known covariance structure. More precisely,
we will assume that ) is a dxd dimensional array of n—dimensional zero—mean
random vectors y(i,j) with known covariance matrices

B[y, )y" (k,D)] & Rizi o

forming the positive—definite symmetric dx d block Toeplitz matrix

Ro R1 - RNy -1
RT  Re - Rny—2
R = E[zzT] = ' ) (1)
,R’%l—l RTNI—Z e RD

with Toeplitz (but in general nonsymmetric) Nz x N3 blocks

Ry Ry - Rin,-1
Ry 1 Rio -+ Rpn,-2
Re = . _ . (2)
Rei-N, Rra-n, -+ Ripo

It is well known in statistics (see e.g. Schweppe, 1973) that the solution to the
quadratic optimization problem '

B[l Zm — 2u 2] > min
can be written down in the form
Zm = E [zulzo] = ElzpmzoT] [E[xozg]]—l Zo
-1 _ -1 —
= Rixolar) [Rikmlan] 0= [(R7)ixolia)] R Dikoika®o (3)

and can be interpreted as the orthogonal projection of the vector of known samples
zo on the space of unknown samples zp. We claim, however, that replacement of
the missing samples by their predictions (extrapolations) does not complete the task
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of their statistical reconstruction. Actually, even though the projection preserves the
cross—correlation between the observed and missing samples

E [Zy2l] = E [Elzp|zo)zl] = E [zprz]] (4)

it distorts the covariance structure of the reconstructed data, namely it produces
samples suffering from the “covariance defect”

cov[Z ] < cov[zpm] ‘ (5)
In order to see (5) note that

Ty =Ty + iy (6)
and, due to orthogonality of Zjs and :rj,l

cov[zar] = cov[Zar] + coviziy]

Because of the covariance defect the reconstruction—by-prediction scheme fails to
satisfy the “indistinguishibility from the original” test mentioned in the introduction.
The effect is quite clear for weakly correlated random fields. Consider, for example,
the limiting case of a white noise field {y(i,7)}. Because of the lack of spatial
correlation between the samples we have

/:EM:O

However, the incomplete data segment “patched up” with zeros can be considered a
rather poor reconstruction of the original as the locations of the missing samples can
be easily told from the results. Obviously, for the white noise the covariance defect
turns simply into the variance defect — the reconstruction—by—prediction scheme does
not preserve the variance of the recovered signal at the points of interest.

Finally, we note that the same effect may be strongly emphasized for large clusters
of missing samples (since, vaguely speaking, the energy of the reconstructed signal
Y(i,§) dies away to zero as we move towards the center of such large clusters).

An obvious way of removing the covariance defect, which we postulate hereby, is by
adding to Tpr any realization of the random variable (independent of Tps)

Azpyr ~N(O,RL)
where

R1 = cov[zy] — covTm] = Rix,|k,)

-1 - -1
~Rikolxar) (Rixaixa)  Rixaixe) = (R™ixolx0))

(7)

Observe that while Z,s, the predictable component of zps, is uniquely determined
by the vector of known samples x, its complement Az,s is not. Consequently, due
to the nonuniqueness of Axjs, infinitely many reconstructions of an incomplete data
segment can be generated, all statistically indistinguishable from the original.
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Finally, it is important to realize that even though the covariance-retouched
image Zpr + Azps is not closest, in the sense of the Euclidean norm, to the original
image zp7, it can be regarded as an ideal “forgery” of xps.

Remark 1. Even though formally inclusion of the covariance retouche Azas in
the reconstruction can be seen as simply “adding some noise” to the predictable
component of the signal, such an interpretation may be very deceptive. Since the
matrix R1 depends on the covariance properties of the reconstructed field it is
clear that the signal Azps will somehow inherit these properties. In particular, if
the reconstructed field is smooth (i.e., in statistical terms, strongly correlated) the
corresponding covariance retouche will also be a smooth signal.

We note that the degree of spatial correlation of the field is one of the factors
which decides upon the visibility of the covariance defect. In case of weakly correlated
fields the effect will be apparent even for small blocks of missing samples. Conversley,
for highly correlated sources covariance retouching will be essential only if missing
samples form relatively large clusters.

Remark 2. Since covariance retouching amounts to “making up” some missing pie-
ces of information — in order to hide away the fact that the data were incomplete
— it may be inadvisable should any decisions be made based on the results of recon-
struction.

2.3. Adaptive Reconstruction

The reconstruction procedure presented in section 2.2 was derived under the as-
sumption that all covariance matrices R;y; (0 < i < N, 0 < j < Na) were
known. If not, one might consider the possibility of replacing true covariance matri-
ces by their sample estimates. Unfortunately, the solution based on direct estimation
of process covariance matrices can be hardly recommended in practice. Analyzing
carefully the structure of the matrix R (1) one finds out that it is made up of
NyN; + (N —1)(Ny — 1) > d different matrices R;;, i.e. that the number of matri-
ces one should estimate is greater than the number of available samples. Hence, from
the statistical point of view the problem is ill posed.

The possible way out of this difficulty could be by adopting a parsimonyous pa-
rametric model of a random field, that is, the model which allows for the covariance
structure of the field to be characterized in terms of a small number of matrix coefli-
cients. The corresponding reconstruction procedure, analogous to the one suggested
for 1-D reconstruction (Niedzwiecki, 1993) would consist of three steps:

1. Estimate parameters of the adopted spatial model of the random field.

2. Obtain the estimates of the covariance matrices in (2) exploiting the relationship
between the (theoretical) covariance structure of the field and parameters of its
spatial model. A

3. Apply the non-adaptive reconstruction procedure after replacing unknown cova-
riance matrices with their estimates.

Unfortunately, in the case of 2-D reconstruction the second step above may cause
serious problems as there is no unique relationship between the sequence of autocor-
relation matrices and the sequence of spatial matrix coefficients — the one-to—one
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mapping often described as the autocorrelation matching property of 1-D signals is
lost for 2-D processes (Marple, 1988; Marzetta, 1988).

We will show that for a special class of spatial models, known as conditional
Markov models, it is possible to skip the second step of the algorithm summarized
above, i.e. it is possible to base the reconstruction procedure upon the estimates of
model coefficients without the need of estimating covariance matrices of the process.
The approach works for almost all patterns of missing samples (it fails only in the
case where some of the missing samples are located in a small “restricted” area) and
offers the means for decomposition of the reconstruction problem into a number of
computationally less demanding sub—problems.

3. Reconstruction Based on Condltlonal Markov Models
of Random Fields

3.1. Notation

Denote by < the symbol of ordering among pairs of indexes: (¢,7) < (k,[) iff i <k
or (i = k and j < ). Using this ordering the entire plane can be divided at
any point (i,j) (after exclusion of (i,j) itself) into two parts: the nonsymmetric
upper—half plane and nonsymmetric lower half-plane, i.e. the “past” and “future”,
respectively.

We will consider a special class of spatial interaction models known as causal
(supported on the nonsymmetric upper half-plane) conditional Markov (CM) models.
Denote by

P={(in i) k=108 (0,0) < (i1,30) < . < (ip, o) |

the set of indexes determining p neighbor elements for y(3, ).

The causal (unilateral) CM model of a vector random field {y(i,j)} is defined
as (Chellappa and Kashyap, 1982; Kashyap, 1983)

P
y(i,5) = > Aey(i — ik, 5 — ji) +n(i, j) (8)
k=1
where Aj,..., A, are the coefficient matrices of the model and {n(i,j)} is a zero

mean white vector process with covariance matrix cov [n(i, ])] =p.

Suppose that P C Q. We will partition the finite lattice Q into mutually
exclusive and totally inclusive subsets Qpg, the boundary set, and Qj, the interior
set:

Qp = {(i,j)eQ such that (i—k,j—1)g Q for at least one (k, 1) eP}

=0-Qp
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Likewise, denote by
yB = {y(li-’)) (21]) € QB}

V1 = {o(i, ), 4) € U}

a similar decomposition of the sample space Y
YpUYr=Y
dp+dr=d

where dg and d; stand for numbers of samples in Yp and )Yy, respectively.

Finally, denoting by Kp and K the sets of lexicographical coordinates of Qp
and €y, we can define the vectors of boundary and interior samples as

ZB = T{K,|» T = T(xp|

3.2. Basic Scheme

Suppose that we know p and Aj,...,Ap, ie., we know all coefficient matrices in
the conditional Markov model (8). Under Gaussian assumptions

&y = Elzy|zo] = arg max p(za|eo) = arg maxp(z) (9)

For a homogenous random field truncated to a finite lattice © the likelihood function
p(z) can be expressed in the form

p(z) = p(¥) = p(¥1,¥B) = p(V1|YB)7(VB) (10)

Denote by w = [wT(l), ouwt (d)]T the vector of lexicographically ordered array of
noise samples

w(i ® j) = n(i,J)
and let e = [eT(1),... ,eT(d)]T where
e(r) = p3u(r)
The conditional likelihood can be written down as

p(Y1|¥YB) = p(z1lzp) = H p( z(r) | all z(s) suchthat r>s¢€ IC)

r€Kr

wexp{ 5 3 ) I} =exo{ =5 3 let) P} Ly

r€Ky reKr

= exp {—% Il excnl ”2}
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Let K:Pz {z@_;,(z,]) € P} :{TI,...,T‘p}, Tk :ik @jk.
Introduce the lower band dxd block Toeplitz matrix C :

Co 0 - e 0 0]
e 0
Ch
Cy
C= c, (12)
0 G
0 0
P C, - C - Cy 0
L0 0 0 C -+ C - Cp|
where
Co = p=1/? if r=s
Clr,s]=4 Cp=—p~H24A; if r—s=r,€Kp (13)
0 elsewhere

Then it is straightforward to show that
C(’CBII" = €(Kgl : (14)‘
Combining (14) with (11) we get
1
p(Vr1Ym) x oxp { ~37Cl Crenie | (19)

For a homogenous Gaussian field the second component of the likelihood function,
the prior density of boundary samples 7()g), can be expressed in the form

m(¥YB) = m(zp) x exp {—%ngglzB} = exp {—%.’L‘TBI} (16)
where
Rp = E[zpz}], B = I, \R5 Ik, (17)

and I denotes the dxd (block) identity matrix.
Finally, combining (15) and (16) we get

p(z) exp{—J(z)} (18)

where

J(z) = ';-:L'TH:B (19)
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and
1 = Ch,\Cixcnl + B (20)

Maximization of the likelihood function with respect to zps is equivalent to minimi-
zation of the quadratic form J(z). Note that

aJ(z)
(95L'M

= o1 = Wyxcolrco) Tm + {xco|xcpr) To (21)
Hence, after setting the partial derivative (21) to zero at zpr = Tpr, We get
Mixoixo) T = —Ixco|hcpr) To (22)
i.e. (see the remark below)
Bar = = [Miroiea] ™ [Mixolen ] 20 (23)

Remark 3. Note that p(z) = A(0,R) and, according to (18), p(z) = N(0,T71).
Consequently

n=R"! (24)

and the matrix IIx,x,) appearing in (23) is always invertible (as a principle sub-
matrix of R™! it is positive—definite).

With the predictable part of the reconstruction given by (23) it only remains to
determine the covariance matrix R, of its unpredictable part z3;. We will show
that

Lemma 1.

Ry = cov|zy;] = cov[Azy] = (H(Ico\zco))_l (25)
Proof. Observe that

Bixo|® = Bixol o) TM + Biico|kar) To = Bixolks) 1 + Bixolxr) 2B
and

Bixoixcs) =0
Hence

Bicoixo) oM = ~Bcoixa) %o + Bixo k) 2B (26)
Similarly, after multiplying both sides of (14) by the matrix C%F’Col Ks) We get

Cleoten) Clical® = Clealicn) Cixa1ko) M + Clicy i) Cika K ar) T0

= Clicolics) eix 5]
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resulting in

Cleolcn) Cixaixo) M = =Clicolx ) Cicnlicn ©o + Clico xs) €1 (27)

where ey = e(xp)-

Adding equations (26) and (27) sidewise we arrive at
Wobco) 2 = —Wiicolrcnn) 20 + Clico sy o1 + Bixolr) 25 (28)
leading to (c.f. (22))
(koK) [E0r — Tae] = C—E‘r,coms)ef + Bix,|k1)TB = €M (29)

Since for the unilateral CM model (8) the noise vector e; is independent of zp
and

COV[G]] = I(’CBUCB)
cov[zg] = RB
it holds

coviem] = C{nomé)cov[el]c(xalxo) + Bixo|x1) cov[mB]B{,Ctl,Co)

= Clicolxs)Cikn 1K) + Bixolxe) = Mixolxo) (30)
leading finally to '
~ - - -1
coviEn] = [Mcoprea] " covlen] (o) = [Mixolxo)]

Since the matrix II(x,|x,) is positive definite, a Cholesky decomposition tech-

nique can be used for the purpose of solving (22). We note that Rilz, the right—
hand Cholesky factor of the matrix [IL(x,jx,)]~" (related to the left-hand factor of
Ik, |x.) ), can be used for the purpose of generating the vector of corrections Azjps
via

Azpy = ’R,i/zn

where 7 is any realization of a dp—dimensional Gaussian variable with zero mean
- and unit covariance matrix.

3.3. Scheme Based on “Inverse” CM Models

It is a well-known fact that every process described by the causal CM model (8)
admits also the following “inverse” (anti-causal, i.e. supported on nonsymmetric
lower half plane) CM model equation

14
y(i,9) = > Ay +ix, 5+ Gi) + 75, ) (31)
k=1
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where A7,..., A} is the set of “inverse” CM model matrices and {n*(¢,7)} denotes
another white noise sequence, different from {n(7, )}, characterized by a covariance
matrix p*. .

In the scalar case it is possible to show that (Marple, 1988)

ak:a:;‘ k:17"':p p=p*

where ai1,...,a,,p and af,...,a},p* denote scalar counterparts of the corre-
sponding matrices. However, there is no trivial relationship between the matrices
Ay, ..., Ap,p and AY,..., A5, p* in a general vector case.

The duality between the “normal” CM description (8) and “inverse” CM descrip-
tion (31) is analogous to the duality between forward-time and backward-time models
in 1-D signal processing. It will play a crucial role in our further developments.
Denote by K§ and K7 the sets of lexicographical coordinates of 25 and €7, the
boundary set and the interior set for the “inverse” CM model (31).

Let

* * *x( N7

e = [e*(1),...,e*(d)]
(where e*(r) = (p*)~Y/?w*(r) and w*(i®j) = n*(i, 7)) be the corresponding vector
of normalized noise samples. ' '

Finally, let C* denote the upper band dxd block Toeplitz matrix

ct - Cf -~ C5 0
0 Cf - Cf - CF 0
cr 0
C* = S (32)
cr
Lo
0 (o S
L 0 0 0 Cp |
where
Ct = (p*)~ 12 if r=s
CHr,s] =< Cr=—(p*)"Y24%5 if s—r=ry€Kp (33)
0 elsewhere

Similarly as it took place before one can show that

p(z) exp{—]*(:c)} = exp{—%zTH*x}
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where
and the boundary covariance matrix B* is defined analogously to B in (17).

Since models (8) and (31} describe the same vector field characterized by the
covariance matrix R, it must hold

J(z) = J*(x)

m*=n=R"1!
which means that (20) and (34) form two equivalent descriptions of the same positive—
definite matrix.
3.4. Evaluation of the Projection Matrix

Using the relationships derived in the preceding section we will show that almost all
elements of the d x d matrix II can be expressed directly either in terms of the CM
matrices Cp,...,Cp or in terms of the “inverse” CM matrices Cj,...,C; (or in
both ways).

First, we note that
Bixs = B?’C*BI =0
BIK:B) = B]*KE) =0
Consequently it holds
Mical = Clepies) Cial: Mgl = (CVeging Cles | (35)
and
—_ T _ T
Mics) = Cleg) Circnics)s  Mixg) = (Cjicg) Clieg ) (36)

A careful analysis of the above relationships leads to the conclusion that the only
elements of II which cannot be directly expressed in terms of CM matrices (neither
“normal” nor “inverse”) have the form II[i,j] (i,j € K¢) where K¢ = KpN K}
is the set which will be further referred to as the critical boundary zone (see Fig. 2).

Consequently, if all missing samples are located outside the critical boundary
zome, i.e. if K¢ C Ko, the projection matrix in (23) can be determined without the
need to compute Rp (which is a condition of explicit solvability of the reconstruction
problem).

Two important special cases are worth mentioning.

First, if g C Ky that is, if all samples belonging to the boundary set g are
known, we have Bix,|x,) =0, Bix,lxp) =0 and hence

(ko1 = Clico|icm) Circalxco)

H(’COVCM) = C(T)C0|KB)C(,CB|’CM)

i.e. the projection matrix can be expressed directly in terms of parameters of the
causal CM model (8).
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Fig. 2. The boundary set (a), “inverse” boundary set (b) and critical boundary zone

(c) for the image obeying a second—order unilateral CM model (supporting
pixels for (0,0) are (0,—1) and (-1,-1)).

Second, in the case where K% C Ko, it holds
Mixoix0) = (C*)T)c,,pc;)czkgwco)

xcoiar) = (C) kol Clict 1xar)

i.e. the projection matrix can be written down in terms of parameters of the anti-
causal model (31).

If KpyNKc # 0, the procedure becomes quite complicated as it requires solving a
difficult inverse problem — determination of the covariance structure of the field given
parameters of its spatial model. Since the autocorrelation matching property does not
apply to random fields (except for special cases) only approximate methods can be

used to recover the 2-D autocorrelation sequence {Ri,j} from the CM matrices
Co,...,Cp or Cg,...,Cy (Marple, 1988).
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Remark 4. We note that in the scalar case

cr=Cr
and hence

(C*Yfiez) Clicy1 = Circg) Gl (37)
For scalar random fields the matrix II is centrosymmetric

O, 5] =0Od—-i+1,d—j+1] |

which is a consequence of the fact that it is an inverse of a centrosymmetric matrix R
(Marple, 1988). Unfortunately this property does not extend to the vector case where
R can be shown to be (only) block—centrosymmetric (inverse of a centrosymmetric
matrix is centrosymmetric but inverse of a block—centrosymmetric matrix is not block—
centrosymmetric).

Remark 5. Not surprisingly, existence of the critical boundary zone is closely related
to the correlation matching problem mentioned before.

Consider, for example, the following simple autoregressive (AR) process with quarter
plane region of support

y(Z’J) = Aly(i)j - 1) + A2y(i_ 1’.7) +A3y(i - 11j - 1) + n(za]) (38)

for which the set of Yule-Walker equations takes the form

Roo Rop FRio Rip I p
Rf; Roo Ri_1 Rip —AT _ 0 (39)
Rl R{_, Roo Roa —AT 0
RT, RT, R{, Roo —AT 0

According to (39), kg = 5 unique autocorrelation matrices Roo, Ro,1, Ri,o,
Ri1,1, Ri,-1 are required to solve for k4 =4 autoregressive (plus noise covariance)
matrices Aj, As, As, p. There are, therefore, insufficient AR coefficients to
uniquely determine autocorrelation coefficients. The critical boundary zone consists
in this case of kc = 2 elements, y(1,N;) and y(Nz,1), situated in the lower left
and upper right corners, respectively.

One can show that for a general 2-D AR process the size of the critical boundary
area is proportional to the “degree of ill-conditioning” of (39), namely

kc =2(kr—ka)

Decomposition of the Reconstruction Problem

Consider any pixel (z,j) € 2, ¢@®j=r € K. Denote by

er{s: s=r+r;—rj, i,j:O,...,p}ﬂ/C
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where 7y = 0, the set of all pixels in K directly related to r via the CM equation (8)
(or (31)), including the pixel r itself — see Figure 3(a).

Suppose, for the time being, that there is only one missing sample z(r) and
that it is located in the interior set Yy, ie. r € Kj.

Denote by v, 0 < v < p, the largest index such that r + r, < d. A careful
examination of (14)—(20) leads to the conclusion that

aJ(z) |
a.’L‘E’I‘ = 2 3 ||1' r+'rJ) ZAk:c (r+r; —rk) H 1
k=1

i.e. that the gradient of the quadratic form J(z) evaluated with respect to the
unknown vector z(r) depends only on the data vectors located in N,. Consequently
Z(r), the predictable part of z(r) obtained by solving 8J(x)/02(r) = 0, will be a
function of samples located in the neighbor set N, — {r} and will not depend on the
remaining samples.

By reiterating the above argument for the whole set of pixels 7 C Ky one can
show that the corresponding set of neighbor elements takes the form

Uwm -7
reF

Since the process can be alternatively modelled using the inverse CM equa-
tion (31), the neighborhood description given above remains valid for all sets F C K7.
Finally, combining arguments for the “normal” and “inverse” models one can show
that it holds for every set F C (K1 U K%).

Consider now the case where there is a single missing sample z(r) located in the
critical boundary zone, i.e. r € K¢ = K — (K7 UK5). Based on model (8) one finds
out that the gradient 8J(z)/0z(r) is a function of samples located in N, U Kp.
Similarly, using the “inverse” model description, one can show that 0J(z)/dz(r)
depends on samples located in the set N, UK.

Combining both arguments (which must hold simultaneously) one comes to the conc-
lusion that the set of neighbor elements for z(r) is

(N: UKB)N (N, UKE) = {r} = (N UKc) — {r}
and, more generally, that the neighborhood of any set F, FNK¢c # @ can be written

down as
(U N, U ’Cc) -
reF

Based on the discussion carried out above, the Markovian neighborhood N(F) of
any set F C K can be defined in the form (see Fig. 3(b)) :

UN, - F if FNKc=10
reF
N(F) = (40)

Un-u ICC)-J-' if FNKe#0
reF
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a) b)

Fig. 3. a) The neighbor set N, for three pixels differently located within the image
obeying a second-order unilateral CM model,
b) Markovian neigborhoods for three different sets of pixels for the same image.

Denote by Y7 and Yn(r) the sets of all samples located in F and N(F),

respectively. Let Yz = Y — Y. The term Markovian neighborhood stems from the
fact that

p(VFIYF) = oY=V (m)) (41)
ie. Yn(r) serves as a sufficient statistics for the purpose of estimation of ).
According to (41) it holds '
p(Ym|Yo) = pP(YM|YN(xcar)) (42)

where N(Kar), the Markovian neighborhood of Kz, is a subset of Ko. There are
two important consequences of (42).

First, it is evident from (42) that the Markovian reconstruction of z3s does not
depend on the samples located in

Kp =Ko — N(Ka)

—such samples will be further referred to as dummy. Not surprisingly, those columns of
the projection matrix [Ixox,)] " T{xox,) Which correspond to dummy variables in
#o can be shown to be null. Removing such null vectors (along with the corresponding
elements of zo) results in the following reduced—order version of (23) ’

Em = — [Mixoce)] Maxolxs>) o5 (43)
where

Ks=KyUKp, T§ = Tex



70 M. NiedZwiecki

Note that while the matrix Mk |x,,) in (23) is dp x do—dimensional, the dimension
of Mexyks> in (43)is dy x ds where ds =do—dp and dp denotes the number
of dummy samples. Since usually (especially for low-order CM models) it holds that
ds < do, the modified scheme (43) may offer huge computational savings over (23).

The second simplification mentioned above takes place in the case where the
indicator set Kz can be partitioned into ¢ mutually exclusive and totally inclusive
subsets Fi,..., %,

FU...UF, =K, fiﬂfj:m for i#j (44)
such that
N(F)CKo, i=1,...,g (45)

According to (42) it is sufficient to know samples in N(F;) in order to recon-
struct Yr,. Consequently, the statistical reconstruction problem for one large array
of samples can be decomposed into ¢ lower—dimensional (i.e. computationally less
demanding) sub—problems.

The decomposition procedure (see Fig. 4) can be summarized as follows:

1. Find regions Fi,...,F, satisfying conditions (44) and (45) ; note that even
though the sets F;, i =1,...,q must be exclusive, the sets N(F;), i=1,...,¢
may partially overlap. _ . .

2. Determine minimal rectangular arrays €1,...,Q, C © which contain Markovian
neighborhoods N(F1),...,N(F,).

3. Solve the reconstruction problem for each of the rectangular sub—arrays of ;
since after the decomposition some of the dummy samples in sub—arrays may turn

out to be unknown (cf. Fig. 4) it is essential to use the reduced-order formula (43)
instead of (23). :

Separability of the reconstruction problem can also be easily explained in terms
of some structural properties of the projection matrix. Since II is a band matrix,
it is possible to show that the simultaneous deletion of its dz, rows and columns
‘indicated by any neighborhood set F; results in a matrix which is two—block diagonal.
Repeating this argument ¢ times we find out that the matrix x,ix,) (and hence
also its inverse appearing in (23) and (43)) is g¢-block diagonal which leads in a
natural way to ¢ lower—dimensional reconstruction problems.

3.6. Differences with Respect to the 1-D Case

As we have already stressed, there are some important differences between the 1-D
and 2-D reconstruction (even though solutions to both problems look similarly)

1. Since 2-D signals do not have the autocorrelation matching property the “classic”
(i.e. correlation—based) solution to the reconstruction problem (7) has a very limi-
ted practical value. The same remark applies to any approach.(such as reconstruc-
tion based on ARMA models) which requires “translation” of spatial coefficients -
to autocorrelation coefficients.
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*|
*
?217]? 7|2
C DI N
?212] 2|7 712
/A AW

Fig. 4. An example of decomposition of the reconstruction problem into four lower—
dimensional sub-problems A, B, C and D. Shaded areas surrounding blocks of
unknown samples denote the corresponding Markovian neighborhoods. Empty
cells denote dummy samples. Those dummy samples located in sub-arrays
which turn out to be unknown are marked with asterisks.
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2. Boundary problems are much more emphasized in the 2-D case. In particular,
for a chosen spatial model solvability of the reconstruction problem depends on
the pattern of missing samples — if any of the missing samples is located in the
(model-dependent) critical boundary zone, then no closed—form solution to the
problem can be derived.

3. In the vector case considered in this paper the projection matrix is specified in
terms of both “normal” and “inverse” CM matrices. The fact that in the general
case both representations have to be used simultaneously is a unique feature of
2-D reconstruction.

3.7. Adaptive Reconstruction

The formulae derived in section 3 are based on the assumption that all coefficient

matrices of the CM model (8) and/or of the “inverse” CM model (31) are known. If

not, the following adaptive version of the reconstruction procedure can be used -

1. Estimate coefficient matrices Aj,...,A,,p and/or AY,..., A%, p* from the set
of available data Y.

2. Apply the non—adaptive reconstruction procedure after replacing all unknown ma-
trices with their sample estimates.

The complete analysis of the first step of the algorithm summarized above is a non-
trivial problem which falls beyond the scope of this paper. Basically, a number of
different identification techniques can be adopted for the purpose of estimation of
coefficient matrices in (8) (along with some related structural parameters such as mo-
del orders and neighbor locations) — see e.g. (Azimi-Sadjadi, 1991; Chellappa and
Kashyap, 1982; Kashyap, 1983).

Perhaps the simplest solution is to use the estimates

A={A,..., A} =argmin Y llea(r) |

reKg
E= R, B} =egmin 3 Jleas() I (46)
reKE

N 1
== 2 ea(ne(n),

E reKg

1
7= 3 en k) 7

where Kg C Ko and K% C Ko denote the sets of all points at which the residuals

ealr) = z(r) — ZA,-:E(T —r;)
i=1

ear(r) = 2(r) = 3 Ata(r +1i)
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can be computed and dg, df denote numbers of such points (after vectorization (46)
becomes a standard least squares problem).

The approach above can be expected to work quite well for low—order models

or in the case where the missing samples can form a few clusters. In all other cases
dg (df) , the number of samples available for identification based on (46), may turn
out to be too small. In particular, one can show such maliciously chosen patterns of
missing samples for which the set Kg (K%) is emptyeven if dpy < do (it is possible
to remove [N1N3/p] elements from the Nj x Ny rectangular array in such a way —
the construction depends on the topology of the set of supporting pixels P — that
N, ¢ Ko for every possible location of r € K ).
In all such cases, including the pathological ones indicated above, some special estima-
tion techniques developed for the purpose of identification of non—uniformly sampled
random fields should be applied (see Jones (1980) for the solution of the related pro-
blem for unevenly sampled time series). The more detailed discussion of this issue is
left for further studies.

Remark 6. In the scalar case where the “normal” and “inverse” model coefficients
coincide one can use the following bidirectional estimates

A= {Zil,...,?ip} = argn}in( Z e4(r) + Z ei*(r))

reKg reky
~ 1 9 9
p=—— (Y &+ Y &)
de +dp \ &%, rex,

4. Example

Consider the task of reconstruction of the incomplete image (array) shown in
Figure 5(a). In order to keep the dimensionality of the problem low it is assumed
that there are only four missing samples: three located in the upper right corner of
the image and one in the central area. For the same reason a simple three—point AR
model (38) is adopted.

First of all we note that using the rules described in section 3.5, the problem can
be decomposed into two sub—problems each of which can be embedded (after element
renumbering) in the same 3 x 3 subarray shown in Figure 5(b). Furthermore, in the
case under consideration we have (for both sub—problems)

K =1{1,2,3,4,5,6,7,8,9}
’CB = {172;314:7}
Kp =1{3,6,7,8,9}

K¢ = {3: 7}
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and

Co 0 0 0o 0 0 0 0

C: Cy 0O 0 0 0 O

0 C1 Gy O 0 0 0 0

C;, 0 Ct Co 0 0 0O 0 O
C=|C C;, 0 C G 0 0 0 0
C3 Co 0 C; Co 0O 0 O

0

Cs G2 0 Cl C() 0
0 Cg Cz 0 Cl CU J

[c: Cr 0 Cf C5 0 0 0 0]
0 C5 CF 0 Cf Cc5 0 0 O
0 0 Cfr Ccr 0 C5f Cy 0 0
0 0 0 CrCr 0 Cf Cy O
cc=| 0 0 0 0 C; Cf 0 C5 C}
0 0 0 0 0 C§¥ Cf 0 C3
0 0 0 0 0 0 Cf Cf ©
0 0 0 0 0 0 0 Cy Ct
0 0 0 0 0 0 0 0 Cf]

Consequently (cf. (35))

IMs; M5z Ms3 Msq Mss Ise Is7 sz Isg
Moy Mgz Mgz IMeq Ilgs Tes Mgz ez Ileo
Mgy sz Mgz Mgq Igs Mg Ilg7 gz Ilso
Mgy Moy Moz IMMog TMgs TMgs Ilg7 I Ilgo

Wikp) =

cr ¢t cf cf Cs C, 0 C, Co 0 0 0 O

_| o cT o cf 0 C3 C, 0 Ci Co 0 0 0 (48)
0 o cf cf 0 0 0 Cs C; 0 Cp Cp O
0 0 o0 cf 0 0 0 0 C3 Cy 0 Ci Co
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8 1123
9 45| 6
10 71819
a) b)
Fig. 5. A simple reconstruction problem (a) which can be decomposed into two
lower—dimensional sub-problems A and B; each of the sub—problems
can be embedded in the same 3 x 3 array (b).
My My Mz Iy IIis Ie My7 s I
Mo = My IMyp Mp3 IIpq s T2 Moz II2g oo
Ueal My M4y Mgz Mgy g5 Iae a7z Ias s
Ms; sy Mgz Isq g5 s 57 Iss Iso
cHT o 0 0 cgCctr 0 c3Cc3 0 0 0 0
_ CHT (€HT 0 0 0 C5Cr 0 C5C5 0 0 0 (49)
et oo @)t o 0 0 0 CsCf 0 C5CH
et @eHT eptentjLo o0 0 Gyt 0 CyCy

Based on (35) and (36) the symmetric 9x9 matrix II can be determined up to
four elements associated with the critical boundary zone (Ilzs, a7, Il73, II77) — see

Figure 6.
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1 2 3 4 5 6 7 8 9
i R E R
2{ - | -] -|-|x|x|-|2]|=
3l - -7 |||+ 7]+]+
4| - |- -]-1x|x|-|z|=
5|+ |+ ||| x| x| £|x]|=x
6| x|+ ||| +]+]|+ ]|+
== |7 | -|x|+|7]|+ ]|+
8|+ | x|+ || x|+ |+|+ ]|+
9|+ | £ |+ |||+ |+ +]|+

Fig. 6. Structure of the matrix II: the ‘4’ sign denotes elements which can be expres-

sed in terms of CM matrices Co,...,Cs; the ‘=’ sign denotes elements which

can be expressed in terms of “inverse” CM matrices CF,...,C3 (those ele-
ments which can be characterized in both ways are marked with ‘+’); elements
associated with the critical boundary zone are identified with questionmarks.

We are ready now to solve the two sub—problems described earlier

Sub-problem A (reconstruction of corner elements). We note that
Ky = {Qa 57 6}
Ko=1{1,3,4,7,8,9}

Consequently, after changing the local numbering (within the subarray) to the global
one (corresponding to the original image), one gets

[ y(1,8) ]
~ -1 y(1,10)
y(1,9) Oy, IIgs Mg My Moz Moy IIa7 Iag Ilag 4(2,8)
§(2,9) | =—| sz M55 56 51 sz 54 57 sz Isg y(3,8)
¥(2,10) Mgy Ies Ilss ey Mez Mes He7 Ilea Ileg :
y(3,9)
| ¥(3,10) |

where (cf. (48)-(49)):
I = (C7)'Cs
Iz, = (CF
3 = (C3)"CY
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I, = (C})TC}
s = (C7)7C5+(C3)Cs =C5C1+CiCo = Ty

56

(CcHTct = ¢fc, =17,

Ty = a9 =0

(C3)TCE = C{Cs = T,

(C3)FCr=CTCy = g,

(C3)TCs + (CH)TCy = CT C3+ C5 C
(C3)TC3 +(C5)TCs + (CHTCE + (CHTCE
CfCs+ T Cy+CTCL + CTCo

(C3)TCh+ (C5)TC = CT Co + C5 C3 = T

Sub-problem B (reconstruction of the central element). We have
Ku = {5}
Ko =1{1,2,3,4,6,7,8,9}

leading to

3(6,5):_H551[H51 M5, 53 Iss s Is7 15 Hsg}

[ y(5,4) 1

y(5¢5)
y(5,6)
y(6,4)
y(6,6)
y(7,4)
y(7»5)

L y(7,6) |

where the matrices IIss and IIs; = Hgg, M5y = I, sz = n;, sy = Hgs
were already specified in part A.
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5. Conclusions

We have shown that the optimal reconstruction of an incomplete random field consists
of two components: the unique one which can be obtained as a result of orthogonal
projection of known samples on the space spanned by unknown samples, and the nonu-
nique (artificially generated) one added to remove the “covariance defect” introduced
by the first component.

The closed—form solution to the problem was derived for fields described by con-
ditional Markov models. Finally, the possibility of decomposing the restoration pro-
cedure into a number of computationally less demanding sub—problems was discussed.
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