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LINKS AND ACTUATORS KINEMATICS OF
IRb—-6 MANIPULATOR

TapEUszZ SZKODNY*

A fundamental problem in industrial robots control concerns algorithms genera-
ting reference trajectories. In the papers (Gerke, 1985; Gousenes, 1984; Jacak,
1989; Lozano—Perez, 1983) some generating algorithms based on an arbitrary
discretization of the manipulators internal coordinates are suggested. Each point
of discretization in the external space aproximating a reference trajectory is re-
presented by known discretized internal coordinates of the manipulator. On the
other hand, in papers (Dulgba and Lysakowska, 1990; Jacak and Lysakowska,
1990; Taylor, 1983) iteration methods of determining the internal coordinates
corresponding to external coordinates of the reference trajectory point have been
suggested. By applying this technique, the point of the reference trajectory is
approached in successive steps of an iterative procedure. In the paper of Dulgba
and Lysakowska (1990) a modified iterative method of generating a straight seg-
ment of the reference trajectory has been presented.

Analytic formulae which are the solution to an inverse problem of manipulator
kinematics enable us to design trajectory generating algorithms which compute
in one step only internal coordinates of points lying exactly on the reference
trajectory, with the accuracy resulting from the computer register length.

The paper presents equations of links and actuators kinematics of IRb—6 mani-
pulator in a matrix form. Also solution to equations of link kinematics as well
as formulae joining link and actuator natural coordinates of the manipulator
have been presented.

1. Introduction

To describe the manipulators kinematics, dekstrorotary coordinate system associated
with particular components of the manipulator will be used. A homogenous transfor-
mation (Craig, 1989; Paul, 1983; Ranky and Ho, 1985; Szkodny, 1985) will be used
to describe the position and orientation of the systems. Due to this transformation
a joint description of the position and orientation is possible, which is- essential while
describing kinematics, and particulary dynamics of manipulators.

The term natural coordinates of links will be used for those describing relative
motion of adjacent links (Niederliriski, 1983; Szkodny, 1985; Wojnarowski and Nowak,
1992).
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Ezternal space of the manipulator is described by its ezternal coordinates of po-
sition &, y, z and orientation ®, ©, ¥ (Euler angles). These coordinates describe
the manipulator effector in relation to a selected relative system regardless of the
manipulator kinematic structure. The manipulator internal space is described by its
internal coordinates. These are natural coordinates of links and actuators (Szkodny,

1985).

Industrial robots are most often equipped with manipulators with ¥V class kine-
matic pairs and only such are regarded in the paper.

In algorithms based on an arbitrary discretization of the manipulators inter-
nal coordinates (Gerke, 1985; Gousenes, 1984; Jacak, 1989; Lozano—Perez, 1983) a
discretized description of the manipulator external space results from the discretized
description of its internal space. A reference trajectory in the external space is ap-
proximated using such discretized description of the manipulator external space. The
disadvantage of these algorithms is that they demand large memory, big sets, and
being a discretized description of the internal space, have to be searched, and there is
no possibility to reduce the arbitrary discretization of the manipulator internal space.

In iteration methods (Duleba and Lysakowska, 1990; Jacak and Lysakowska,
1990; Taylor, 1983) discretization step of the internal coordinates in successive steps
of iterative computation depends on the error of external coordinates in the pre-
ceding iteration step. Large memories are not demanded in iteration methods as
computation is carried out only for reference trajectory approximating points. In
these methods a reference trajectory approximation error may be reduced through
a number of iterative computation steps. In a modified iterative method (Duleba
and Lysakowska, 1990) the modification is based on an arbitrary assumption of error
distribution in the external space, thus reducing the number of iterative computation
steps. Nevertheless, the assumed error distribution is right with only short segments.

A disadvantage of iterative methods is the necessity of multiple iterative computa-
tion. Whereas the advantage of methods based on arbitrary discretization of internal
spaces as well as iterative methods is the simplicity of computation which lies in using
only the equations of the manipulator forward kinematics. This advantage, however
may be a catch for those computer programmers who have not considered kinematic
singularities of the manipulator (Szkodny, 1985).

Analytic formulae which are the solution to an inverse problem of manipulator ki-
nematics enable render it possible to design a trajectory generating algorithms which
compute in one step only internal coordinates of points lying exactly on the reference
trajectory, with the accuracy resulting from the computer register length. These for-
mulae make the programmers look for alternative solutions to manipulator kinematic
singularities. Analytic formulae as a solution to an inverse problem of kinematics of
the six degrees—of-freedom manipulators have been presented in the papers (Craig,
1989; Knapczyk and Kisiel, 1987; Paul, 1983; Szkodny, 1990).The same formulae for
the N < 6 degrees-of-freedom manipulators have been presented in the papers
(Craig, 1989; Knapczyk and Stepniewski, 1985). However a constraint equation of
an effector link (Szkodny, 1985) has not been presented in the paper (Knapczyk and
Stepniewski, 1985). It suggests that the link is able to realize the reference trajectories
with six degrees of freedom, which is not possible.
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It follows from the foregoing review that the kinematics models as presented in
papers (Duleba and Lysakowska, 1990; Gerke, 1985; Gousenes, 1984; Jacak, 1989;
Jacak and Lysakowska, 1990; Knapczyk and Stepniewski, 1985; Lozano—Perez, 1983;
Taylor, 1983) do not allow us to design accurate and at the same time fast reference
trajectory generating algorithms with a defined kinematics for the manipulators with
less than six degrees of freedom .

In the next section equations of forward kinematics of IRb~6 manipulator links
have been presented. The third section contains formulae being the solution of inverse
problem for links kinematics. Then equations of actuators kinematics follow which
are crucial for dynamic analysis of IRb—6 manipulator. The fifth section presents an
example illustrating the usage of the formulae presented in Section 3. The last section
contains conclusions.

2. Equations of Links Kinematics

IRb-6 manipulator (see Fig. 1) has six links joined by rotational kinematic pairs.
Figure 2 shows a homogenous transformation graph describing the manipulator kine-
matics. Numbers of links in Figure 1 have been circled. Coordinate systems have been
associated with links following Hartenberg-Denavit notation. Hartenberg-Denavit
parameters describing this manipulator are shown in Table 1 (Szkodny, 1985).

Tab. 1. Link parameters for IRb-6 manipulator.

Link number | «; [°] | & [m] | A [m] 0; [°]
1 90 0 0.70 90 = 430
2 0 0.45 0 50 =130
3 0 0.67 0 —130 = -50
4 90 0 0 —25+ —-220
5 0 0 0.095 | AOs =360

The following modification of angles will be introduced to facilitate solving inverse
problem of kinematics (Szkodny, 1985):

O, =0, —90°, O =0,—90° ©h=03+90°, 0,=0,-90° ;=065 (1)

Ranges of change of these angles are as follows (Szkodny, 1985):
0° < ©) <340°

—40° < O < 40°
—40° - @), < O < 40° for —40° <@} < —15°
—40° - O, < ©} < 25° — O for —15°< @ <0°
_40° < ©f < 25°— O for 0° < ©) < 40°
—90° — 0 — 0} < O <90°— 6, — 6%

—970° + k(O + O + ©}) < ©f < 90°+ k51 (05 + 05 + O, k' =32/19 (2)
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To stmplify the notation, the following designation will be used:

sin@®; = S;, cos©; =C;, sin(0; + O) =Sy, cos(O] +O)) =Ci; ete.
In further considerations it will be assumed that the angles ©) = ©f are natural
coordinates of links.

Transformation matrices A; + As and E have the following form (Szkodny,

1985):

-—Sl 0 Ch 0 -—Sz -—Cb 0 —4252
0 - l
e C, 0 8 | 4= Co =Sy 0 1,0,
1 A 0 0 1 0
I 0 1 i 0 0 1
[ S5 C3 0 138, [ -3, 0 C, 0
) -l
Ay = s S3 0 —I13C3 A= Ci 0 S3 0 )
0 0 1 0 0 1 0
L0 0 0 1 i 0 1
[ Cs =S5 0 0 [1 0 0 I
Ss Cs 0 0 010 0
Ag=| 7 ° , E =
0 0 1 Xs 0 0 1 X
0 0 0 1 [0 0 0 1

Matrices T's and X describing the effector link and task as shown in Figure 1 have
the following form (Szkodny, 1985):

515234Cs + C1S5  —S515234S5 + C1Cs  —S1Ca34
—C15234C5 + 5185 C1523455 + 5105 C1Ca34
C234Cs —C23455 Sa34
0 0 0

Ty =

55157 —1351C23 — A551Caza
—15C159 4 I3C1Ca3 + AsC1C34
A1+ 1302 + 13523 + AsS234
1

(4)

Ng Or Q4 P

n; Oz a: p:
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where n, = n,, oy +o0;, a; +a, are identical with the elements of matrix T's.
Elements in the last column are as follows:

ps = 135159 — 1351 Ca3 — A551C234 + 16(51.5234Cs + C155) — A651C234

py = —15C1S2 + 13C1C23 + A5C1C234 + l6(—C15234C5 + S1S55) + A6C1C234

p: = M + 1Cs + 13S23 + A5 S234 + l6C234C5 + A6 S234
Matrices T's and X enable us both. to solve the forward problem of kinematics of
the manipulator and to determine of the work space (Kucharski, 1989).
3. Solution of Link Kinematics Equations

The solution to the inverse problem of IRb—6 manipulator kinematics will be expressed
by means of elements of matrix T'srer = X et E-1 whose form is as follows:

Tsret = }(ref-E—1 = Trans(xref; Yref Zref)Euler(Qref ) Orer’, \I’ref)E_l

1 0 0 zpef 08 Bref cOS Orer €0S Trer — 50 Prer SN Weer
101 0 e sin ®res cOS Orer cOs Wrer + €08 Pres sin Wrer
1001z — sin ©,¢s cos Uref

000 1 0

— €08 ®pet €OS Opeg 5in Wror — 5in Prer €08 Wrer  €OS P SIN Ot 0
— §in ® et c0S Orer SIN Wpep + €08 Drer cos Urer  8iN Prer SN Orer 0
sin Orer sin Wrer c0S Orer .0

0 0 1

10 0 —l Ng Oy @z Po

010 O _ | ny oy ay py
) 0 0 1 —=X¢ T ln , 0, G P

0 00 1 0.0 0 1

ng = coS ®ret €08 Oref €08 Wrer — SN Prer sin Yrer

ny = sin Pref €S Orer c0S Yrer + COS ®ret sin Wier

n, = — sin Orer oS Yrer
0y = — €08 Pref COS Orer SIN Wor — 5in Pper oS Yrer
0y = — Sin ®rer €08 Orer sin Yrer + €OS Por cOs Wier

0, = Sin Oyer SIN Wer
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@y = coS Pper 8In O er

ay = sin @per sin Ores

a, = cos Orer

Dz = Tref — Ngle — agXg

Dy = Yref — "yIG - ay)‘6

Dz = Zref — n.ls —azXe (6)

where  Tref, Yref, Zref, Pref, Oref, Wret are the task required external coordinates
and lg, A\¢ are the task kinematic parameters.

The IRb—6 manipulator has five degrees of freedom and this implies one constra-
int equation of the effector link wirst. The kinematic structure of the manipulator
hinders the rotation of effector link around the zp—axis of the base coordinate system
(Szkodny, 1985), and this is represented by the equation

agpy — aypz =0 )

which must be satisfied by elements of matrix T'srer in each point of the reference
trajectory. It is one of the necessary conditions for the reference trajectory to be
realized. The formulae being the solution of the inverse problem of kinematics for the
matrix Tsrer in form (6) are as follows (Szkodny, 1985)

SH for p; <0 and py >0
o) = T+ 180° for py <0
1+ 360° for p; >0 and p, >0
O] =arc tg(ji) (8)

Py

wi +uf - (B +1)
2yl ’

wol3Cs — w1 (1383 + 13)
l%cg + (1353 + 12)2 '

wy = —51pg + C1py + AsS1a; — AsCiay

05 = arc tgg—z, S3 = Cs=(1-53) (9)

w1l3C3 + wo(l3S3 + 12)
BC? + (1383 + 13)?

S
% = arc tgé, Sy = Cy =

wy = p; — AL — Asa, (10)

954 for A5034 2 0
;}4 = @54 + 1800 for A5Sa34 >0 and A5C34 <0
s, —180°  for XsSss <0 and AsCsy <0
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A5S34 = 51520 — Clszpy + Cap; — A1Cy — Iy — 1353

AsCsq = —S102pz + C1Capy + Sap, — A152 — 13C3

AsS34
©%, = arc tg——— 11
34 gA5C34 ( )
W= 03— 04 (12)

Sy = Cing + Slﬂy, Cy = Cro5 + Sloy
0F = arc tg%z- (13)

Boundary angles ©L . and ©}., depend on ©) <+ ©, as well as angles

Lo — O = 360° (see formulae (2)) and signs of S5 and C5 must be
examined in order to determine angle ©%. The analysis of the above formulae makes
it clear that for explicitly determined elements of the matrix T'ser, there may be
two solutions for ©} = @4 _.  or ©} = ©%_,,. This is the kinematic singularity of

the first kind. There is no singularity of the second kind of the [Rb—6 manipulator
(Szkodny, 1985).

4. Equations of Actuators Kinematics

Driving kinematics has been illustrated in Figures 3-6. The transformation ma-
trices illustrated in these figures have been taken from paper (Kucharski, 1989).
The p;ypizp; coordinates are associated with the body of the i-th actuator. The
TailYaiZai coordinates are associated with the rotor of the i-th actuator. The angle
of rotation ©,; of the Z4iYaizsi System coordinates around the zpi—axis is a natural
coordinate of the i-th actuator.

Formulae binding the ©) =+ ©f natural coordinates of links to the natural
coordinates ©®,; = O.5 of actuators are as follows (Kucharski, 1989; Szkodny, 1985):

@’1 = kl_leal

2
AB? + BC? — [4yC — (hy /QW)euz]
2-AB.BC

0, = —arc cos +a

DE? + EF? — [DoF — (hs/27)Ous)’
2 DE -EF

©4 = —arc cos +8—05
) = k3 'Oas — (05 + O3)

L=k k5 (Oas — Ous) (14)
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These formulae correspond to the following equations:

Ou1 = k10

Oz = (27/h2){ ~[AB? + BC* - 2-AB- BCcos(a — 04)] ¥+ 4,C }

©us = (2n/hs){ ~[DE? + EF? — 2. DE-EF-cos(§ — ©} — 0})]* + Do F }

Oas = k4(03 + O3 + O5)
Oas = ka(O3 + O3 + 0)) — kaksO; (15)

AB? + BC? — A,C?
2-AB-BC

DE? + EF? — DyF?
2.-DE -EF

& = arc cos

B = arc cos

The matrices Ty + T,5 describing the manipulator driving kinematics are of the
form (Kucharski, 1989):

-S, C, 0 0
0 0 1 =X
Ta = 1 (16)
C, S, 0 O
0 0 0 1
where S, =singp, C, =cosp, p =01 —Oq1,
[ CaCp —SaCp Sy —lag — Xa2S,
C,S, =S8, —-C, 1 Aa
1’1‘12 — 14 17 (4 21+ 2C‘P (17)
S, C, 0 —Ag1
0 0 0 1
where S, =sin©g3, Cs = c08O42, S, =sinp, C, =cosp, ¢ =p;—06)
—arct bz + a202 - 12152
2= 8d; — 1,1C; — 455,
2 213
Agz = [(bz + a2Cy — 15152)" + (da — 121C2 — a25) ]
CoS, —S.S, C, —laz—1355— A3C,
T,s = CaC(p —SaCLp _SLP —13:1C3 + /\a3S¢ (18)
Sa Ca 0 _(/\31 + A3»2)

0 0 o 1
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where S, =sinp, C, =cosp, ¢ =0, + 04 — ¢,

_ bz — a3Sa3
P = e g~ asCis

i
2

Aaz = [(ds — (13023)2 + (ba - 03523)2]

=Sy Cyp 0 14354 —142C34
0 0 1 —(Ag1+A
T, = ( 41 42) (19)
Co Sy 0 —l43Cs— 142534
0 0 0 1

where S, =sinp, C, =cosp, p =02+ 03+ 04— a4, lg1 =lsg

—CsS, CsC, Ss 15354C5 — 153C34Cs — (As1 + As2)Ss
S5S, —S5C, Cs —I5354Ss + 152C3485 — (As1 + A52)Cs
Co Se 0 —153C4 — 152534 — A5
0 0 0 1

Ta5 = (20)

where S, =sinp, C, =cosp, ¢ =05+ 05+ 04 —Oas, I51=lsa.

Figures 4 and 5 illustrate the r310Y3102310—coordinates describing an element
equilibrating, the third link. Kinematics of this element is illustrated in Figure 7.
The matrix Tos; describing this coordinates in relation to the base coordinate
system has the form

—51C23 51823 C1 0
C1Ca3 —C1S23 S1 0
Sa3 Cas 0 A\

0 0 0 1

To31 =

(21)

5. Example

The formulae presented in Section 3 are the solution to inverse problem of IRb—6 ma-
nipulator kinematics. On the basis of these formulae algorithms generating natural
coordinates of actuators are designed. The coordinates correspond to the reference
trajectory of a manipulation object as described in the manipulator external space.
* The algorithms computing the actuators natural coordinates form a reference trajec-
tory generating a tier which is a functional structure element of the adaptation robots
control system. . These algorithms are indispensable program means interconnecting
vision tier and control drives tier (Niederlinski, 1983).

A computer algorithm PLAN2 generating task trajectories of the IRb—6 manipu-
lator has been worked out. Reference external coordinates of the points of a generated
trajectory will be called main fulcrums. No such generation is possible without an
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introductory description of the trajectory in the form of external coordinates values
of, at least, two main fulcrums optionally distant from each other. Algorithm PLAN?2
generates additional fulcrums between consecutive main fulcrums.

For the defined reference external coordinates Zrer, Yref, 2Zref; Pref; Oref, Fret
and the reference time T — describing consecutive main fulcrums the algorithm deter-
mines matrix T's.ef, checks if contrains equation (7) is satisfied and computes natural
coordinates ©f = ©f from formulae (8)—(13). Then the algorithm asks about a co-
ordinate system describing the shape of trajectory segment between the consecutive
main fulcrums. For a straight segment Cartesian coordinates should be set, whe-
reas for a curvilinear segment either cylindrical or spherical coordinate system should
be chosen. Once external coordinates of all the main fulcrums have been set, the
algorithm asks about parameters defining the accuracy of generating the reference
trajectory (Szynawa, 1991) and parameters lg and A¢ describing the task. After
input parameters have been read in, the algorithm determines additional fulcrums
accepting a linear change of external coordinates z,y,z,®,0,¥ along the length of
the segment joining consecutive fulecrums. Angle @ is a result of the altered external
coordinates and the constraint equation (7).

Figure 8 shows a task rectilinear reference trajectory which is limited by the
initial fulcrums P and the final point K. The coordinates of these fulcrums are:

ZTpret = —0.60m, Ypret = 0.60m, Zpret = 1.0m
@ prer = 135°, Oprer = 179°, U prer = 359°
Tiret = —0.65m, Ykret = 0.60m, ZKret = 1.0m
D perer = 137.29°, Oxrer = 1°, . Wirer = 180°

The following input parameters of the PLAN2 algorithm, defining kinematics of the
trajectory as in Figure 8, were adopted: the task parameters I =0 and A = 0.16 m;
time assigned to point P : Tp = 0; time assigned to point K Tx = 1.0 sec; trajectory
shape —straight line.

1283 additional fulcrums shown in Figure 9 and Figure 10, result from such
generation. It follows from Figure 9 and Figure 10 that natural coordinates graphs
of the links and actuators are similar. ©% coordinate undergoes a sudden alteration
from the minimum to the maximum boundary value, determined by inequalities (2).
It follows from these inequalities that ©f angle jump at time ¢ = 0.5sec equals
360°. There is a similar change in the ©,5 coordinate. Other coordinate graphs are
smooth.

The main fulcrum P corresponds to the following natural coordinates:
©) = 45°, 0} = —-25°, h=37.7°, L =-102°, ©f = -181°
Oga1 = —T7110°, Q4 = —2567.5°, Op3 = 1360.5°, Ogq = 11392°, On5 = —2364°
The main fulcrum K corresponds to the following natural coordinates:
h = 47.3°, 0, = —39°, 5 = 12°, 4 = 116°, oL =0°
Ou1 = —T7472°, Ogy = —3818.8°, O,3 = —2921.3°, Oaq = —11392°, ©O,5 = —11392°
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6. Conclusions

The kinematics models presented above render it possible to:
a) analyse reference trajectories graphs in the internal space of IRb—6 manipulator;

b) determine analytic description of the IRb-6 manipulator work space (Kucharski,
1989); ' '

c) design some algorithms generating the reference trajectory for the IRb-6 manipu-
lator (e.g. algorithm PLAN2 (Szynawa, 1991));

d) determine instantaneous position and angular velocities of links and other elements
of TRb—6 manipulator which are essential for their dynamics, stress and strain
analysis.

As the IRb-6, IRb-60, IRp—6, IRp—60 manipulators have similar kinematic struc-
ture, the equations of kinematics of Section 2 may be used to describe each of them
as well. '
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Symbols
A; — homogeneous transformation describing the relation between the i-1-st link
and i-th link
a;, l;, A;, ©; — Denavit—Hartenberg parameters

E — homogeneous transformation describing the relation between the task and the
(5-th) working link

®, O, ¥ — external coordinates of orientation (Euler angles)
hg, hs, k1, k4, ks — kinematic parameters of driving units of IRb—6 manipulator

T's — homogenous transformation describing the relation between the 5-th link and
base link

T ;i — homogenous transformation describing the relation between the i-th actuator
effector and the i-th link

©; — natural coordinate of the i-th link

©,4; — natural coordinate of the i—th actuator

z, y, z — external coordinates of position

T4iYaiZai — coordinate system associated with the i—th actuator effector

ZpiYpizei — coordinate system associated with the body of the i—th actuator
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Fig. 2. Homogenous transformation graph of IRb-6 manipulator.
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b) Aai = Rot(z, —0a1 + O + 90°)Trans(0, 0, A11)Rot(z,90°), T = A
Fig. 3. The first degree~of-freedom drive unit.
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b) Az = Rot(z,—©a2), Aab12 = Rot(z,180°)Trans(0, 0, Aa2)Rot(z, 90°)
Aizz = Rot(z,90° — o2 + ©4)Trans(0, 0, A21 ) Trans(l21, 0, 0)Rot(z, 90°)
Trans(l22,0,0), Ta2 = (Aab2Ap12A122)""

Fig. 4. The second degree—of-freedom drive unit.
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b) Agss = Rot(z, —Oa3), ‘Awa1 = Rot(z,180°)Trans(0, 0, Aa3)Rot(z, 90°)
Aj23 = Rot(z,1800 — 3 + ©7)Trans(0, 0, As2 + As1)Trans(la1,0, 0)Rot(z, —90° + ©3)
Trans(lsz, 0, 0), Tos = (AassAabar A1za) ™"

Fig. 5b. The third degree—of—freedom drive unit.
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Fig. 6b. The fourth degree—of—freedom drive unit.
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Tas4

H
(|
’)ﬂ 8,+63°6. /

Agps = Rot(z, —0as), Apis = Rot(z,05 + O} + ©3)Trans(0,0, A1)
Az = Rot(z,90° + 45°)Trans(ly,, 0, 0)
Az3s = Rot(z, —45° — ©3 — ©4)Trans(l42,0,0)
Ajsss = Rot(z, 05 — 90°)Trans(lss,0,0), Asse = Rot(z, —45° + ©})
A554 = Tra.ns(lu s 0, O)Rot(z, 450), A574 = Rot(z, QOO)TIH.HS(O, 0, /\42)R0t(z, 900)
Tas = (Acba Ab1a A124 Azss Asis Asss Asga Agrs) ™!
Fig. 6¢c. The fourth degree—~of-freedom drive unit.

) EA. 80\5—8;‘ 8‘1'1-450

K 856> 6,

Fig. 6d. The fifth degree—of-freedom drive unit.
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Azs

-1 a1 g
k,Ba5-8,745> 83

Aqss = Rot(z, —Oas), Awis = Rot(z, k; ' ©as)Trans(0, 0, As1)
Ajzs = Rot(z, 90° 4 45°)Trans(ls1, 0, 0)
Azss = Rot(z, @ — k7' Qa5 — 45°)Trans(ls2, 0,0)
Asss = Rot(z, ©f — 90°)Trans(ls3,0,0), Asss = Rot(z, k71 Ous — ©f — ©F — 45°)
Ases = Trans(ls4,0,0)Rot(z,45°%)
Asrs = Rot(z, 90° — k7 @gs + ©5 + O3 + ©4)Trans(0, 0, Asz)Rot(z, 90°)

Trans(0, 0, A5 )Rot(z, Og)
Tas = (Aavs Avrs Ar2s Azas Asss Auss Ases Aers) ™

Fig. 6e. The fifth degree of freedom drive unit.

Fig. 7. Description of the third Fig. 8. Reference trajectory X res.
link equilibrator.
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b Loy Toedy g by o by gy
0

0
t[sec.]
Fig. 9. Link natural coordinates ©}(t) <+ ©(¢).

(¥ 10000
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Fig. 10. Actuator natural coordinates ©ai(t) + @as(t).



