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EVALUATION OF SOME OPTIMAL CHEMOTHERAPY
PROTOCOLS BY USING A GRADIENT METHOD

Zpzistaw DUDA*

The paper presents some optimal problems resulting from cancer chemotherapy.
Two bilinear models of a cell population cycle and a linear performance index
are considered. A numerical gradient method is applied to solve the problems.
Some properties and related simulation results of optimal control strategies are
discussed.

1. Introduction

Cancer chemotherapy is based on suitable dosage of pharmacological agents called
cytostatics. The cytostatics do not only destroy cancer cells but also damage other
tissues such as the mucous membrane or alimentary canal. This influence is called the
negative effect of the drug. In order to maximize the result of cancer cell destruction
under constraint on the negative effect, it is necessary to work out control strategies
(chemotherapy protocols). It seems that some methods of optimal control can be
applied to the problem.

The cell cycle consists of phases passed by each cell from its birth to division.
In general, these phases are called: the growth phase (G1), the DNA synthesis phase
(S), the preparation for division phase (G3), and the division phase (M). After
division two new cells usually re-enter the growth phase.

For the control purpose, different models of proliferation cycle are discussed in
the literature. In the simplest model (Kimmel and Swierniak, 1983) all cell phases
are clustered into a single compartment. Then, it has the following form:

N(t) = —aN(t) + 2u(t)aN(t),  N(0)=No >0 (1)

where N (%) is the size of cancer cell population; u(t) represents a probability of cell
survival after a cytostatic dosage, thus 0 < u(t) < 1; constant @ is an inverse of
average length of cell cycle time; the coefficient 2 represents a cell symmetric division
into two new cells. For u = 0 the maximum dose is used, whereas for u = 1 the
drug is not administered and 0 < u < 1 in all other cases.

A performance index has the form:

J=rN(T)+ / T(l — uft)) dt — min 2)
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where r is a weighting coefficient; the second component in (2) represents a negative
cumulated cytostatic effect; T" is the length of chemotherapy time.

In (Swierniak, 1989), there are discussed four modified one-compartmental mo-
dels which lead to optimal control problems. It is shown that solutions are non-unique
and singular. From the medical point of view this may suggest that the models under
consideration are too simple.

The aim of the paper is to discuss more complicated models of the proliferation
cycle and properties of corresponding solutions.

2. Problem Formulation for Two-Compartmental Model

Consider a two-compartmental model (éwierniak, 1989) in which two compartments
are composed of the phases G;+S and GpM. That model is the simplest one, which
allows us to take into account phase sensitivity of the drugs. The equations of the
model are bilinear:

Nl = —a1 N1 + 2uas Ns, N1(0) =N;p>0 ( )
. 3
No=a1N; —azNg, N2(0)=N20 >0

where N; and N, represent average numbers of cancer cells in G; + S and GoM
phases, respectively; the constants a; and a; have the similar meaning as ‘a’ in (1);
the control u represents the killing effect of a cytostatic which exists only for the cells
n GzM .

The performance index which should be minimized has the form:

T 2
J= /0 (1= wdt+ YD) (4)

and can be interpreted similarly to (2).

The necessary conditions of the optimality for the control of (3) with the perfor-
mance index (4) given by the Maximum Principle (Pontryagin et al., 1962) lead to the
Two-Point Boundary-Value Problem (TPBVP). It can be solved by a semi-analytical
method proposed in (Swierniak and Polariski, 1993). In the sequel that problem will
be solved by using a gradient method.

3. Problem Formulation for Three-Compartmental Model

Consider the cell cycle model which includes separate compartments for the Gy, S
and G2 M phases. The objective is to keep cancer cells in the S phase by a cytoststic
(v) and then release them just at the moment when another GaM specific anticancer
drug (u) has the maximum killing potential.

The equations of the model have the form:
Nl = —a; N1 + 2uag N3, Nl(O) = Nyjp >0, 0<u<l1
Ng = a;N; —vayN,, Nz(O) = Ny > 0, v <v <1 (5)

N3 = —agN3 + vaz Na, N3(0) = N3og >0
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The performance index to be minimized is of the form:

T 3
J:/ (1—w)dt+ 3 ndi(T) ©6)
0 i=1
In the sequel, this problem will be solved by using the gradient method.

4. Description of a Gradient Method
Consider a system described by the state equation:
N = f(N,u) ()

where f(-) is a differentiable function and Ny, € IR™ is given. Without loss of
generality assume that u is scalar and -1 <u < 1.

The performance index has the form:
T
J= / I(N, u) dt + h{N(T)] — min (8)
0

where I(-) and h(-) are given scalar functions; T — given horizon of optimization.

Let us denote by éu and §J a variational form of u and J, respectively. Using
the calculus of variations (Mohler, 1973) it follows that

T
AJ = J(u+6u)—](u)z/ ?—{I—éudt (9)
i) au

with the conditions

§=— (-g-g)T P(T) = (5—;)T (10)

where H is called the Hamiltonian and is defined as
H = I(N,u) + 57 F(N,u) (11)

where p is a costate vector; T' denotes transposition of a vector.

Now, assume that optimal control is a bang-bang process and for some N and
given T]-N , J=1,2,..., N the control variable u is of the form:

N
w= (=17 1= 7Y) - 1 - 7)) (12)

where 1(-) is the unit step function and er , 3=1,2,..N are called switching times;
N=0,=T
0 —%Yy IN41 — &+

It can be shown that the variational form of u is given by

N
fu=2 (=1)7+16(t — r¥)sr (13)

j=1
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where §(+) is the Dirac delta function and 6TJN is the variation of the switching

time TJN .

If (13) is substituted into (9), it can be seen that

) 0H

e 6N (14)

J

N
AT~ 2) (—1)UH
j=1

—_rN
T=T;
2

To minimize the performance index J, the variation 6TJN should fulfil the condition
AJ <0. It can be seen that:

s = (1Y k5,  j=1,2,.,N (15)

where ¢; = —

Ou

and k; 1s a positive coefficient.

r=rN
H

The steps in the numerical algorithm are as follows:

1. Assume N and riN, i=1,2,..,N.

2. Solve the state equation (7) for given (12).

3. Compute the vector p(t) by integrating (10) backward in time.

4. Compute the variables ¢;, choose a suitable k; and compute 67 from (15),
i=1,2,.,N.

5. Compute new switching times (r¥ +67), i=1,2,...,N.

6. Repeat Steps 2-5 until Efvzl(ér,-N )2 < ¢, where € > 0 is a given small number.
7. If an optimal ¥ # TJN , then increase the number of switching times and repeat
Steps 1-6 until some 77,7 tend to cluster.

For some form of bilinear state equations and a performance index, the gradient
method is described in (Hestens, 1966).

5. Solution to the Two-Compartmental Model

Let us apply the gradient method to the model described by (3), (4) where u should
satisfy 0 < u < 1. After transformation u = 0.5(1 + u*), equations (3) and (4) can
be written in the form: ’

le—a1N1+a2N2+a2N2u*, -1<u*<1
) (16)
Ng = a1N1 —aaNy
T 2
J= 0.5/ (1-u)dt+ 3 mlNi(T) (17)
0 i=1
From (7), (8), (10), (11) and (15) it results that
P1 = a1p1 — P2, pn(T)=mr
(18)

P2 = —aap1 + ap2 + p1agu’, p2A(T) =72
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5TiN = (—l)ik,-(—-1+2p1a2N2)| i=12,...,N (19)

T:T!.Iv )
For the assumed u* given by (12) we can see that equations (16) and (18) are
linear.

As an example let us consider (16) and (17) for a; = 0.197, a; = 0.356, r; =
6.94, rp = 3.94, Nyjo = 0.83, Ny = 0.57 T = 10. From numerical investigations
it results that there exist two local minima for one switching time. The optimal
solutions are as follows:

o the first solution: wu =1 for 0 <7 <5.32 and u =0 for 5.32< 7 < 10;
e the second solution: u =0 for 0 < 7 <4.67 and u=1 for 4.67 < 7 < 10.

The optimal value of the performance index for these solutions is J°P* = 8.3587.
It is interesting that for other data there exists only one optimal switching time.

6. Solution to the Three-Compartmental Model

Consider model (5). After transformations v = 0.5(1+u*), v = 0.5[v*(1 —vm)+(1+
vm)] we can transform (5) and (6) into the form

Ny = —a; Ny + a3N3 + agNau*, —1<u* <1
Ny = a1 Ny — 0.5(1 4 vy )azNa + 0.5(vm — 1)agNov* =1 < v* < 1 (20)
N3 = 0.5(1 + vm)az N2 — agN3 + 0.5(1 — v, )ag Nov*

The performance index which should be minimized has the form

J=05 /O 1wyt + ir;N.-(T) (21)

i=1

It is easy to notice that from (7), (8), (10) and (11) it results that:

P1 = a1p1 — a1p2

Py = 0.5[(1 + vm)ag + (1 - vm)a?u*]pz

(22)
—0.5[(1 + vm)az + (1 — vm )azv*]ps
ps = —az(1 — u*)p1 + a3ps
with p1(T) =r1, p2AT) =r2, ps(T) =rs.
The variations of switching times for u* and v* are as follows:
88 = (1) kiue (=14 2p10aNs)|, _, | 28)

88y = (=1) kiv+ [(vm — 1)azpaNz + (1 — vm)az Naps |

T=Tiv*

To solve this problem the gradient method can be used.
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As an example consider (5) and (6) for a; = 0.197, a; = 0.356, a3 = 0.5, r; =
6.94, ro = 3.54, r3 = 2.1, v, =0.9, Nip=0.83, Noyp = 0.57, N3y = 0.2, T=10.
The optimal solution is as follows:

u=1 for 0<7<3.15, u=0 for 3.15 <7 <10,
v=v, for 0<7<295 v=1 for 2.95<7<10.

The optimal value of the performance index is J°P® = 10.57.
For changed v,, = 0.1 the optimal results are:

u=1 for 0<7<6.8, u=0 for 68« 1<10,
v=uv, for 0<T1<6.5, v=1 for 6.5 <7 <10

The corresponding optimal value of the performance index is JOP* = 8.42.

For other data there exists only one switching time for the control u and wv.
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