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IRREGULARITY IN SCHEDULING OF
CANCER CHEMOTHERAPY

ANDRZEJ SWIERNIAK*, ANDRZEJ POLANSKI*

The paper presents a problem of optimal control of a bilinear system in the plane
which has irreglﬂa.r' properties although the optimization problem is similar to
.those ones which admit the “regular synthesis” (Sussman, 1987c). The number
of switchings derived from the maximim principle can be arbitrarily large in any
time interval and multiple solutions to the two-point boundary-value problem
are possible. An example from modelling cancer chemotherapy was derived to
demonstrate irregularities.

1. Introduction

It is well known that the maximum principle (Pontryagin et al., 1962), although being
one of the most powerful tools for solving optimal control problems, gives only the
necessary optimality conditions. Theréfore, a considerable effort has been made to
identify problems in which the maximum principle states both the necessary and
sufficient, conditions of their optimality. An important class of such problems is time-
optimal control of non-linear systems in the plane. The optimal control is of bang-
bang type and it was proven in (Sussman, 1982; 1987a; 1987b; 1987c), provided
that some additional conditions are satisfied, that the optimal control admits the
“regular synthesis”, i.e. the number of switchings is (locally) limited and the maximum
principle gives a unique optimal solution.

In this paper we present a problem of optimal control of a bilinear system in
the plane which although looks similar to those discussed in (Sussman, 1982; 1987a;
1987b; 1987¢), has irregular properties. The number of switchings of trajectories
derived from the maximum principle can be arbitrarily large and multiple solutions
are possible.

Our example was derived in order to demonstrate irregularities and it comes
from modelling cancer chemotherapy (Swan, 1990; Swierniak, 1989). Moreover, the
multiple solutions given by the maximum principle seem to have some practlcal im-
portance. Although in the family of solutions usually only one is optimal, the other
solutions are very close to the optimal one in the sense of the value of performance
index. Then, they form a family of suboptimal solutions, so it is be reasonable to
apply one of them if additional factors, such as drug dynamics are taken into account.
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2. Cancer Chemotherapy Model

We consider the second order, bilinear model of cancer chemotherapy derived in
(Swierniak, 1989). The model consists of two compartments composed of the phases
of cancer cell proliferation cycle, namely Gy + S and G2M. Its block diagram is
presented in Fig. 1.

2u

Gi1+ S G2 M

Fig. 1. Block diagram of the cancer cell proliferation cycle
with two bilinear compartments.

The citotoxic agent is assumed to be phase specific, it affects only the cells leaving
GoM.

The equations of the model are bilinear:

Nl(t) = —alNl(t) + 2U(t)02N2(t), Nl(O) = N10

. (1)
Nz(t) = alNl(t) — azNz(t), Nz(O) = Ny

with Ny(t) and N(t) representing average numbers of cancer cells in Gy + S and
GoM at time instant ¢, the control u(t) is the killing effect of a citotoxic drug (i.e.
the fraction of cells able to survive after the drug was used) 0 < u(t) < 1, where
u(t) = 0 means that all cells leaving G2M are killed, while u(t) = 1 that no drug
was used.

Equation (1) can be expressed as one state equation

N(t)=[A+ Bu®)]N(t), N(0)=No (2)

| M) | Moo
N(t) = [ Na) } No = [ N ] 3)

and the matrices A and B are composed of the model parameters:

| —a 0 10 2a
A_[al _az}, B_[O 0] 4)

For model (2) the problem of reaching the desired terminal state N(Tx) = N
from a given initial state N(0) = No belongs to the class described in (Sussan, 1982;
1987a; 1987b; 1987c) and admits a regular synthesis. Of course, the requirement
N(Ty) = N; means that terminal average numbers of cancer cells should be made
sufficiently small. However, in cancer chemotherapy there is another factor which

where
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must be taken into account, namely the negative cumulated effect of citotoxic drugs
to normal tissues. Then, it is reasonable to minimize the following performance index:

J =1L N(Ty) + OTH(1 —u)dt (5)

which reflects the compromise between two effects. Its first term is a penalty for the
terminal numbers of cancer cells, while the other represents the cumulated negative
effect of the citotoxic drug. In formula (5) N(T) is a final state vector representing
average numbers of cells in the proliferation cycle, r — a weighting vector, Ty — a
given control horizon (the superscript 7' denotes transposition).

The necessary conditions of the optimality for the control of (2) with the per-
formance index (5) given by the Pontryagin maximum principle (Pontryagin et al.,
1962) lead to the two-point boundary-value problem (TPBVP) of the following form:

i) conjugate equations:
N(t) = [A+ Bu(@®)]N(t) (6)
p(t) = ~[A+ Bu(t)]"p(t) ' ‘ (7)
ii) switching rule: |

0 if T()BN(t) > 1
u(t) = ! pT() ) > ®)
1 if  pf'@®)BN(@®) <1

iii) boundary conditions:
N@©)=No, p(Tu)=rn 9)

In equation (7) p(t) is a two-dimensional costate vector, the switching rule (4)
follows from the form of the performance index (5). In our further considerations
we do not assume that matrices A and B are of special form (4). However we
make another, quite restrictive, assumption that both matrices A and A + B have
real, distinct eigenvalues and that the commutator matrix BA — AB is non-singular.
Note that this condition is satisfied when matrices A and B are given by (4) (with
ai # (12).

When solving the TPBVP (6)—(9) with the use of numerical algorithms (Mohler,
1973), for system (2) with coeflicients coming from some biomedical experiments,
a solution with exactly one switching is always obtained. It is either the optimal
solution or the local minimum, depending on the initial conditions of the algorithm.

In what follows we present an analytical approach to the TPBVP (6)—(9) which
exploits some symmetry relations between the trajectories of the Hamiltonian system
(6)—(8). Using the symmetries of the TPBVP we derive an algorithm which enables
us to find all the solutions.
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3. Symmetries in the TPBVP. Periodic Solutions

We call the dynamical system given by equations (6)—(8) the Hamiltonian system.
The trajectories of (6)—(8) with u(t) = 0 are called killing trajectories, and those
with u(t) = 1 — rest trajectories. At first consider the simplified situation when
killing and rest trajectories are analyzed separately. One can observe that if we do
not take switchings into account, i.e. we consider only conjugate equations (6)—(7) with
constant u(t) equal to 0 or 1, then this system is invariant under the two parametric
group of scaling transformations; if N(t), p(t) is the solution, then the same is true
for aN(t), Bp(t), a, # > 0. The invariance enables us to reduce the dimension
of the system, which is 4, by 2. The standard method is to use polar coordinates
¢n, ¢p, RN, Rp, where ¢y, ¢, are polar angles and Ry, R, — polar radii of the
vectors N(t),p(t), and to represent solutions of (6)—(7) on the (two-dimensional)
torus ¢n — #p. The situation is very simple. It is possible to plot “portraits” of the
trajectories (killing and rest) on the torus ¢x — ¢p. The information about the radii
can be obtained by integration along these trajectories.

In contrast to the simplified situation described above, in the “real” problem,
killing and rest trajectories cannot be considered separately. There are switchings
between killing and rest which depend, as it follows from (8), on the value of the
switching function f,(N,p):

fo(N,p) = p" (t)BN(t) (10)

The value of the switching function (10) is not invariant under the two parametric
group of scaling transformations. Therefore, the torus ¢n — ¢, is “too poor” to
represent the trajectories of the Hamiltonian system (6)—(8). However, it is possible
to define some characteristic points and regions on the torus ¢nx — ¢, which on one
hand, are related to the properties of trajectories of (6)-(8) and on the other, are
invariant under the two parametric group of scaling transformations. Their detailed
description is given in (Swierniak and Polanski, 1994). Here we recall only those
which are important for the subsequent discussion.

Calculating the derivative of f, along trajectories of (6)-(8) we obtain

Sh =P ((BA- ABN() (11)
It is then easily seen that the sets

Dfo={¢n.4p %f, =0} (12)

K= {on.6,: ofs >0} (13)

R={¢nd: %f, <o} (14)

of constant, increasing, decreasing f;, respectively, are invariant under scaling trans-
formations. The set Dfo consists of two curves Dfs and DfZ, which divide the
torus ¢y — ¢, into two regions K and R.
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Fig. 2. The points P, and P, are symmetric with respect to the regular curve 1.

The curves Df§ and DfZ have the regularity property (a curve on the torus
&N — ¢, is called regular iff it is closed and it has exactly one common point with
each line of the form {¢y = const}, {¢, = const}).

The regularity of the curves Df} and DfZ follows from the non-singularity of
the matrix BA — AB. The important observation is that the characteristic regions
as well as the points on the torus where switchings take place, are all symmetric
with respect to the regular curves Df} and DfZ. The symmetry with respect to
a regular curve is defined as follows. Two torus points Py : ¢n1, ¢p1, P2 : dna, Pp2
are called symmetric with respect to a regular curve ! or I-symmetric iff ¢, ¢p2 €1
and ¢n2,Pp1 € I We denote the I~symmetry relation by

Pi~Py (15)

By a straightforward extension the l-symmetry relation can be defined for sets of
points. The above definition is illustrated in Fig. 2.

The analysis of all characteristic sets allows classification of all trajectories for the
Hamiltonian system (6)—(8) (Swierniak and Polanski, 1994). One of the conclusions
was the existence of periodic solutions to (6)—(8) with multiple switchings. It can
be proven that the periodic solutions occur in the rectangular subset of the torus
én — ¢p, with the bounds depending on coefficients of matrices A and B. The
rectangle of periodic solutions is divided into two parts by a segment of the Dfy line.
This segment contains singular solutions of (6)—(8).
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Fig. 3. The rectangle of periodic solutions.

The properties mentioned above are illustrated in Fig. 3. The arrowed arcs are
segments of killing and rest trajectories, while the bold dots represent switchings. A
and B are two different periodic solutions to (6)—(8), while C is a singular solution.

Since the points where switchings take place are symmetric with respect to D fo
curve, it is clear that it is possible to find the solution to (6)—(8) an with arbitrary
large number of switchings in an arbitrary short time interval. The situation in Fig. 3
is similar to the “antiturnpike” case described (and excluded) in (Sussman, 1982;
1987a). .

4. The Algorithm for Solving the TPBVP

The idea of the algorithm consists in embedding the “original” TPBVP (6)—(9) in the
family of problems with variable radii of boundary vectors No, pg. The construction
of the algorithm depends on the position of the cross-point of the lines

=), 4= é(en) (16)

where ¢(-) denotes the function which assigns its respective polar angle to each of
the two-dimensional vectors. It can be proven that the position of the cross-point
determines the number of possible switchings. The most interesting situation arises
when the cross-point lies inside the rectangle of periodic solutions and belongs to the
line Dfy: In such a case a singular solution is possible. The existence of a singular
solution to the TPBVP implies an infinite number of solutions to the TPBVP.

We illustrate the algorithm using the data which have some biomedical inter-
pretation. They come from “in vitro” experiments with leukemia cells (Kimmel and
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Fig. 4. The family of solutions to the TPBVP.
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Traganos, 1986). The matrices A and B are given by

-0.197 0 0.712
A= 0 , B = 0 (17)
0.197 -0.356 0 0

We assume that the boundary vectors are

0.875

18
0.4842 (18)

N() = [

:I s p(TH) =4.1023 [ 0.7071 :I

0.7071
and Ty = 10. From (16) we have

¢y =6(No),  é; = é(pu) (19)

The pair ¢}, ¢, belongs to the Dfo line and lies inside the rectangle of periodic
solutions. Moreover, it is easy to check that with the data (17), (18) the TPBVP
(6)—(9) has the singular solution

N@#)=N(0), p)=p(Ta), u(t)=05 (20)

with constant values of all signals. The performance index for the singular solution
is J, = 8.943.

Using our algorithm we are able to calculate the whole family of other solutions
to the TPBVP, which consist of infinite number of elements. It appears that the
optimization problem has two distinct solutions, both of them have exactly one switch,
(one starts with killing, then switchings to rest, whereas the other one starts with
rest and then switches to killing). The optimal value of the performance index is
Jo = 8.359. The remaining solutions are multiple-switchings. The values of their
performance indices belong to the interval < Jo,J; >.

The diagrams of some members of the family of solutions are presented in Fig. 4.
The solutions are plotted on the torus ¢nx — ¢p. The singular solution is the cross-
point of the dashed lines. The diagram on the right presents solutions which start with
killing, while the one on the left those starting with rest. The numbers of switchings
for both plots are: 1, 3, 5, 10, 40. The solutions with multiple switchings make many
“encirclements” around the cross-point.

The difference between the minimum and maximum values of the performance
index is less than 7% which enables us to treat the solutions with many switchings as
suboptimal ones.
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