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DISTRIBUTED MODELLING OF CELL POPULATION

WoiciecH JEDRUCH*, JacEkk WANIEWSKI**

A distributed approach to modelling of population processes is discussed, and
a few examples of simulations generated by an abstract universe — a universal
modelling environment — are presented.

1. Distributed Modelling

The growing power of computers makes possible an approach to the modelling of
physical systems called distributed modelling. In this case local rules of interaction
between elements of a system are specified, and then an evolution of the system con-
sisting of many such elements is investigated by computer simulation. Using this
approach, a complex global behaviour of a model is obtained as a result of many
simultaneous, distributed in space, local and simple interactions. Using distributed
modelling, for example, instead of creating and solving numerically equations gover-
ning the behaviour of a turbulent flow in a fluid, one can model the flow by simulating
directly the motions of the fluid constituent particles.

Langton (1989) strongly recommends the distributed approach for modelling bio-
logical processes. He states that it is easier to generate complex behaviour from the
application of simple, local rules than to generate it from the application of complex,
global rules. This is because complex global behaviour is usually due to non-linear
interactions occurring at the local level. With bottom-up specifications, the system
computes the local, non-linear interactions explicitly and the global behaviour —
which was implicit in the local rules — emerges spontaneously, without being treated
explicitly. With top-down specifications, however, local behaviour must be implicit
in global rules.

Toffoli (1984) discusses the distributed modelling by means of cellular automata
as an alternative to differential equations. He claims that as long as all computations
had to be done by hand, it paid to stylize the physics in a certain direction so as to be
able to handle the resulting mathematics. But few differential equations have a closed-
form solution and if the equations have to be solved numerically, it appears that there
are at least three levels removed from the physical world they try to represent. That
is, first we stylize physics into differential equations, second we force the equations
into discrete time and space, third we truncate the real-valued variables into finite
computer words. In such cases the use of cellular automata instead of differential
equations is a tempting alternative. ’
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Distributed models are natural for many physical, chemical or biological systems,
whose behaviour is a result of interactions of many active elements distributed in
space. They could be especially beneficial when new, unforeseen properties of the
modelled system are likely to emerge while it evolves in time or when beside a mere
numerical agreement with a physical system the model should map its structure and
topology. For such systems, distributed modelling can be an attractive substitute
for models based on differential equations apparatus. Moreover, the distributed mo-
del can be used as a first, prototype model of a system, becoming a base for later
constructing a formal mathematical model.

There seems to be at least three possible ways of using the distributed modelling
in the field of the cell population dynamics, namely:

1. Modelling of the population dynamics in the manner similar to the modelling of
the chemical reaction kinetics — by simulating the movement of cell individuals
and their encounters and interactions with other cells individuals or drug particles.

2. Modelling of development of various structures consisting of cell individuals.
3. Modelling of development and growth of an individual cell.

. Cellular automata are a well-known formal context for distributed modelling.
The cellular automata is a lattice of sites (cells), each with a finite set of possible
values. The values of the cells evolve synchronously in discrete time steps according
to identical rules. The value of a particular cell is determined by the cell transition
function which maps the state of the cell and all its predefined neighbours to a new
state of the cell.

The simple and formally precise concept of the cell transition function which
specifies how the state of a cell depends on the state of its neighbours is also the
source of disadvantage of the cellular automata. This is because it is sometimes
very difficult and awkward to specify a transition function of automata for modelling
otherwise simple behaviour, like, for example, movements or collisions, and in such
cases a concept of specifying how the cell affects its neighbour cells seems to be more
natural. This concept has been realized in the abstract universe, another universal
medium for distributed modelling (Jedruch and Sampson, 1987; Jedruch and Barski,
1990), which is especially convenient when the movement of elements is inherent in
the behaviour of a modelled system.

The universe is a system of entities in a two-dimensional space. The entities
move and collide according to rules like those of classical mechanics, and at a higher
level of organization they interact between themselves according to functions encoded
in them. A computer program (written in Turbo-Pascal language) can simulate the
evolution of the universe starting from any initial configuration of the entities thus
allowing us to model various systems. The universe has already been used for si-
mulation of various physical systems as diffusion process, cluster formation, chemical
reaction kinetics, predator-prey systems, and growth of various complex structures
(for some of them see Jedruch and Barski, 1990; Jedruch, 1993a; 1993b).

- After presenting briefly the universe and its computer implementation, the paper
discusses the results of a few computer simulation experiments illustrating possible
ways of usih“g distributed modelling in the field of cell population dynamics.
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2. The Universe

The universe is defined over a two-dimensional tessellation of identical squares.
A square may be empty or contain any number of elements belonging to the set
E = AU{f}, A={0,1}. Elements A are called atoms and f — photons. Atoms
occupying a square form a particle, whose properties are fully determined by its ve-
locity and the one-dimensional sequence of its constituent atoms. The permanence
of the particle depends on its bond energy; this is what suffices to disintegrate the
particle into single atoms. The bond energy of the particle is the sum of the bond ener-
gies between its constituent atoms. Particles in adjacent squares can bond together
to form a complex of particles.

All the transformations in the universe obey the momentum and energy conser-
vation laws and are synchronized by a discrete clock.

Atoms are permanent elements of the universe; they are not created nor annihi-
lated during its evolution. Photons are temporary elements; they transport energy
and are created by reactions which dissipate energy.

2.1. Movements and Collisions

During each time step, particles and complexes can move by jumping randomly to
adjoining squares in the z and y directions with probabilities:

1 < 1 <
PII{ lvs/s] fv<s ’ P _{ loy/s| ifv<s 1)

|vz/v| otherwise v |vy/v| otherwise

where s is a constant, v = {/vZ 4 v, v; and vy denote the velocities of the particle
in £ and y directions, respectively.

Photons can move by jumping to adjoining squares in the z and y directions
with probabilities:

Psz = |cos |, Pyy = |sin¢| (2)

where ¢ is a photon direction of movement chosen randomly at the moment of the
photon creation.

When a particle attempts to occupy the square already occupied by another
particle or when a photon jumps into the square occupied by a particle, a collision
occurs, after which the new states of particles and photons are evaluated.

There are four types of collisions: the elastic and inelastic collision of two par-
ticles, and the elastic and inelastic collision of a particle and a photon. The latter
collision is further classified into six subtypes: rebounding of the particle hit by the
photon from an adjoining particle; setting bond between the hit particle and an
adjoining particle, resetting bond; changing the order of atoms in the hit particle;
absorption of the adjoining particle by the hit particle; splitting of the hit particle
into two particles. The type and particulars of reaction are chosen randomly.
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2.2. Functional Interactions

In another class of interactions the particles are capable of inducing transformations
in the space around them according to functions encoded in them. The description
of the function of the particle is contained in its string of atoms, which is interpreted
as a program written in a specially defined language (Jedruch and Barski, 1990).
The function contained in the particle can recognize particular structures of particles
and complexes, and transform them by moving them, changing bonds between them,
splitting them, concatenating them, or changing the order of atoms in them. Using
these transformations the function of one particle can modify the function of other
particles. The area of the functional activity of a particle is a square region (called Q)
centred around the particle. In a given time step, the functions of particles are
activated in a randomly chosen succession; a function activated later may affect the
area which was transformed by functions activated earlier. Although each particle
contains a function, some functions are nonsense and are not realized.

2.3. Computer Implementation

A computer program simulating the universe has been written in Turbo-Pascal lan-
guage. The simulation program first loads the initial state of the universe from a
disk file, and then runs in time steps. In each time step there are realized movements
of photons and their collisions with particles, movements and collisions of particles,
and functions of particles. During the simulation, a graphic pattern of the universe
is displayed on the screen. After the simulation is finished, the resulting state of the
universe is stored back on the disk, so that the simulation could be resumed from the
new state.

Besides the main simulation program, several tools have been designed to fa-
cilitate preparation of initial states of the universe and observation of some of its
parameters.

3. Simulation Experiments

A few computer simulation experiments are presented, showing the universe potentia-
lities for modelling various processes in the area of cell population dynamics. Models
of chemical reaction kinetics, cluster formation, and growth of a structure similar to
a cell wall are discussed. ’

In all experiments presented the initial velocities of the particles were chosen
randomly from the range (-3, 3), independently in the # and y directions, and the
constant s in formula (1) was set to be equal to 5.

3.1. Chemical Reaction Kinetics

The universe makes possible various approaches to the modelling of chemical reaction
kinetics, and two of them are presented below. These models can also be interpreted
as models of cell population dynamics.

In the first experiment the reaction A+ B — AB was modelled. In the universe
there were particles referred to as A (consisting of atom 0) and B (atom 1) (thus
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both containing nonsense functions) and particles P containing valid functions which
bond two free, adjacent particles A and B.

The size of the universe was set to be 320 by 174 squares, and the size of particle
functional activity area 2 was set to be equal to 5. The initial state of the universe
consisted of [A]o = 1500, [Blo = 1500, and [P]; = 20,50,100,200,500, where [-]o
denotes the initial value. For each value of [P]y the experiment was run for 1000
time steps.

As a mathematical model of the reaction
A+B* 4B 3
the following equation was taken (using the Law of Mass Action (Murray 1989, p.110))
44B]
dt

with initial condition [AB]o = 0, where k is the rate constant. Assuming [A]o = [Blo
the solution to equation (4) is

=k ([A]o — [AB])([Blo - [AB]) (4)

[Al3kt
B] = —————
[AB] [Alokt 11 (5)
To fit solution (5) to the experimental data it has been assumed that k = ko[P]o.
Minimizing the square criterion for the number of complexes [AB] with respect to
coefficient ko gives

1000
. . Y 2
min > Z([AB][P]ud(i)—[AB][P]oe(')) =1.08x 10° (6)

[Plo=20,50, i=1

100,200,500
for ko = 1.25x 1073, where [AB]ip},4(¢) and [AB]pj,e(i) denote the number of
complexes AB at the time step i, given by equation (5) and obtained experimentally,
for the number of particles [P]o. Figure 1(a) shows the number of complexes AB
obtained from (5) for ko = 1.25x 1078, and the one obtained experimentally.

In the second experiment the enzymatic reaction A+FE — AF, AE+B - C+E
was modelled. In the universe there were particles A (consisting of atom 0) and B
(atom 1) and particles E containing valid functions. The particle E bonded to itself
the free particle A, and in the next time step concatenated the particle B with the
particle A creating the particle C, which then detached from itself.

The size of the universe was set to be 320 by 174 squares, and the size of Q
was set to be 5. The initial state of the universe consisted of [A]o = 1500, [B]o =
1500, [Clo =0 and [E]o = 10,20, 50,100,200. For each value of [E]o the experiment
was run for 1000 time steps.

As a mathematical model of the reaction

A+EB AE, AE+BHBC+E )
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1000
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1500 (E]=29

0 time step 1000
b)

Fig. 1. Modelling chemical reaction kinetics. (a) The reaction A + B — AB.
Experimental and theoretical curves representing the number of partic-
les AB for various numbers of particles P. (b) The enzymatic reaction
A+ E — AE, AE+ B — C + E. Experimental and theoretical curves
representing the number of particles C for various numbers of particles

the following equations were taken:

ﬂg = ko[AE][B]

d[ﬁtE] = ki[A][E] - ko[ AE](B)

where [B] +[C] = [Blo, [4] +[AE] + [C] = [A]o, [E] +[AE] = [Elo.

(8)
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To fit the numerical solution to equations (8) to the experimental data it has
been assumed that k; = ks = k. Minimizing the square criterion for the number of
particles [C] with respect to the coefficient &k gives

1000

min > ((Clisali) - [Clisgee ()" = 132 10° 9

[E]o=10,20, i=1
50,100,200

for k = 1.26 x 10™*, where [C](£},4(7) and [C](g},.(7) denote the numbers of particles
C at the time step i, obtained from numerical solution of equations (8) and those
obtained experimentally, for the number of particles {E];. Figure 1(b) shows the
numbers of particles C' obtained from equations (8) for k = 1.26x 10™%, and those
obtained experimentally.

3.2. Cluster Formation

The universe could be very useful for modelling various processes of cluster formation.
In the experiment described in (Seledec, 1993) the universe in its initial state contai-
ned a complex of four particles referred to Z being a seed of the growing structure of
2000 particles, M, being a material bonded to the seed, and 100 particles, P, contai-
ning functions bonding free particles M with adjacent particles Z or other particles
M if the latter belong to the complex. The particles Z and M contained nonsense
functions. The size of the universe was set to be 160 by 160 squares, whereas the size
of 2 was set to be equal to 3. The growth of the fractal-like structure can be seen in
Fig. 2.

3.3. Growth of a Cell Wall

In the experiment the system of particles makes the growth of a structure similar to
a cell wall. The size of the universe was set to be 320 by 320 squares, and the size of
Q was set to be equal to 17.

The initial state of the universe consisted of:
1. The cell wall (62 particles).

9. Qutside the cell there were particles which were used as building materials
(1500 particles) and particles which served as sources of energy (2500 particles).

3. Inside the cell there were eight types of particles containing valid functions (32 par-
ticles) which directly build up the wall, transport the building materials and energy
rich particles through the wall into the cell, and remove from the cell the particles
whose energy was used.

The initial state of the universe and the state after 6500 steps is shown in Fig. 3.
During simulation, the particles inside the cell, while moving and colliding randomly,
kept gradually enlarging the cell’s wall. The similar experiment with a lower number
of particles and smaller size of the universe can be found in (Jedruch and Barski,

1990).
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Fig. 2. Development of the cluster. (a) The initial state of the universe, and
(b), (c) the states after 600 and 3000 time steps, respectively.

4. Concluding Remarks

An abstract universe — a universal simulation environment for distributed model-
ling of physical systems has been discussed and a few simulation experiments have
been presented, to illustrate possible ways of using the universe for modelling of cell
population dynamics.

‘The experiments with chemical reaction kinetics show that the physical pheno-
mena described by non-linear equations can be effectively modelled using the distri-
buted approach with a relatively small number of elements. The experiments with
cluster formations and growth of the structure similar to a cell wall illustrate the
effects of cooperative behaviour of simple elements leading to the development of
complex structures. All the experiments presented here show another feature offered
by the distributed models — they can mimic nature by the “first principles” and
without using any averaging; they just operate on a finite number of elements.
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b)

Fig. 3. Build up of the wall. (a) The initial state of the universe, and (b) the
state after 6500 time steps.
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It appears that the results obtained demonstrate an attractive approach to mo-
delling various cell population systems and the growing speed of computers will make
this approach even more attractive.
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