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A NONDIFFERENTIABLE SEMIGROUP GENERATED
BY A MODEL OF CELL POPULATION DYNAMICS

OviDE ARINO*, MAREK KIMMEL**

In this paper we are concerned with regularity of operator semigroup generated
by population models defined by functional-integral equations. Contrary to the
semigroups defined by functional-differential equations, our semigroups do not
necessarily become increasingly more regular with time. We furnish an example
of a special case of a cell population model which generates a nondifferentiable
semigroup.

1. Introduction

In this paper we are concerned with regularity of operator semigroup generated by
population models defined by functional-integral equations. Contrary to the semi-
groups defined by functional-differential equations, our semigroups do not necessarily
become increasingly more regular with time. We furnish an example of a special case
of a cell population model which generates a nondifferentiable semigroup.

The model we employ for this demonstration was originally analyzed by (Arino
et al,1991). In that paper, we established basic properties and asymptotic behaviour
of the semigroup of solutions. For the convenience of the Reader, we repeat the
hypotheses, model derivations and basic existence results in Section 2. Then we
proceed with construction of the nondifferentiable case.

We have constructed and analyzed mathematically several related models of cell
population dynamics, covering a range of possible variants of cell cycle regulation.
They can be found in the papers (Arino and Kimmel, 1987; 1989; 1991; 1993; Arino
et al., 1991; Kimmel and Arino, 1991; Kimmel and Axelrod, 1991; Kimmel et al,,
1984).

A classical reference concerning semigroups of operators is the book by Hille and
Phillips (1957). A more modern treatment, emphasizing nonnegative semigroups can

be found in the book edited by Nagel (Nagel, 1986).

2. The Model and its Basic Properties

We consider a quasi-probabilistic model of the cell cycle in which the main determinant
of cell generation time is z, the amount of a cell constituent present in the daughter
cell immediately after division; = may denote either total cell mass or the amount of a
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selected substance, for example RNA (as in Kimmel et al., 1984), of supposed critical
importance for cell growth. We follow cells with various amounts of this constituent.

There are two sources of variability in the basic model. The first is unequal
division of cells in mitosis; daughter cells of unequal size have different =z. The
second is an independent additional variability in the duration of cell cycle, caused
mainly by the stochastic character of processes in the G; phase; generally, for two
unrelated daughter cells with identical z, the duration of cell cycle may be different.
This latter variability is superimposed on a deterministic law of cell growth.

We proceed as in (Kimmel et al., 1984) and in (Arino et al., 1991). The most
important notion of the model is the distribution of cell mass flux at the beginning
of the Gi—phase (the onset of the cell cycle). It is denoted by n(¢,z) and treated as
an unnormed distribution density of the pair (¢,z) (see the remark below).

The interpretation is that n(t,z)dtdz is equal to the number of cells with mass
between z and z + dr which entered G; in the time interval from ¢ to t+ dt.
The following assumptions define the model:

1. Suppose that a mitotic cell just before division has mass y. The density of
probability of the daughter cell’s mass z, conditional on y, is denoted by f(z,y).
It is necessary that f(z,y) =0, whenever = > y, and that f(y—z,y) = f(z,y).
2. The fate of the daughter cell produced during division, which re-enters the cycle
with birthmass z, is described in probabilistic terms:
a) The time r it spends in the cycle is a random variable with conditional
distribution density %(r,z), given z.
b) The mass y of this cell when it reenters division is a function ¢(7,z) of the
time it spends in the cycle and of its birthmass z.

These hypotheses are depicted in Figure 1.
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Fig. 1. Schematic diagram of the basic model.

The derivation of the model equation is carried out in several successive steps.
Let us first suppose that cells spend in the cycle exactly 7 time units and have
birthmass equal to &. Then the distribution density of the flux at the beginning of
the next G; phase is equal to

2f[=z, ¢(, )] (1)
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But 7 is distributed with density ~(.,€) conditional on £ and £ is distributed
with density n(s,€) at time s. Therefore the distribution density of the pair (¢,€)
is equal to

(7, §)n(s,€) (2)

Consequently, the joint density #(s + 7,z;7,£) (contribution to the flux density
through next G; of cells of size € at their birth which spend time 7 in the cycle
and which were born at time s with size z) is equal to the product of (1) and (2).
After a change of variables (s, z;7,£) into (¢,z;7,£) where t = s+ (the Jacobian
is equal to 1), we obtain

At z; 7, €) = 2f [z, ¢(r, )y (r, On(t — 7,€) 3)

Continuity of the flow requires that n(t,z) = [ [#(t,z;7,€)drdé. Integrating (3)
provides the equation of the model

nt,2) =2 [ i / " flz, 6(r, E)]y(r,)n(t — 7,€) dédr @

Remark 1. The derivation outlined above includes intuitive manipulations on infor-
mal unnormed densities. These manipulations can be formalized if n(.) and #(.) are
treated as densities of the expectations of counting measures of a branching process
describing our model (like in (Arino and Kimmel, 1993)).

The expression for the total number N(t) of cells present at time ¢ is derived
in the following way. The density of cell flux through G, including cells born with
size = at time s which spend time 7 in the cycle, is equal to n(s,z)y(7,z). The
population at time ¢ includes cells born between ¢ — 7 and t:

0 poo pl
/ / / n(s,z)y(r, ¢)dsdrde
0 0 t—71

/000 /Ot n(s,z)L(t — s,z)dsdz (5)

where T is the tail of the distribution of cell cycle length, i.e. T(u,z) =
[ y(r,z)dr.

We proceed to specifying the basic hypotheses on functions f, ¥ and ¢, which
formalize the requirements of cell cycle dynamics.

Hypothesis 1. f € Lj,.(R}); f>0; [f(y,z)dy =1 f(z-y,2) = f(y,2);
f(y,z) is nonnegative and there exzists dy € (0,1/2) such that f(y,z) is positive if
and only if y € (d1z,d2z), where dy =1 —d;.

N(t)

I

Hypothesis 2. v € L},.(R%); [7(r,z)dr =1; y(r,z) is nonnegative and there
ezist two continuous decreasing functions 1 and T2 such that lime_ T1(€) > 0;

mn < 19, and y(1,€) is positive if and only if T € (11(£), 72(£))-
Hypothesis 3. ¢ € Cio.(R2); ¢ >0; ¢(.,€) and ¢(7,.) is increasing.
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Hypothesis 4. ¢ is increasing; ¢;(£) > &, if € < a;; ¢i(a;) = ai; ¢:i(€) <&, if
&> a;; 1=1,2, where ¢;(€) = dig[ri(€),€] and 0 < a; < az < oo are constants.

The assumptions on f express the fact that f(.,y) 1is the density of the
conditional distribution of the mass of daughter cell provided the mass of the mother
cell is y. The support property reflects the fact that the mass partition to daughter
cells may not exceed a maximum degree of inequality.

The assumptions on + express the fact that +(.,z) is the density of the
conditional distribution of the cell cycle duration given the birthmass of the cell .
The support property takes into account the following requirements, (a) cell cycle time
varies only in certain limits, (b) it should be in inverse relationship to the birthmass
and (c) a minimum cell cycle time is required even for cells with large birthmass.

The assumptions on ¢ express the fact that the mass at division of the cell is
larger for cells with higher birthmass and cells which stay longer in the cycle.

Hypothesis 4 assures that if the initial conditions have support confined to an
interval, then the solution stays in that interval. This is important from the point of
view of the biological feasibility of the model. More _precisely,'we have the following
lemma (Lemma 2 in (Arino et al., 1991)).

Lemma 1. Let us choose I = [A1, As] such that 0 < A; < a; < a3 £ Ay < o0.
Then, if

suppno(s, .y C I = [A1, Aa], s € [-02,0]
then

suppn(t, .) C [$1(A1), 62(A2)] C 1, £ >0
Therefore, suppn(t,.) is asymplotically contained in [a1, ag).

To formally construct a solution to equation (4) after time tp, it is necessary to
know it on the set {(t,y):to — m1(y) >t > to — 72(y),y > 0}. Along the solution n,
the restriction of n to A; = {(s,y): s € (t—72(y),t —71(y)),y > 0} comprises the
data necessary and sufficient to continue the solution. We will adopt the standard
notation (Hale, 1977):

ni(s,y) = n(t +s,y); t>0,(s,y) €A

A={(s,y):y>0, s€(—m(y),0)} (6)

The fact that n(¢,.) has a bounded support contained in I = [A;, Ap] implies
that the system (4) has maximum and minimum delays

61 =7 (Az)
and

0 = 13(A1)



A nondifferentiable semigroup generated by a model of cell population dynamics 215

Therefore, the initial data can be restricted to A and the solution constructed in
steps of length 0. :

In view of Lemma 1, we may also use a slightly different domain A’ =
(—82,0) x I, instead of A.

Lemma 2. Suppose that Hypotheses 1, 2, 3, and 4 are satisfied. If ng > 0 belongs

to X = L'(A"), then there ezists a function n:Q — R, where Q= A’U (R4 x I),

n>0, ne L} (Q); and tlim ny =ng m X. The solution is unique in the sense of
—00

an equivalence class in L}, ().

The following is a version of Lemma 4 of (Arino et al., 1991) with slightly relaxed
hypotheses.

Lemma 3. Under hypotheses of Lemma 2 supplemented by f € LS. (IR1) and
v € L}, (R3), the family of mappings {G(t),t > 0},

Gt): X =X, G{t)ng = ny (7

is a strongly continuous semigroup of positive bounded linear operators on X. G(t)
is compact from X into X for any t > 20,.

3. The Nondifferentiable Semigroup

We consider equation (4), under the following additional assumption:
Hypothesis 5.

v(1,8) =(7)
that is, we assume that v does not depend on the size variable.

Hypothesis 5 leads to a special case of our model being identical to the transition
probability model, considered e.g. by Webb (1987). ’

If this is so, and n is a solution of equation (4), then the function h, defined by

Az .
h(t) = /A n(t,z)de (8)

verifies the equation
2
) =2 [ (b= r)dr 9)
91

Equation (9) determines a strongly continuous semigroup U(t) of bounded li-
near operators on the space Z = L!(—62,0). In fact, formula (8) provides a map
P : X — Z, which obviously satisfies the following property :

PG(t)ng = U(t)Pny, for every t >0
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The above identity shows that U(t) verifies the following relation U(t + s)P =
U(t) oU(s)P (thatis, U is a C-semigroup in the sense of Miyadera (1992)). On
the other hand, P is surjective. A right inverse R of P is, for example, the map
h — (A — A1)"th. So, we conclude that U(t) verifies the semigroup relation. We
also deduce the following formula

U(t) = PG(t)R (10)
which shows that U is strongly continuous.

It also shows that each trajectory {U(t)h} can be determined in terms
of a function u from (—f,00) into IR as the set of the phase-shift transla-
tions u;.

Formula (10) shows also that if G(t) is differentiable, norm continuous or
compact, or verifies any of these properties eventually, then the same is true for
U(t). And, if any of these properties fails to be true for U(t), it also fails for G(2).
We will use this observation to build an example of equation (4) which generates a
nondifferentiable semigroup.

Before proceeding further, we notice that there is a relation between the gene-
rators of G and U. In fact, we have, using for example the representation of the
resolvent operator in terms of the Laplace transform, and denoting Ag and Ay,
the generators of G and U: D(Ay) = P(D(A¢)), and Ay = PAgR.

We have Agn = (d/dt)(n(r,z)) on the domain D(Ag) which is the set of n
in X, such that (d/dt)(n(r,.)) isin X and n(0,.) = Ln (where L is the operator
defined by the right hand side of equation (13) in (Arino et al., 1991). Therefore the
domain of Ay is the set of functions A on (—03,0) absolutely continuous with
respect to the Lebesgue measure on the interval (these functions have continuous
extensions on the closed interval), such that moreover h(0) = :1’ ¥(r)h(—7)dT. For
each h € D(Ay), we have Ayh =h'.

This implies in particular that each trajectory starting from an element A of
D(A) can be represented as the set of the translates u, of a function u defined
on (—f3,00), which is locally absolutely continuous on its domain. So, a necessary
condition for a semigroup determined by equation (9) to be eventually differentiable
is that its solutions are locally absolutely continuous on an interval (7,00). In
particular, they should be continuous.

For the counterexample we will construct next, the contradiction will come from
the fact that the solution is unbounded on each interval of length larger than' 6;.
Obviously, U does not depend on the function f in equation (4). Based on
Lemma 3 the semigroup G is eventually compact so that U itself is eventually
compact. _

For the convenience of the reader, we will change the notations, from this point
on. We modify equation (9), as follows. First, we can assume that 3 = 1, then, we
denote #; by a, so that we have': 0 < @ < 1. Finally, we denote k the function
2y and z the solutions. The state space is Z = L!(~1,0). The equation reads now

1
2(t) = / k(r)z(t — 7)dr (11)
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We keep the notation U(t) for the semigroup associated with equation (11). From
the above considerations, we know that U(t) is eventually compact. Regarding
differentiability, we have the following result.

Theorem 1. Let k be a function defined on (0,1), such that k>0 and k belongs
to L'(0,1). Denote U(t) the semigroup associated to equation (11). Then,

i) Either, for some p > 1, k s in LP(0,1). Then, U(t) sends eventually
LY(0,1) into C([0,1]). If in addition one of the iterates k; of k (defined by
formula (14)) has a bounded variation on [0,j + 1], then the semigroup U(t) is
eventually differentiable;

ii) Or, k does not belong to any LP(0,1), for any p > 1. If in addition k 1is
nondecreasing on (0,1), then U(t) is not eventually differentiable.

Remark 2. Fach function with bounded variation generates a Radon measure on
its domain. We use the notation df(t) to denote the measure of the “infinitesimal”
interval [t,¢ + dt], so that the measure of any Borel subset A of the domain of f
is denoted [, df(2).

Before proving the theorem, a few preparatory ingredients have to be introduced,
notably, a result on the convolution of LP functions that we state and (for the sake
of completeness) prove next.

Lemma 4. Let f and g be two functions defined on (0,1). Assume that f €
LP1(0,1), and g € LP2(0,1). Let h denote the convolution product of f and g on
(0,1), that is,

b= [ fe- ey 12)
Then, h € LP(0,1), where 1/p = max(1/py + 1/pz —1,0).

Proof. Note that if we assume that 1/p; + 1/ps = 1, then one can immediately
deduce from the Holder inequality that h isin L°°(0,1), and ||A|le < ||fllp.ll9llps- I
1/p1+1/p2 < 1, then one can replace p; by asmaller value pj, sothat 1/pi+1/ps =
1. Since LP1(0,1) C LP1(0,1), we conclude once again that h € L(0,1), and the
same inequality as above holds. Suppose finally that 1/p; + 1/p2 > 1. Define g;,

i=1,2, by 1/pi+1/¢;: = 1. We have 1/q - 1/p = 1/q1 + 1/q2, and for each
ke L,

1 1 gt
[ Mm@ | < [ [ s ot duds
0 o Jo
Introducing the number a = g2/(q1 + ¢2), and writing |k| as |k|*|k|'~%, and

using the Holder inequality separately for the products 9k|*(u + v)|f(u)| and
[k)1=*(u + v)|g(v)|, respectively, we obtain finally the inequality

1
/(‘J k(z)h(z) dz| < |[Fllql|£1lp.llglles

from which the conclusion of the Lemma follows easily. ]
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Remark 3. 1) The formula given in Lemma 4 can easily be extended to the convo-

lution of an arbitrary number of functions, say, n functions € L?i(0,1), i=1,...,n.
The product is in L?, where p = max(1/p1+ ...+ 1/pp — (n —1),0).
2) If, in particular, all p; are equal, p; = p, for i = 1,...,n, we have

p = max(n/p — (n —1),0), which shows that the product of more than p/(F — 1)
functions in L? isin L%, and the product of more than p/(p—1)+1 isin C([O 1))
(the class of continuous functions on [0,1]).

In order to state the next Lemma, we have to introduce a few notations. Let =z
be a solution of equation (11). Let us assume, for the time being, that a = 0. For
t > 1, we can express the solution in terms of the values of z on the interval [t—2,1].
This is done by expanding 2 inside the integral of (11) in terms of the integral. The
new expression reads

2
z(t) = / ka(T)z(t — r)dr (13)
0
where ko is defined by

/Ics)k(*r—s)ds if 0<r<1-
kQ(T) =
/ k(s)k(r—s)ds if 1<7<2

For t > j, j > 2, z(t) can be expressed in terms of its values on [t —j — 1,%]
and in terms of an integral operator with kernel k;,; determined inductively by the
formulae

/Tlc(s)kj('r—s)ds if 0<r<l1
kjyi(m) = / k(s)k;(r —s)ds if <7<y (14)
/ k(s)kj(r—s)ds  if j<T<j+1

For t > j, the integral equation for z takes the form

j+1
z(t) = /0 kjp1(m)z(t — 7)dr (15)

Each of the three integrals on the right hand side of (14) can be interpreted as a
convolution product of the same type as the one given in formula (12). By induction,
one can then easily deduce from Remark 3 following Lemma 4, that for j large
enough the functions k; are continuous.

Proof of Theorem 1. Consider the case i) first. The first conclusion (continuity of the
solution for ¢ large enough) is an immediate consequence of the above preliminaries.
Using formula (16) with j large enough for k;j;1 to be bounded we have

|2(t) — 2(s)] < C/OJ ot — 1) — 2(s — T)|dr, t,5> ]
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The result follows by continuity of the translation in L!. The proof of differentiability
requires a little more care. First of all, it is not difficult to show, using formula (14),
that if k; has bounded variation on [0,j + 1}, for some j, then for each 1> j, k
has bounded variation on [0,!+ 1]. Let us fix a value j such that k; is continuous
and has bounded variation on [0,j+ 1]. Let z be any solution of equation (11). Let
Z(t) denote the function defined by Z(t) = fot z(s) ds. We can rewrite equation (15)
in the form

j+1
o(t) = — /0 Ak (N2t —1), >3]

The above formula shows that the solution z has bounded variation on each bounded
interval of the half-line [j,00). Now, for any t > s > 2j + 2, we deduce from the
same formula (and using the fact that z is continuous for ¢ > j) that

@@l < ([ k) (pag I -2

This inequality means that z is locally Lipschitz continuous on [2j + 2, 00).

Coming back to equation (11), and differentiating it on both sides, for ¢ > 2j+2,
we can see, still using the argument of continuity of the translation in L! that the
right-hand side is continuous, therefore, 2'(t) is well defined and continuous on the
interval (2j + 2, 00). This completes the proof of part i).

We now turn to the proof of ii). Let k be a function for which the assumptions
of ii) hold. Let k; denote the function defined by

k@) =k(t+1), -1<t<0 (16)
The assumptions on k imply that k;(f) tends to +oo and |t|ki(t) tendsto 0, as
t approaches 0.

Let z; be a positive initial function for equation (11). We will denote by z,
for 1> 0, the shift on [~1,0] of the solution on ((I —1),I). One can easily derive
the following inequality

n@gwmwlkr4wvw—nmmsa a7

Changing the variable s into s/|t| inside the integral, we can estimate the right-hand
side as follows

10> G [ ol (18)

where C; > 0, for all I. We will now select a function 2o such that, for all > 0,
the right-hand side of formula (18) goes to +oo, as t — 0. We will assume that
zo(t) ~ |t|~® (as t — 0), for some a, 0 <a<1.

Before we show that we can actually make such a choice, let us draw its con-
sequences on the proof of ii). If this can be done, it means that the solution z is
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unbounded on each interval of (I —1,1), so, it never becomes continuous, neither can
it can be differentiated. So, the proof of ii) will be complete. '

Let us choose a function zy increasing to +oo, near 0, such that z € L!(—1,0).
Suppose zo has been chosen as indicated (which, obviously, is feasible). And suppose
that the solution associated with 2z, is continuous for all t large enough. This
implies that for each I large enough, there exists M < oo, so that z(t) < M, for
all t€[-1,0]. Using the estimate (18) and the equivalent expression for 2z near 0,
we obtain the following bound for the growth of k; near O:

ky(t) < 2(MY1/22/N|8|*/'=1) ¢ near 0

Clearly, k; € LP(0,1), for some p > 1 (any p such that 1< p <I/(I—@)),in
contradiction with the assumption made in ii). u

Example. There are many examples where either (i) or (ii) of Theorem 1 holds. For
the case (1), we can consider any function k of bounded variation, which in particular
implies that it is bounded. Amongst other examples, we can take k(t) = 1/+/%.
A straightforward computation shows that k; is bounded on [0,2], of bounded
variation, increasing on [0, 1], decreasing on [1, 2.

For the case (ii), a typical example is

k@) = |t =1 Y(n|r = 1P +1) -1

4. Comments

The nondifferentiability of the semigroup affects the behaviour of the solution h(t)
(and consequently, the flux n(t,z)) which becomes unbounded. Interestingly, it is
not the case with the total cell count N(¢). Indeed, in our special case, we have

N() = /OtI—‘(t —7)h(r)dr, t>0

Since T is absolutely continuous and h is locally integrable, N(t) is absolutely
continuous and therefore also bounded on bounded intervals. Function N(t) satisfies
equation

N(t) = /0 Yt —T)N(r)dr, >0 (19)

since N=Txh =T*xyxh =y*«T*xh =7y*N.
We may conjecture that with initial data in the space of continuous functions,
the semigroup generated by (19) is differentiable.
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