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SOME CONTROL PROBLEMS FOR SIMPLEST
DIFFERENTIAL MODELS OF PROLIFERATION CYCLE

ANDRZEJ SWIERNIAK*

This paper presents probably the simplest models of chemotherapy considered
as a control problem. The first-order tumour growth kinetic models both of
Malthusian and Gompertzian type are discussed, and their “degenerated”
control properties are indicated.

1. Introduction

The classical control design problem may be stated as follows. Let the dynamic
properties of a system be described by its state and the external actions, i.e. con-
trol and disturbances be given by input variables. Moreover, assume that we are
given a target set of required system states or outputs. Then, we are to find control
actions which guarantee reachability of the desirable target region. If we are able
to describe a disease by a finite number of dynamically changing parameters, we are
also able to formulate a control problem in the sense mentioned above. Our control
actions simply represent drug dosage or more generally therapeutic protocols and
a region of the disease parameters considered as admissible defines a target set for
the state. In the case of cancers the disease state should be represented by the size
of the tumour defined for example by the number of transformed cells. Unfortuna-
tely, any control action, i.e. treatment by drugs, does not selectively disturb cancer
tissues. Both chemotherapeutic agents and irradiation act on normal tissues. Thus,
the control problem becomes much more intricate than in many industrial applica-
tions, because the unperturbed system (i.e. when therapy is not applied) leads always
to an undesirable outcome.

Application of optimal control theory to cancer therapy was first discussed proba-
bly in (Bahrami and Kim, 1975), where the discrete maximum principle was proposed
for elaboration of optimal protocols in “related” radiotherapy problem. Application
of control theory to optimize chemotherapy protocols appears first in (Swan and
Vincent, 1977) for continuous models and in (Kim et al., 1977) for discrete ones. In
(Swan and Vincent, 1977) control strategy minimizes a toxic effect, while in (Kim
et al., 1977) it maximizes a destruction result on cancer population.

The simplest model of the proliferation cycle was proposed in (Kimmel and
Swierniak, 1983) in the following form
dN
dt
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=—aN +2(1—u)aN, N(0)=Ny>0 (1)
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where N(t) is a size of a cancer cell population, the term 1 — u(t) represents the
probability of cell survival after a cytostatic dosage, thus 0 < u(t) < 1, constant a is
an inverse of average length of cell cycle time, whereas the coefficient 2 represents a
mother cell symmetric division into two daugter cells.

A performance index in (Kimmel and Swierniak, 1983) is of the form

J=rN(T)+ /OT u(t) dt — min )

where r is a weighting coefficient; the second component in (2) represents a negative
cummulated cytostatic effect, T is the length of chemotherapy time.

It has been shown, via direct optimization, that a solution to the problem can
be non-unique.

In (Swierniak et al., 1992; Swierniak and Duda, 1994) we have shown that the
mathematical reason for nonuniqueness is total singularity of the optimal control.
Moreover, in (Swierniak and Duda, 1994) we have pointed out that the same problem
is present even if pharmacokinetics of the drug is modelled by the first-order inertia
(see e.g. (Bellman, 1983)) or reactions of both cancer and normal tissues to the drug
are encountered (as in (Zietz and Nicolini, 1979)) In (Swierniak and Duda, 1994)
we suggest that singularity can be avoided by using Gompertz-type model. In this
paper we briefly discuss the results presented in (SW1ern1ak and Duda, 1994) but we
indicate the complexity of the control problem based on the Gompertzian model. We

show that singularity of the control problem may also appear in this case.

2. Optimal Chemotherapy Protocol for the
Malthusian Growth Model

Model (1) occurs under assumptions of linear outflow from the compartment, i.e. a
linear dependence of the number of cells leaving the proliferation cycle, a symmetric
division of cells in mitosis and a monotonic (for feasible dosage) dependence between
the dose of the drug and a fraction of cells unable to divide further. The minimization
of the performance index (2) takes into account a compromise between cancer cell
population at the end of the chemotherapy and a negative cummulated cytostatic
effect.

Optimization problem (1), (2) with constrained control variable
0<ut) <1 (3)

can be solved directly but we apply a theoretic approach to show singularity of the
solution. To solve the problem, we transform equation (1) to a linear form substituting

z=InN (4)
We obtain

iid% = —a+2(l-w), z(0)=InN,
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Then

dz
i a— 2au (5)

and the performance index (2) has the following form

J =re*T) 4 /T u(t) dt (6)

0

Equation (5) describes an integral system. One can find, that (6) can be written
in the form

T T
J = 1,,eaT+1:(0)e—241f'J udt +/ udt (7)
0

Therefore, we have a static optimization problem with respect to
T
v:/ udt, 0<v<T (8)
0
Thus, we have
J=rie” % 4y (9)

where r; = re®T+2(0) By differentiating (7) with respect to v and equating the
result to zero

d
47 = —2arie” " 4+1=0
dv
we obtain
1 T 1
v= oo In2ar; = 3 + % In 2arNo_ (10)

which is the optimal solution under the condition
0 <In2ar; <2aT

or
1
-T< ;ln 2arNo <T (11)

If condition (11) is not fulfilled, then the control u(¢) is on the boundaries of the
feasible control region. Solution (10) confirms the non-uniqness of the optimal control
u(t) because any wu(t) satisfying (8) and (10) is optimal. The order reduction (from
a dynamic problem of the first order to a static problem) indicates the singularity of
optimal control (Johnson, 1985).

A precise proof of the singularity based on the Pontryagin maximum principle
(Pontryagin et al., 1962) may be found in (Swierniak and Duda, 1994).
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3. More Realistic Models of Chemotherapy

In model (1) we assume an immediate reaction of cancer cell population to cytostatic
dosage. To include the inertia in the cytostatic activity we may introduce a model of
the form

j—?:—bu+w, u(0) =0, 0<w<b (12)

where u denotes once more cell destruction after the drug has been applied,
(0 <u < 1), and w is a control variable representing drug dosage.

The second-order optimization problem (5), (12), (6) can be reduced to the first-
order task. Similarly as in Section 2, introducing (8) leads to the performance in-
dex (9) and solution (10).

After integrating (12) we have

T .
Wo(T) = —bv + / w(r)dr (13)
0
By substituting
T
w(T) = / S =Dhy(r) dr (14)
0
and (10) into (13) we obtain
T b b T b(r—T)
4= = — = — b d
5 +2aln2arNo 2aln2ar1 ./0 1—e Juw(r)dr (15)

Any w(t) satisfying (15) is the optimal solution assuming that
i
~T<-In2arNo <T - %(1 — e (16)

. Singularity of ‘control can be proved by the use of the maximum principle
(Swierniak and Duda, 1994).

So far, a negative impact of cytostatics on normal critical tissues has been taken
into account by the second component in (2). Now, we introduce a model of the drug
effect on normal tissues similarly as for cancer cells.

The system to be controlled is given by equation (1) for cancer cells and the
following equation for normal ones

‘Z—f = —cL+2(1—ueL, L) = Lo (17)
with the constraint L(t) > Lmin.
The performance index, to be minimized is of the form
Jo = N(T) ‘ (18)
Using equation (4) and the substitution

y=InlL (19)
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we obtain state equation (5) and

dy

3 =c¢—2u  y(0)=10Lo > Ymin (20)
the performance index
Jo = e*™ ' (21)

and the constraint
Y(t) > Ymin (22)

where Ymin = In Limin

The solution to the minimization problem for the performance index (21) could
be found by minimizing

Ji=z(T) (23)
The Hamiltonian of the problem (5), (20), (22), (23) has the form

H = pi(a — 2au) + pa(c ~ 2cu) + A(Y — Ymin) (24)
where costates pi(t) and ps(t) are described as follows

d N

Tfti =0, p(T)=1 (hence pi(t)=1) (25)

dpy _

=) (26)

The Lagrange multiplier A(t) has the form

<0 if Y = Ymin

The necessary optimality conditions have the form

1 if a+cpy >0
u =4 0 if a+cp2 <0
singular if a+cpa =0

For the switching line we have

__a dpp _
P2=-0 dt =0

Thus, we have A =0 and y > ymin.

At the initial moment we have y(0) > ymin and consequently A =0, p; = const
and the control cannot be switched. The control u(0) =0 is non-admissible because
z increases in this case. For u(0)=1 we have

y(t) = y(0) — et
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Let y(t1) = Ymin for t = ¢; < T. Then, dp,/dt > 0, p; increases and the
control should be 1, which is non-admissible in the light of requirement y(t) > Ymin-

If only

T> y(o)_ymin 2%111( Ly )

c Lin
then the control is singular. Its form can be found by the order reduction. Namely,
it follows
y(T) = Ymin
Hence

T
y(U) — Ymin 1
= = ————— —
v /0 ud 5 +3 (27)

2(T) = z(0) — aﬁﬁo)—:?’“—i“

Any control satisfying (27) is optimal.

4. Gompertz-Type Models of Perturbed Tumour Growth

An assumption of the exponential growth of the uncontrolled cell population is a
great simplification. Each population has a saturation tendency. In the literature a
Gompertz-type growth (Wheldon, 1988) is considered very often although its biolo-
gical interpretation is not quite clear. We present the simplest model of this type
including the effect of chemotherapy and we show that the singular control is absent
in this case. The model presented here can be well-fitted to measuring data (Sullivan
and Salmon, 1972).

The Gompertz-type equation of the uncontrolled growth is of the form
Y Nmax
=gNln| —— 2
N =g ln (o) (28)

where g and Npax are specific constants. Assuming the same cell-kill hypothesis
as for exponential growth models, i.e. introducing the cell loss function depending
linearly on the constant fraction of the population size, we are led to a model of
perturbed growth of the form

t—]j =gNh (l}\}ﬂ-) — 2auN, N(0) = Ny (29)
By applying (4) to (29) we have
%; = —gT + gTmax — 2au (30)

Taking into account the performance index (2) or (6) we have the Hamiltonian

H=u +p("gz+gzmax - 2au)
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where the costate variable p(t) is described by equation

d
d—f =pg, p(T)=re"™ (31)

The necessary optimality conditions have the form

1 if  p>1/2
w =3 0 if p<1/2a (32)

singular if  p=1/2a = const

Since p(t) = re®(M)=9(T-*) ' a singular control does not exist in the problem.

Let us assume that u(0) = 1. It is the case if p(0) = re*(™)~9T > 1/2a. Since p
increases, u cannot be switched. We have

2(T) = 2(0)e~97 + (mm - j—;) (1—e97) (33)
The following condition has to be satisfied

2are—9THomax o(#(0)=Tmax)e™ T~ 2 (1-e7T) | (34)
or

e=9T
2ar Nmaxe T ((Nﬂ)e‘f) =5 >1 (35)
max

Alternatively

(1—e97) (ln (N—}“\?-x-) - ?_;) +In2arNg —gT >0 (36)

If model parameters do not satisfy (36), the optimal control is the sequence {0,1}
with switching at the time ¢; described as follows

2(T) = (0)e 9T + 2max(l — e~ 9T) — (2?“) (1 — 9Tt (37)

% = p(ty) = re=IT—10+5(0)e™ T +omas(1=e"T)=(20/)(1- 7T D) (3g)
Then

_2% — re—9(T—11) (%) o Nypage—(26/9)(1—emoT 1)) (39)
or

28 —gr—t) _ 9(T —t;) — 28 | ln2arN, + (1-e*T)ln Nenax _ (40)
g g Ng

Equation (40) should be solved numerically.
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The control problem seems to be regular and this result suggests that the reason
for singularity of the optimal control lies in the assumption about the exponential
growth. But the Gompertz-type equation of the uncontrolled tumour growth may be
rewritten in a variety of ways. One interpretation has a form of a linear time-varying
equation whose growth rate parameter itself declines exponentially with time

N=4t)N, N(0)=No (41)
where

7(t) = 70 exp(—gt) (42)
or equivalently

¥==-91, 10)=7 (43)

where Noexp(Y0/9) = Nmax.

If the control action representing the effect of the drug is introduced similarly as
in all previously considered models, i.e. by the additive term 2auN the perturbed
growth model is given by

N =y(t)N — 2auN (44)
The same change of variable as in (4) leads to the equation:
z = 4(t) — 2au (45)

Since

T T
2(T) = =(0) + /0 y(t)dt - 2 /0 u(t) dt (46)

the performance index depends only on the integral v (cf. equation (8)) of the control
action and once more the optimal control is non-unique and totally singular because
the same analysis as in Section 2 follows.

Since the Gompertzian model has no biological sense and may be treated as a
behavioural well-fitted model only in the uncontrolled case, it is difficult to define
which description of the growth (28) or (41), (43) is correct and which model of the
perturbed growth (29) or (44), (43) should be applied.

5. Conclusions

In the paper four simple models of optimal chemotherapy protocols which lead to
optimal control problems are presented. Three of them are based on the assumption
about exponential cell population growth and lead to bilinear state equations. The
negative cytostatic effect on critical tissues is taken into account in the performance
index or in the state equation for normal tissues. The optimal control is singular in
the problems mentioned above. The result is interesting, because control singularity
has not been discussed in the literature (Swan, 1990). The singular control does not
exist when the Gompertz-type nonlinear model is applied.
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However, it appears once more when the Gompertz-type time-varying equivalence
for uncontrolled growth is considered. The models discussed in the paper are poor in
that they do not allow for consideration of cell-cycle-phase-specificity of the drugs.This
effect may be encountered in the multicompartmental models of cell cycle kinetics (see
e.g. (Swierniak, 1989)). Although in this case singularity is an exception rather than
a rule, we have found that the optimal control problem is still endowed with some
irregularities (see Swierniak et al., 1992; Swierniak and Polanski, 1993; 1994).
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