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DETERMINISTIC AND STOCHASTIC MODELLING OF
TUMOUR GROWTH AND OPTIMAL CHEMOTHERAPY

RiMaNTAs EIDUKEVICIUS*

One-dimensional mathematical models of tumour growth based on ordinary dif-
ferential and stochastic differential equations are presented. Optimal cancer
chemotherapy is compared in both models. The technique of dynamic pro-
gramming and method of optimal switching among a finite number of Markov
processes are used to obtain a sequence of optimal drug doses. A multidimen-
sional stochastic model of tumour growth based on cell cycle is proposed. A
hypothesis about interaction of two tumours is also presented.

1. Introduction

Many mathematical models have been used to describe the tumour growth and cancer
treatment. A review of them can be found in works (Swan, 1990; Bertuzzi et al.,
1981). In this paper one-dimensional and compartment models of tumour growth
and cancer treatment are discussed and one-dimensional stochastic and deterministic
optimal chemotherapy models are compared. We undertake a task of calculating BL
dosages and number of injections for each patient depending on tumour volume, its
location and first recognizable symptoms of the disease in order to reduce tumour size.
This enables us to make some forecasts for each patient regarding tumour response.
The corresponding results were presented by Cicenas et al. (1992) and Eidukevicius
(1992). Also a problem of interaction of two tumours (Characiejus and Eidukevitius,
1993) is mentioned. This investigation initiated by Dr. Characiejus from Lithuanian
Oncology Centre will be continued and extended.

2. Deterministic One-Dimensional Model

A general tumour growth and cancer treatment can be formulated as a minimization
problem as follows (Swan, 1990):

T .
J(w) = / fu(t, z) + g(t, w)] dt + F(2(T)) — min (1)
subject to
i=alf(z)— h(w)],  =(0)= o @)

where z(t) is the volume of a tumour; t — time; zo — initial volume of a tumour;
T — time when the treatment is finished; J - performance criterion; w,g,F -
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nonnegative functions, denoting the prices of tumour volume during the treatment, of
drug toxicity and of the final tumour volume, respectively; u — drug concentration in
the tumour (control parameter). Equation & = zf(z) gives a trajectory of tumour
volume growth without treatment, zh(u) is a loss term, i.e. a given dose of drug kills
a constant fraction of tumour cell population. This general model was applied to lung
cancer growth and chemotherapy. To describe tumour growth we use the following
Cox — Woodbury — Meyers equation

. a
x—x<1+bz-—m), z(0) =29, a,b,m>0 (3)

which is based on a postulated inhibitory substance; moreover, we include drug satu-
ration effect in our model. Other assumptions are based on lung cancer chemotherapy:
t; — fixed time moments of medicine injections directly to the tumour, t; < T}

n — number of injections;
u(t) = uiexp(—p(t —t;)), p>0, t; <t <tiyy, T =tnyy;
u; — dose of medicine in the i—th injection from a finite set of doses U, i =1,2,...,n.

Finally, we get the following tumour growth and treatment equation:

. a cu
’”‘”(1+bz“m“1+du>’ =(0) = 2o (4)
a,b,m > 0, c=c(t) >0, d=d(t)>0

The mathematical model, the corresponding algorithm and computer program in
FORTRAN 77 are intended for a general case, when tumour growth equation is taken
into account. Hardly accessible clinical data and high amount of the required com-
putational time compel us to simplify the general scheme formulated above, i.e. to
give up modelling the tumour growth during the chemotherapy process. Fortunately,
there are two reasons, which are, in our opinion, sufficient to make such simplification
possible:

1. The treatment takes quite a short time — two or three weeks.

2. During the treatment the proliferation reduces and the amount of new cancer cells
is not significally important (Baranco and Humphrey, 1971).

For the simplified chemotherapy model
‘. cu

= -{-cluac
d=

1 , 1,‘(0) =Ty
c=c(t),
{ T

J(u) = /0 [w(t, z) + g(t,u)]dt + F(=(T))

Lu(t) =uexp(—p(t —t;)), ti <t <tip1, i=1,2...n, T =1y

d(t) — nonnegative functions of time

(5)

a program in Turbo Pascal was written and the optimal doses can be obtained very
quickly. The main problem is to calculate parameter p and to choose functions
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¢ and d in equation (5) and w, g, F for the functional J. Estimation of p
is based on blood concentration of Bleomycine after intravenous, intramuscular and
intratumoural injections (Bleomycine description). Let tqs denote the time period in
which drug concentration decreases by a half after the injection. In our case g5 =6
hours and p = In2/¢g 5.

We obtain the functions ¢ and d only if the hypothesis that they are constants
during the treatment is accepted. Unfortunately, we cannot verify this hypothesis.

This problem of optimal control is solved by the method of dynamic programming
_ because performance criterion includes the final state cost, functions w and g may
depend on time ¢ and the maximum principle does not help in finding a feadback
optimal control.

3. Stochastic One-Dimensional Model

The results of treatment suggest that the drug effect is quite different even for similar
tumours, i.e. the effect is random. It is natural to assume that some parameters
in equation (5) are random, (t) is the solution of the It6 stochastic differential
equation and the cost function is expectation:

a = ag + ouw(t), o, a0>0 (6)

i.e. parameter a is a function of time ¢ and a(?) is a normal random variable with
mean ao and variance o, where w(t) is white noise,

ou; exp(—p(t — Ti))

_ ammexp(op(t-T)
dz(t) 1+ bu; exp(—p(t — Tt))

T 1+ bujexp(—p(t — T3)

S2(t) dt + z(t) dw(t) (7)

where T; <t < Tiy1, 1=1,2,..,n, w(t) — Wiener process,

Tt
J =Eg, {_/0 [w(t,z(t)) + g(¢, "(t))] dt + f(“’(TnH))} (8)

and u; are Borel functions from [0,00) into U.

As a result we obtain a problem of optimal switching. In this model we have a
set of Markov processes X* = (Q, F, F, z;, PY) , where only P;' dependson u € U.

In our model switching occurs at a finite number n of deterministic time mo-
ments T3, Ty, ...,T, among a finite number of Markov processes. But our performance
criterion is slightly different and the optimal treatment can be obtained using dyna-
mic programming and it is a sequence of random doses u; = ui(z(Ti)), 1 =1,2,...,n
which depend on the results of treatment at the moments of injections. The first
optimal dose is a function of the initial tumour volume, the second one is unknown
up to time moment T}, because the treatment result is random and this dose is a
function of zr,, etc.
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4. Comparison of Stochastic and Deterministic Models

To compare stochastic and deterministic models assume n =1 (treatment consists
of one injection) and w(z) = wz*, g(z) = gz*, f(z) = fz*, w,9,£,>0, k =1,2.
It is easy to see that

Eo(z(t))f = z* exp {k ft b(s)ds + %k(k -1) /t o(s)® ds} (9)
where
dz(t) = b(t)z(t) dt + o(t)z(t) dw(t), =z(0) == (10)

b(t), o(t) are deterministic functions.

For the stochastic model the price for initial tumour volume z is

J(z) = inf {/0 [we(t)* + gu(t)*] dt + fa:(c)"} (11)

and the prices for the tumour volume during treatment and final volume in stochastic
and deterministic models are equal for k = 1, because in (9) we have k(k —1) =0,
and for k =2 in the stochastic case this price increases, i.e. the doses to achieve on
the average the same result as in the deterministic model must be bigger.

5. Multidimensional Model

We used one-dimensional stochastic differential equation in the cancer chemotherapy
model. Now we are going to study a stochastic cell cycle compartment model. The
following deterministic system of ordinary differential equations

i:l = 2dN:L'N - d1171
z; = d;17q — dizy, i=2,..,N

(12)

where N is the number of phases of the cell cycle, describes a well-known model of
cell cycle. The time spent by cells in phases is stochastic and it is natural to use mul-
tidimensional It stochastic differential equation as in the previous one-dimensional
model. Deterministic coefficients d; can be changed by stochastic ones:

dg(t) =a; + Cﬂi),'(i) (13)

where w; is white noise, a;,c; — positive constants, w;, ¢ = 1,..., N — independent

Wiener processes. Thus, we get the following cell cycle model:
dz1 = (2anzn — a121) dt — c121 dwy + 2enany dwy (14)
dz; = (ai—1zi—1 — a;z;) dt — eizidw; + ci—1®i—ydwi_y, 1 =2,.. N

The process of chemotherapy can be modelled by the following system of linear
stochastic differential equations, where u is a control parameter:

{ dz; = (2ayzN — a121) dt + bjudt — c1z1 dwy + 2eyzy dwy (15)

dz; = (aj-12i-1 —a;z;) dt+bjudt—ciz; dwi+ i1 z_1dw;, i=2,..,N
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J(u) = E* {/0 [w(t, =(t)) + g(t, u(t))] dt + f(w(T))} (16)

The multidrug case can be treated similarly. Furthermore, a special form of
optimal control, switching as in the case of one-dimensional model with one drug, can
be studied.

The problem of parameter estimation in the deterministic and stochastic models
is very important and difficult. There are methods to calculate parameter estimates,
but we have insufficient data. Now together with specialists from the Lithuanian
Centre we are going to get more information during the treatment and to carry
Oncology out some new experimenis. We have to estimate not only drift parameters,
but also diffusion coefficients. Experiments to determine cell kinetic parameters before
and during the treatment are also very important.

6. Interaction of Two Tumours

Some facts suggest the existence of mutual interaction (mediated by serum factors?)
between two tumours or between tumour and distant normal tissue. We studied the
mutual interaction between two solid SL2 tumours implanted in the same DBA/2
mouse, the first tumour being implanted two days before implantation of the second
tumour. In this model, the growth of the first tumour is stimulated by the presence
of the other tumour, while the growth of the other tumour is inhibited by the first
one. We suggest that dynamics of the first and the other tumour volumes may be
described by a system of non-linear ordinary differential equations which include sa-
turation effect (Gompertz, logistic, etc.) and proliferation and saturation parameters
are functions of the volumes of interacting tumours.
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