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Hoo—-METHODS IN POPULATION MODELLING
AND CONTROL

SEBASTIAN ANITA*, GHEORGE ANICULAESEI*

This paper deals with an Ho,—problem with control constraints for the popula-
tion dynamics. The biological significance of such a problem is discussed. The
necessary and sufficient conditions for the existence of a solution to the sub-
optimal Ho, problem for input-output linear population dynamics with control
constraints are established. The last part of this paper contains some conside-
rations about possible applications of H. methods to cancer cell population
modelling and control.

1. Introduction

Consider the following linear model for the population dynamics:

(v + Ya + pla)y — Azy = u(a, z,t) in (0,A4)xQx (0,+00)
% = on (0,A) x 92 x(0,+0c0)
< A (1)
y(0,z,t) = / b(a)y(a,z,t)da in Qx(0,+00)
0
| ¥(a,z,0) = yo(a, z) in (0,A4)xQ

This model describes the dynamics of a population which 1is free to move in a region
Q C IR". Here y(a,z,t) represents the density of population at age a, at position
r and at time t, b(t) is the rate of birth and g - the mortality rate, yo — the
initial density of population, u(a,z,t) represents a possible infusion or harvest of
population, which is used to determine a desired behaviour of the population (u
is the control in system (1)). For biological significances of the terms in (1) see
(Anita, 1990).

Model (1) takes into account only a few parameters. For this reason it is obvious
that a much more appropriate model which describes the population dynamics is as
follows:

ryt +ya + p(a)y — Azy = u(a, z,t) + w(a, x,tj in (0,A4)x 2 x(0,+00)
@:O on (0,A4) x 9Q x (0,400)
ov .
T A (2)
y(0,z,t) = / b(a)y(a,z,t)da in Qx (0,+00)
0
Ly(a,z,0) = yo(a, z) in (0,A4)xQ

where w is an unknown term (called disturbance).
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Suppose that we would like the population density y(a,z,t) to be close to a
given g(a,z,t) in a certain way (here § is the solution of (1), where u(a,z,?)
is replaced by i(a,z,t)).

If we introduce new variables defined by y = y—§, 4 = u—# and 3o = yo — Yo,
it is easy to see that § is the solution of (2) with u replaced by % and yo replaced
by go, i.e. : :

(G + §a + pla)g — Az = ﬁ(a, z,t) + w(a,z,t) in (0,A4) x Q2 x (0, 4+00)
%:0 on (0,A4)x 2 x (0,400)
4 A 3)
7(0,z,t) = / b(a)y(a, z,t) da in Qx(0,400)
0
\g(a)wao):g()(a, (I)) in (O,A) x §2

Our goal is to find a feedback control 4 = F'y such that the influence of the unknown
disturbance w on § (and on @) is small (in a certain sense).

2. Hypotheses and Problem Formulation

In what follows © C IR" is an open and bounded subset with a C! — class boun-
dary. Denote by X = L2((0,A)xQ), Z =X x X, by (+,*), (+,+)z their usual scalar
products and by ||, |-|z the corresponding norms. Consider Uy = {u € L?(IR*; X);
a < u(a,z,t) < B ae in (0,4)x Q2 x(0,+00)}.

We shall use the following hypotheses :

1. be L*(0,4), ba)>0 ae.

2. peC([o,4])

3. peX

By definition, an admissible control is a mapping F' : X — Up such that every
measurable function y = y(t) satisfies the condition that the map t — F(y(t)) is
measurable on IRt. ' '

Consider the operator

A=—ya — p(a)y + Aazy (4)
where
D(A) = {y € L2(0, 4 W>*Q)); wa € X, % =0 in (0,4)x0Q
A
y(0,z) = /; b(a)y(a,z)da ae.in Q} (5)

It has been proved in (Anita, 1990) that A is the generator of a Cp — semigroup
on X (denoted by e#!, t > 0).

We shall postulate that the feedback control % = F'y € Uy a.e., t € Rt (which
is a natural condition).
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An admissible feedback control F' is said to be stabilizable if for every zp € X
and f € L(IR*;X) the following Cauchy problem :

z=Az+ Fz+f in Rt
(6)

(L’(O) =2Xp

has at least one mild solution z € C'(IR+ X)Nn L*(R*;X) with v = Fz €

L3(IRt, X), (= is the mild solution of (6), i.e. z(f) = etz + / eAl—3)(Fz(s) +
0

f(s))ds).

We shall denote by F the set of all stabilizable feedback controls F'. For every
FeF, we L*(RY; X), o € X weset Sp(zo,w) =z =(z,0)+ (0,u), where z is
the mild solution of (6) with f = w.

The problem that we shall study can be formulated as follows: given 7y > 0, find
F € F such that

1S (@0, W) |22y < PElIWIEmeix) + clool’
Y (zo,w) € X x LA(IR*; X) )

where 0 < p <7 and c € RY.
This is an H.o—suboptimal control problem for system (3) (Barbu, 1992; Keulen
et al., 1993).

The main result of this work is that the above problem is solved in terms of a
stationary Hamilton-Jacobi equation. This idea was already used in (Barbu, 1992;
Ichikawa, 1992; Keulen et al., 1993) and it consists in reducing the problem to a
differential game associated w1th system (3).

3. The Main Result

Theorem 1. Let ¥ > 0. If the Hoo—suboptimal control problem has a solution
F € F, then there ezxists a continuous, conver and Gédteauz differentiable function
¢: X — R such that:

0< ¢(z) <clef’, VeeX (8)

(A, Vo) + 31Po (-T2 + 53 Vo)

. .
+(Vé(z), Puo(Vé(2)) + 5zl =0, Vz € D(A) (9)
Moreover, thé Cauchy problem

{ 2’ = Az + Pyy(—Vé(z)) + 772V é(z) (10)
z(0) = zo
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has for every zo € X at least one mild solution z* € C(IRY; X) N L2(R*; X) which
satisfies

. * _
t—lg{-noo (L‘ (t) - 0

Conversely, if equation (9) has a solution ¢ with the above properties, then the
feedback F = Py (—V @) is stabilizable and guarantees inegality (7) with p = 7.

(Here Py, : X — Up is the projection operator on the set Uy and V¢ is the
gradient of ¢).

Remark. In the case of unconstrained Ho, — control problem, i.e. Uy = X, equa-
tion (9) reduces to the Riccati equation corresponding to the regular H,,—problem
(see Keulen et al., 1993; Kimmel and Swierniak, 1983) while the closed loop inequa-
lity (7) becomes

[IS¥(0, w)”%ﬂ(mﬂz) < Pz”“’”%z(mﬁ){)

4. Proof of Theorem 1

In what follows we shall give the main steps in the proof of Theorem 1.

Assume that F € F is such that inequality (7) is satisfied. Define on the space
L*(R*; X) x L%(IR*, X) the function

KGww) = [ (00 + I (ule) 7)) dt

=5 [ (0P + 1O + I u®) - PP & ()

where z is the mild solution of (6), with f = w and Iy, : X — (—o0,+0o0] is the
indicator function of Uy, i.e. Iy,(u) =0 for u € X, Iy,(u) = +oo elsewhere. Denote
U = L*(R*; L*(R*; X)), W =U .and consider the problem

sup inf K(u,w) (12)
weW ueld

The following result is proved first of all.
Lemma 1. Problem (12) has a unique solution (v*,w*) €U xW.

In order to obtain the Euler-Lagrange optimality conditions corresponding to
problem. (12), we consider a family of approximating sup inf problems on the finite
intervals [0,n], namely

sup inf K(u,w) (13)
weEW, uel,

where

Ka(wu) = 5 [ (@ +1uOP + Tog(u) - Plo@P &t (14
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z being the corresponding solution to (6) with f = w on [0,n] and U, =
L%(0,n; X), W, = L*(0,n; X).

Lemma 2. Problem (13) has a unique solution (un,w,) which is expressed as
un(t) = Puo(pn(t)); wa(t) = =y °pa(t) ae., te(0,n) (15)
where
Pp=—A*pn+z, in [0,n], pa(n) =0 (16)

Moreover we have

tim [ “(lan(t) = 2 OF + un(t) — w1 + fun(t) — w* ORI =0 (17)

n—+4o00

Define the functions ¢ : X — R, ¢, : X — R, ¢(zo) = supinf K(u, w) =
K(u*,w*), én(xo) = supinf Ky, (un, w,), n = 1,2,.... It follows immediately that
¢, ¢, are convex, continuous functions.

Lemma 3. The functions ¢, are Giteauz differentiable and Vén(zo) = —p,(0),
Vzo € X where p, is the solution to (16).

Lemma 4. There ezists ¢ > 0 independent of N such that
lPa()l <c,  Vte0,n]

Lemma 5. The solution (u*,w*) to problem (12) is given by
ut = Pyy(p(t),  wt(®)=-v7Cp(t), ¥t20

where p € C(IR*; X) is a mild solution to

p=~-Ap+* in IRY, , 115_11 p(t)=0
ie. _
- T -
p(t) = A T=p(T) —/ eA" (=g (5) ds, (18)
, .

forall 0 <t < T < +oo.
Lemma 6. The function ¢ is Gditeaur differentiable on X and
Vé(zo) = —p(0)

where p is the solution to (18).
As is readily seen, (u*,w*) is the solution to the problem

sup in { / " le()P + u()P + I, (u(s))

weL2(t,400;2) u€L?(t,+o00;z)

—w(s)*)ds, z'=Az+utw in (¢ +o0);z(t) = .'c*(t)}



244 S. Anita and G. Aniculaesei

and therefore
* 1 00 * 2 * 2 * 2, % 2
s @) =5 [ (2@ + @ + 0w (5) = 77 () ds, 12 0

It is proved that ¢ satisfies the Hamilton-Jacobi equation (9). For the proof of
“only if” part, using the hypotheses it is shown that the equation

¢’ = Az + Py, (~V¢(z)) +w, teR*
z(0) = zo

has a differentiable solution on some interval [0,7p). Some calculations involving this
solution shows that inequality (7) holds, thus proving Theorem 1.

6. Final Remarks

In (Kimmel and Swierniak, 1983) the following model of cancer cell proliferation was
proposed :

dN
{ ST = —aN @) + 21— u®)NE), 120 1)
N(0) = N

where N(t) is the size of a cancer cell population, 1—u(t) represents probability of cell
survival after a citostatic dosage, a is a constant and is an inverse of average length
of cell cycle time, 2 represents a mother cell symmetric division into two daughter
cells. A performance index is of the form

J:rN(t)+/Tu(t)dt

where 7 is a weighting coefficient ; the second term represents a negative cummulative
cytostatic effect, T — the length of chemotherapy time.

Taking into account the possible disturbances we are lead to the following model

dN
{ =5 = —aN(0) +2(1 - u@®)N () +w(t), 20 )
N(0) = N

It would be interesting to find a feedback control u(t) = FN(t) such that the influence
of the disturbance on the system is “small” (in a certain sense).

This problem can be treated by analogy with the H,, — control problem with
constraints (we shall consider a certain related max-min problem). Here we have a
problem with finite horizon (which is easier), but with a bilinear term (which is a
serious problem).
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