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MULTILAYER PERCEPTRON NETWORKS:
SELECTED ASPECTS OF TRAINING OPTIMIZATIONt

JACEK M. ZURADA*, ALEKSANDER MALINOWSKI*

Training of Multilayer Perceptron Neural Networks using the popular error back
propagation method can be modified and its performance improved. The mo-
dified original generalized delta learning rule has been found to considerably
enhance the learning process. In addition, input layer size can be reducible
through evaluation of the network sensitivity over the training/test data set.
Minimum set size estimation based on the sampling theorem can also be per-
formed to determine the optimum number of training patterns.

1. Introduction

Multilayer Perceptron Neural Networks (MLPNN) account for the majority of today’s
applications of neural networks. They are used to express functional relationships
between the sets of experimental data describing process identification and modelling
of function, approximation, classification, prediction, one-step ahead control, and
other tasks. MLPNN’s ability to model experimental relationships and to embed
knowledge from data into networks is due to the stochastic approximation based on
learning within a rather flexible architecture. Although a layered architecture of an
MLPNN with a single hidden layer fits into modelling of numerous tasks, a number of
questions as to how to optimize the training and the network itself remain unanswered.

One important issue concerns the optimality of the generalized delta learning
rule (EBPT). Although the EBPT algorithm has been widely used and hundreds of
technical reports illustrate its successful applications, the lambda learning rule often
offers a considerable improvement of learning. The paper outlines the generalized
lambda learning algorithm for layered networks. It also focuses on visualization of
learning and draws comparisons between the two learning approaches.

Minimization of redundancy in the training data is another important issue.
When certain inputs bear none, or little, statistical or deterministic relationships
to outputs, input vectors can be compressed. This makes it possible to reduce the
dimensionality of the input vector, @, through pruning of the input data set, so that
a smaller network can be utilized as a model of relationship between the data. Initial
findings on this subject have been published in (Cloete and Ludik, 1993; Fu and Chen,
1993; Zurada and Malinowski, 1993). This paper introduces a more formal approach

. to reductlon of input size of the network.
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A new approach to the problem of n-dimensional function approximation using
MLPNN is also discussed. The generalized Nyquist theorem is used to look for the
optimum number of learning patterns in n-dimensional input space. Choosing the
smallest but still sufficient set of training vectors results in a reduced number of hidden
neurons and learning time for the network. Analytical formulae and an algorithm for
training set size reduction are developed and illustrated by two-dimensional data
examples.

2. Lambda Learning Rule for MLPNN

Assume that a non-augmented input vector # has n — 1 components. Lambda
learning rule involves expansion of the learning space to n + 1 dimensions. In this
rule, in addition to weight learning, the steepness of the activation function undergoes
adjustment in the negative gradient direction. The first observation of this useful
property has been made in (Tawel, 1989) and, independently, in (Movellan, 1987). A
number of simulations have confirmed that the method not only accelerates learning,
but also improves generalizations and introduces a better participation of nodes in
representing the input (Kruschke and Movellan, 1991).

Using the customary expression for error between the desired output value d and
the actual one o, i.e.

B(w,3) = ]d— o{w, )P )
we obtain the following weight and A adjustments for a single neuron learning
E
Aw; = nlg = —n1(d — o) f'(Anet)Az; (2)
wi
0FE
Al = Mgy = —n2(d — 0) f'(Anet)net (3)

where f/(net) = o(1 — o) and the activation value and function are, respectively,
net = wTy
F\, net) = (14 e~ 2net)~1 (4)

and 7, ny are positive learning constants usually selected of arbitrary small values.
Noticeably, expression (2) coincides exactly with the delta learning rule. Additional
weight adjustment as in (3) is the essence of the lambda rule. It expresses such block
changes of the value net that although the individual weights remain invariant, the
overall impact of learning typically increases, since the adaptive gain factor in the
exponent of (4) is suitably adjusted. This feature may be of particular importance
when all weights are considerably too small or too large, and/or the neuron learning
progresses slowly. Intuitively, (3) corresponds to a separate and independent weight
scaling step, when all the multiplicative weights are adjusted up or down in a block-
wise fashion in a direction which minimizes the current training error.
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The lambda learning rule can now be easily generalized for a single or double
layer learning. Assume that the output layer of a two-layer network undergoes the
training. Here, steepness coefficients A;, ¢ = 1,2,..., K, undergo adjustments in
addition to the individual weights. With reference to Fig. 1, the adjusted learning
variables can be obtained from (2), (3) as below (primes denote updated values)

wij = wrj + M (di — o) f'(nete) Apz; (5)
;C =M+ 772(dk - ok)f'(netk)netk (6)
where j =1,2,...,J, and k is the neuron number, weights of which undergo adjust-

ments. Understandably, ¥ must be incremented from 1 through K in order for the
entire layer to update both its weights and A values for a single input pattern.
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Fig. 1. MLPNN for illustration of lambda and generalized lambda learning.

The generalization below refers to the hidden layer learning, specifically, to learning
of weights v;; using the notation of Fig. 1. Obviously, the learning of the j-th neuron
is performed such that v;; and A;, i=1,2,...,I, and j=1,2,...,J, are adapted.

Using the following overall output error definition

K
B =52l =) @

we obtain for weights and steepness coefficients the adjustments

OE  OFE Onet; 8
311_7'2' N 6netj 81/]',' ( )
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OE _ OF Oy; (9)
dXj  Oy; 0
Further rearrangements using standard notation (Zurada, 1992) and based on

derivations detailed in (Zurada, 1993) lead to the following weight adjustments in the
generalized lambda learning rule

K
iji fomnad nlf'(netj)zlx\] Z 6okwkj (10)
k=1
K
AXj = naf! (netj)net; Y Sopnety (11)
k=1

where 6o = (dr — ox) f' (nety).

3. MLPNN Training Algorithm with Lambda Learning
The complete learning algorithm for the network of Fig. 1 is given below:

BEGIN: Given are training pairs of vectors of inputs and desired outputs
{z1, di, 22, ds,...,2p, dp} where 2; is (Ix1), d; is (Kx1) and
1=1,2,...,P. Note that the I-th component of each z; is of value —1
since input vectors are augmented. Size J — 1 of the hidden layer having
outputs y is selected. Note that the J-th component of y is of value
—1, since hidden layer outputs are also augmented; y is (J x1) and o is
(Kx1).

STEP 1: 11, 12 > 0, acceptable training error Ey,,; chosen. Weights W and V
are initialized at small random values; W is (Kx J), V is (Jx 1), ¢q :=
L,p:=1 E:=0

STEP 2: Training step starts here. Input is presented and the layers’ outputs are
computed as in (1):
z = zp, d:=dp, Y = f(v?z) for j=1,2,...,J
where w;, a column vector, is the j-th row of V', and
op = f(wly) for k=1,2,...,K
where wy, a column vector, is the k-th row of W.

STEP 3: Error value is computed: E:=0.5(dy —ox)?> + E, for k =1,2,...,K.

)

STEP 4: Error signal vectors ¢, and ¢, of both layers are computed. Vector 6, is
(K x1), 8, is (J x1).
The error signal terms of the output and hidden layers in this step are,
respectively

60k = (dk—ok)(l—ok)ok for k= 1,2,...,[&’
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byj ::yj(l—yj)ZcSowkj for 7=1,2,...,J, over k=1,2,... K

STEP 5: Output layer weights and gains are adjusted:
Wgj = Wgj + Ulégk)\j

Ak = Ap + mebornety for k=1,2,...,K and j=1,2,...,J

STEP 6: Hidden layer weights and gains are adjusted:
Vji 1= Vji + MibyjAjzi

Aj = Aj -+ mabynet; for j=1,2,...,J and .i=1,2,...,T

)

STEP 7: If p < P, then p:=p+1, ¢ := ¢+ 1, and go to Step 2; otherwise go to
Step 8.

STEP 8: The training cycle is computed. For E < Ep,,, terminate the training
session. Output weights W, V, and the cycle counter ¢, as well as the
error E. If E > Epyqz, then £ :=0, p:= 1, and initiate the new training
cycle by going to Step 2.

END.

4. Experimental Results

Simulation of learning efficiency using the lambda learning rule has been tested on
a number of cases, including a bit-map classifier. Although the lambda learning
rule-based algorithm is numerically about as complex as the classical EBPT, it can
offer an improvement in the efficiency of training. Since the improvement comes
at about no additional cost, the algorithm seems to be a promising one and likely
to become important. The same learning constants and initial weights have been
used for comparison of both algorithms (simulations are made for bipolar neurons’
characteristics).

Learning using the EBPT and the lambda learning rule have been simulated and
compared for the XOR problem. Figure 2 shows two typical learning profiles for the
EBPT and lambda learning rule, and it indicates faster learning for the method em-
ploying adaptive gain. Two hidden-layer neurons have been used in this experiment.
Figure 3 illustrates gain variations during training and corresponds to the bottom er-
ror curve of Fig. 2. It can be seen that the output neuron’s gain changes sign during
learning and its gain variations are substantially correlated with an associated error
curve of Fig. 2.
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Fig. 3. Neurons’ lambda variations during A-learning for the XOR problem.
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Efficiency of both algorithms has also been compared for training of a 36-class
classifier of digits 0-9 and 26 letter characters with 8 x 10 binary input pixel field.
The desired output vector has been the 7-bit ASCII code of each character. The
architecture with 30 hidden nodes have been used. Figure 4 depicts two typical lear-
ning profiles produced for this application and indicates that the lambda learning
method yields several times faster learning for the same final level of classifier’s per-
formance. Noticeably, Fig. 4 illustrates one case in which the EBPT method has not
been successful and the lambda learning algorithm was.

In addition to the typical simulation results discussed in this section, some addi-
tional observations are in place. The lambda learning algorithm seems to be rather
sensitive to initial weights and values. For small networks, such as XOR, A =1
and n = 0.1 yield seemingly best results. Initial weights uniformly spread within
+1/y/(fan — in) yield satisfactory results for initial value of A = 1. It has also been
found experimentally that both methods with weights initialized improperly result
in persistent saturation of weights. In such a case no further learning occurs despite
large output error value. Many simulations also indicated that lambda learning has
led to quick and excellent solutions in cases when the standard EBPT has failed to
produce acceptable results in reasonable time.

5. Sensitivity-based Approach for Input Vector Reduction

The minimization of redundancy which may be present in the training data is an
important issue and rather rarely addressed in the technical literature. MLPNN are
often used to model complex functional relationships between sets of experimental
data. As such, they perform as function approximators which learn on a set of training
patterns/examples (Hartman et al., 1990; Shekhar and Amin, 1992).

Let us define the sensitivity of a trained MLPNN output og, with respect to its
input z; as

ox o
S5l = T (12)

which can be written succinctly as
Ski = SgF (13)

By using standard notation of the EBPT, the derivative of (12) can be readily expres-
sed in terms of network weights as follows

for _ 3, 00 (14)
oi et M G

where y; denotes the output of the j-th neuron of the hidden layer, and of is the
value of derivative of the activation function o = f(net) at the k-th output neuron.
This further yields

do J-1
k 2 :

% = O;C wkjy‘;-llji (15)
4 j=1
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where y; is the value of derivative of the activation function y = f(net) of the j-th
hidden neuron (y; = 0 since the J-th neuron is a dummy one, i.e. it serves as a bias
input to the output layer). The sensitivity matrix S(K x I) consisting of entries as
in (15) or (13) can now be expressed using array notation as

S=0'xWxY'xV (16)

W (K x J) and V(J x I) are output and hidden layer weight matrices, respectively,
and O'(K x K) and Y'(J x J) are diagonal matrices defined as follows

O’ = diag(o}, 0%, ...,0%)

T , (17)
Y :dla‘g(ylyyZa"‘JyJ)

Matrix S contains entries Si; which are ratios of absolute increments of output &
due to the input ¢ as defined in (13). This matrix depends only upon the network
weights as well as slopes of the activation functions of all neurons. Each training
vector (") € X, where X = {x(®),2(® ... £} denotes the training set, produces
different sensitivity matrix S even for a fixed network. This is due to the fact
that although weights of a trained network remain constant, the activation values
of neurons change across the set of training vectors (™), n = 1,2,..., N. This, in
turn, produces different diagonal matrices of derivatives O’ and Y, which strongly
depend upon the neurons’ operating points determined by their activation values.

In order to possibly reduce the dimensionality of input vectors, the sensitivity
matrix as in (16) needs to be evaluated over the entire training set X'. Let us define
the sensitivity matrix for the pattern @, as S(™). There are several ways to define
the overall sensitivity matrix, each relating to the different objective functions which
need to be minimized.

The mean square average sensitivities, Sk avg, OVer the set X can be computed
as follows

Ski,avg = (18)

Matrix Sqy¢(K x I) is defined as Sqvg = [Ski,avg]. This method of sensitivity avera-
ging is coherent with the goal of network training which minimizes the mean square
error over all outputs and all patterns in the set.

The absolute value average sensitivities, Ski aps, Over the set X can be computed
as follows

Ski,abs = (19)

Matrix Saps(K x I) is defined as Saps = [Ski,abs]. Note that summing sensitivities
across the training set requires taking their absolute values due to the possibility of
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cancelations of negative and positive values. This method of averaging may be better
than (18) if sensitivities S,(c’;), n=1,...,N, are of disparate values.

The mazimum sensitivities, Ski mas, over the set X can be computed as

Ski,maa: = n—nilax {S]E;?)} (20)
Matrix Smae(K x I) is defined as Smas = [Skimaz]. This sensitivity definition allows
us to prevent deleting inputs which are relevant only in small percentage of inputs.

Any of the sensitivity measure matrices proposed in (18)-(20) can provide useful
information as to the relative significance of each of the inputs in & to each of the
outputs. For the sake of simplicity, however, mainly the matrix defined in (18) will
be applied in further discussion. The cumulative statistical information resulting
from (18) will be used along with criteria for reducing the number of inputs to the
smallest number sufficient for accurate learning.

6. Algorithm for Pruning Inputs

Inspection of the average sensitivity matrix S,,, renders it possible to determine
which inputs affect outputs least. A small value of Si; 4vy in comparison to others
means that for the particular k-th output of the network, the i-th input does not
significantly contribute to output %, and may therefore be possibly disregarded. This
property allows the formulation of the following pruning rule: The sensitivity matri-
ces for a trained neural network can be evaluated for both training and testing data
sets; the values of average sensitivity matriz eniries can be used for determining the
least significant inputs and for reducing the size of network accordingly by pruning
redundant inputs.

When one or more of the inputs have relatively small sensitivity in comparison
to others, the dimension of neural network can be reduced by suppressing them, and
smaller-size neural network can be successfully used in most cases. The criterion used
below for determining which inputs can be pruned is based on the so-called the largest
gap method.

In order to normalize the data relevant for comparison of the significance of
inputs, the sensitivity matrices defined in (18)—(20) have to be additionally prepro-
cessed. The formulae needed for scaling are given in (21) and map each input into
range [0, 1] as well as each output into range [—1, 1:

my (n)
~(m) . % n:I{l,l..l"l,N{CCZ }
=T ™) : )
(,max, (=) = min {z("})
(21)
~m) . Oim) B (nznll,a‘X,N{Ogn)} N n:nll,i..r.l,N{OECn)}> /2

% = n . n
(zmox (o} = min (o}

n=1,..,
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If input and output data scaling (21) was performed before network training, no
additional operations on Sg; are required and we have

§ki,avg = Ski (22)

Note that the scaling can be performed either on entries of § or Say,. In the case
when network original inputs and outputs are not scaled to the same level, additional
scaling 1s necessary to allow for accurate comparison among inputs:

(n) : (n)
(,max (=) = min {o{"})

71.:1,
(max L) = mim, (o))

The significance of the i-th input ®; across the entire set A is defined as follows:

Ski,aug = Ski

(23)

(Di,avg = k-_-nllf).{K{Ski'avg} (24)

In order to distinguish inputs, entries of ® have to be sorted in descending order so
that

(Pim+12¢im> m:l,...,[—l (25)

where i,, is a sequence of sorted input numbers. Let us define the measure of gap as

Bin (26)

Jim =
®; 41

and then find the largest gap using the following formula

gmaz =max{gi,} and mcyr =m suchthat gi, =gmee  (27)

If condition (28) below is valid, then the gap found between mecyr and MCoUT+1 18
large enough:

COmaez > max  {g:.} (28)

ImFimoyr

Constant C from (28) is chosen arbitraily within a reasonable range (e.g. C' = 0.5; the
smaller C, the stronger is the condition for existence of an acceptable gap). All inputs

with indexes {im41...27-1} can be pruned with the smallest loss of information to
the MLPNN.

The gap method can be also applied for comparison among sensitivities of inputs
to each output separately. For this purpose, a set containing candidates for pru-
ning can be created for every output. Final pruning is then performed by removing
these inputs which can be found in every set determined previously for each output
independently.

Saug can be meaningfully evaluated only for well trained neural networks. De-
spite this condition, it can still save computational effort when initial learning can be
performed on smaller, but still representative subset of data. S,,4 can be evaluated
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based either on the data set used for initial training or on the complete data set. Sub-
sequently, newly developed neural network with appropriate inputs can be retrained
using the full set of training patterns of reduced dimension.

7. Experimental Results

A series of numerical simulations was performed in order to verify the proposed defini-
tions and pruning criteria. In the first experiment a training set for a neural network
was generated using four inputs zi,...,z4 and two outputs o; and oz. Values of
outputs were correlated with z; and z5 for o1, and with z; and z3 for os. Input
vectors @ (4x 1) were produced using a random number generator. The expected
values of vector d (2x 1) for the output vector o (2x 1) were evaluated for each =
using a known relationship d = F(x) where d is the desired (target) output vector
for supervised training. The training set A consisted of N = 81 patterns. A neural
network with 4 inputs, 2 outputs and 6 hidden neurons (f =5, J =7, K = 2) has
been trained for the mean square error defined as follows

i N K 9
MSE = |~ 3 (dg”) - ogp)

n=1 k=1

(29)

equal to 0.001 per input vector. Matrices of sensitivities were subsequently evaluated
~and S,y produced at the end of training over the entire input data set A’.

The changes of sensitivity entries during learning are presented in Fig. 5.
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Fig. 5. Sensitivity profile for the full training data set.

Training Cycles

It can be seen that an untrained neural network in the example has per average
smaller sensitivities than after the training. During the training some of the average
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sensitivities Sg; vy increase, while the others converge towards low values. Final
values of sensitivities of the first output offer hints for deleting =3 and z4, and these
for the second output indicate that z; and x4 could be deleted. The only input
which occurs in both sets of candidates for deletion is x4. Therefore, the fourth input
to the network can be skipped and its dimension reduced to 3 (I = 4).

The second experiment was performed using a larger network and fuzzy data.
MLPNN had 20 inputs (I = 21), 10 hidden neurons (J = 26) and 4 outputs (K = 4).
There were N = 500 patterns in the training set and several additional data sets
of the same size for network performance evaluation. The network was successfully
trained to the MSE error of 0.15. However, due to the fuzziness of the training data,
MSE error for additional sets remained at the level of 0.20.

All outputs were strongly correlated with inputs zi, x5, 23, T4, s, xs, and
zg. Input zs during data generation was multiplied by random numbers, while the

influence of z; and z4 on outputs was scaled down to remain small in comparison
with other inputs (less than 0.05).

Input significance coefficients calculated using formulae (18)-(20) are shown in
Fig. 6.
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Fig. 6. Input significance coefficients ¢ for different sensitivities (18)—(20)
and pruning criterion (28).

Inputs z5 and z4 are identified after sorting as less important than other, not cor-
related inputs. This is due to their low correlation with outputs. They therefore can
be ignored along with other inputs which are not correlated for a given MSE error
value. The sequence of significance is the same for all proposed methods, however,
the sizes of gaps are different in each case. Value C' = 0.5 prevents pruning using
#mac definition. Note that the maximum method does not give the clear clue how to
choose the significance level for purging due to fuzziness of the training data.

The result of initial training is shown in Fig. 7. It can be determined from this
figure which inputs should remain after pruning. The network performance after
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pruning is shown in Fig. 8. No further input dimensionality reduction is possible
since no large gap in coefficients ¢ can be found. The speed of training has increased
mostly because of reduction of the MLPNN size (input dimension reduced by 4). The
necessary number of the training cycles has also decreased, but not so dramatically
as in the first experiment.

MSE/ Sensitivity
0.400+ +
1
3
300 + 4
0.300 ; dg
ol
0.200 + MSE 4
b9
0.100 4 i
Training Cycles
OTHER
0.0 + t + +
0 50 100 150 200 250 300
Fig. 7. Input significance ¢avy for the full training set.
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Fig. 8. Input significance ¢avy for the pruned training set.
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Using the sensitivity-based approach for input layer pruning seems particularly
useful when network training requires large amount of redundant, oversized data. In
the first phase, network can be pre-trained until the training error decreases sati-
sfactorily. Then sensitivity matrices can be evaluated and the dimension of the input
layer possibly reduced. Learning can subsequently be resumed until the training error
reduces to an acceptable low value. This process can be repeated, however, usually
only the first execution yields significant improvement. Numerical experiments indi-
cate that the effort of additional network retraining can be too high in comparison to
benefits of further minimization.

Should the redundancy in training data vectors exist, the proposed approach
based on the average sensitivity matrices for input data pruning allows for more
efficient training. This can be achieved at a relatively low computational cost and
based on heuristic data pruning criteria outlined in the paper. The approach can
be combined with other improved training strategies such as increased complexity
training (Cloete and Ludik, 1993). Extension of the proposed sensitivity-based input
pruning concept beyond continuous output values seems desirable for the case of
networks with binary outputs such as classifiers and other binary encoders.

8. Minimum Sampling Rate for Information Encoding

An analytical approach allowing finding the optimum number of training examples
for MLPNN can be outlined based on the Nyquist Sampling Theorem. The theorem
states that a function f(z) which contains no frequency components greater than
fo Hz is uniquely determined by the values of f(z) at any set of sampling points
spaced at most 1/(2fy) seconds apart (Philips, 1990; Poularikas, 1992). Sampling
rates defined for time signals can be extended to other independent variables so that
the generalized theorem for function approximation can be obtained. Each dimension
of the transform will then correspond to one dimension of the original domain.

Obviously, sampling with a certain minimum frequency is needed to restore the
signal from the samples taken. However, the theorem refers to the ideal case where
the input signal has a finite high frequency boundary so that it can be accurately
restored from samples using the inverse Fourier transform. Real-life signals are not
band-limited, and we focus on the analysis of approximation conditions for MLPNNs.

An MLPNN trained using backpropagation algorithm can be regarded as a mean
square error-based function approximation. However, no closed-form formulae for
approximation polynomials are known before training. This makes it impossible to
evaluate the sampling step theoretically. Therefore, the only hint for choosing the
sufficient sampling interval is that it should be shorter than the Nyquist interval.
The developed algorithm for non-band-limited functions is based on the assumption
that only a certain fraction of information about the function is necessary for the
approximation with a required accuracy.
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Below we discuss the continuous function case. Let a continuous function to be
approximated be known as f(x),

f(z):D—-1R, DCRY
ID = (zMmIN, - ZMax,) x (EMIN, - ZMAX,) X - X (EMINy -0 AX ) (30)
x=[z1,22,...,2n)

and let B; be the range of the i-th variable, z;:

Bi =rpmax, — TmIN, (31)

The multidimensional Fourier transform of f(z) can now be expressed as

TMAX) TMAX, IMA)()\[
1 ' . .
- 2 2 o
F(Q):W f(rl,l‘g,...,ﬂ?]v)e TIT1WL oM T2wa
TMIN, TMIN, TMINp
.. .627rj$NwN dﬁldxg . .dII?N (32)
where 2 = [wi,ws,...,wn] is a vector of frequencies.

The criterion for minimum sampling frequency estimation can be formulated in a
number of ways. First, the basic formula for optimization should be defined as a norm
evaluating the information density at particular frequencies. The norm as defined
in (33) has a meaning of generalized energy density:

Eq(02) = |F(2)]? (33)

We can also use function (34) for evaluating the amount of information enclosed in the
frequency band §2. In case of a multidimensional band-limited function, the energy
E(£2), can be computed by integrating the generalized energy density (33) in the
frequency domain in spherical (Andrews et al, 1970), or more precisely, ellipsoidal
coordinates within an N-dimensional ellipsoid. For example, in the simplest case
assuming that function F has isotropic properties in each dimension (w = wy =
wg =...=wn), we obtain

2T 27 2T

1 .
E'(.Q):// //[F(wrcosd:lcos¢2...cos¢N_1,wrsin¢1cosqﬁg...cos¢N_1,
00 00

AN ,wrsin ¢1 sin ¢2...sin¢N_1)|2rJ(r, qﬁl, ¢2, ceey ¢N) d¢1d¢2 .. d¢N_1dT (34)

where J(r,é1,¢2,...,¢n) s a term resulting from the change of the integration
coordinates from cubic to spheric (Apostol, 1957). However, in general it cannot be
assumed that the approximated function will have isotropic properties. It may then be
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reasonable to choose smaller sampling densities in some dimension. The function (34)
becomes then more complex due to the different boundaries in each dimension

27 27 2T

1
E(O):/ //|F(w1rcos¢1cos¢2...cosqﬁN_l,wzrsin¢1cos¢2...c0s¢N_1,
0 00

-, wNTSindysings...sindy_1)|2T(r,Q, é1, ¢, . . ., ¢n) dp1dgs ... déy_1dr (35)

0

where J(r, 92, ¢1,¢3,...,4n) is a term obtained as previously after conversion of the
integration coordinates from cubic to spheric.

Let Crnro called the information rate factor be the fraction describing the
required minimum energy content of the signal sampled with frequency §2, normalized
with respect to the total energy Eror of the original function (or function sampled
with very high frequency). The information rate factor CinrFo can be seen as a
theoretical measure of the information amount needed to approximate a function
with a required accuracy.

Let function f(z) be sampled with frequency 2 satisfying the following condi-

tion:
E(12)
— _>C 3
E(@aaz) > CINFO (36)
where the frequency 2pr4x = [wi,wa,...,wN]asrax is high enough, so that
E(Ruyax)— E(02)
< C 37
E(2ax) INFO v (37)

Let us now compute the total number of samples in the training set. The number
of samples taken per dimension My, is equal to

ML‘-(LJJ,;) = |2Biw.; + 1' (38)

The total number of samples My can be expressed as
N
M ($2) = [] Mr(wi) (39)
i=1

Our objective is to search among vectors §2 which satisfy the condition
(36) and to minimize the value of M defined by (39). The vector Ropr =
[wi,ws2,...,wn]opr which is the solution to the given optimization problem con-
tains the minimum sufficient sampling frequencies in the new training data set. The
final sampling interval, Az;, is expected to be of different value for each dimension
depending on the chosen frequency w;:

1

A;EZ' = 40
2wopT; (10)

Let us redefine the results for continuous functions for discrete data sets. Let
us consider sampling a plant characteristic for which no closed-form formula, exists.
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Fig. 9. Approximated function f(z) as in (53) (a), and its Fourier
transform (b); (Pror = 1.12).

The average power Pror was calculated for the given function using for-
mula (55); it is of value Ppor = 1.12. MLPNN with 2 inputs, and 20 hidden neurons
was trained to the error MSE = 0.08. ¥ and Crnro were then calculated from
equations (55) and (57) for MSE =0.08 as ¥ =0.07, and Cryro = 0.93. The
optimum number of samples for each dimension has been found from Fig. 11 by fin-
ding the minimum of My, over frequencies satisfying condition (52) which shows the
contour line bounding the domain of solution. This figure shows the contours for
the number of samples in the training set My, for different /; and I, which satisfy
condition (52). The minimum of My can be found at L; =4 and Lz = 8. It can
be evaluated from equation (48). This corresponds to My, = 9 samples for variable
¢, and Mp, = 17 samples for variable z.
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i 8 Mok 416 18 20

Fig. 10. Amount of energy GNORM(l) covered by bounded frequency
spectrum (Enxorar > 0.90).

24
| OPTIMIM
less than 0.93 2

Fig. 11. Number of samples in learning set in area of normalized
G(ll,lz) > Crinro (CINFO > 0.93).

MLPNNs with architectures described above were then trained for different num-
bers of samples taken in each dimension to verify the theoretical results. The results
are illustrated in Figs. 12-13. Figure 12 shows the quality of training in terms of
MSE and the maximum error of approximation verification based on a very large
test set (500 x 500 samples). It can be seen that the error decreases dramatically
when l; > 2 and Il > 3. This corresponds to My, =5 and My, = 7 samples per
dimension, respectively.
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Fig. 12. Neural network performance (a) MSE (b) MAX.

Figure 13(a) shows the number of training steps required for the learning process,
while Fig. 13(b) shows only the number of training cycles. After achieving certain
frequencies of sampling the function to build a training set, the number of training
cycles does not increase or increases only slowly, while the overall number of training
steps still increases due to the growing number of training vectors.
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Training Steps

(b)

Fig. 13. Number of training steps (a) and training cycles (b) versus sampling frequencies.

Figure 14 summarizes the computational experiment. It illustrates the number
of training steps for the sampling frequencies ! providing accurate learning. Local
minima can be found for the frequencies l; = 2 and I, = 5. This corresponds to
Mp, =5 and My, = 11 samples per dimension, respectively. This is in agreement
with Mp, =4 and M, = 8 samples per appropriate dimension obtained by inspec-
tion of Fig. 11. The results are then rather close to those evaluated previously using
the theoretical algorithm and shown in Fig. 11.

Both the results of the computational experiments and of theoretical studies show
that the generalized sampling theorem can be applied to the approximation problem
using neural networks. The smallest possible, but still large enough for the sake
of accuracy data set should be selected, and then other network parameters can be
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found through training. Our results indicate that the smallest training sets with only
some data from the large measured real-life data sets are required in order to obtain
successfully trained neural networks capable of accurate approximation.

3 5 7 9 Ml 11 13 15

Fig. 14. Number of training steps versus sampling frequencies for area of
satisfactory learning.
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