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STATISTICAL PHYSICS APPROACH TO
OPTIMIZATION PROBLEMS

Leszexk CIEPLINSKI*, Czestaw JEDRZEJEK*

Methods of statistical physics are applied to the Travelling Salesman Problem.
The starting point is the Hopfield-type Hamiltonian and the most representa-
tive benchmark is the 318-city TSP. We find that the recent Ising model neural
network implementation by Mehta and Fulop (1993) can be made fully equi-
valent to the Potts representation proposed by Peterson and Sodeberg (1989).
Our calculations using the mean-field method for the Potts representation are
more effective (average cost 58000, the best 55000) than the Ising model neural
network implementation by Mehta and Fulop (the cost from 64552 to 61337).
In terms of the tour cost a genetic-type algorithm always gives better results
than the Hopfield approach. ‘We relate distribution of energy in the population
during the evolution to the quality of genetic algorithm.

1. Introduction

The purpose of this work is the application of statistical physics methods to opti-
mization problems and operation research, in particular to the Travelling Salesman
Problem (TSP) (Lawler et al., 1985).

The most important problems in this field belong to the class of NP-complete
ones, i.e. time of their solution grows exponentially with the number of elements. The
TSP can be stated as follows: given distribution of distances between N cities find
the shortest tour that visits each city exactly once. Although the exact solutions are
known for certain class of problems up to 2392 cities (Padberg and Rinaldi, 1991),
for large N the cost becomes prohibitive. In need of acceptable although not exact
solutions statistical physics methods play the prominent role. Various methods are in
use including the neural nets of the Hopfield (Hopfield and Tank, 1985) or Kohonen
(e.g. Angeniol et al., 1988) type, elastic net (Durbin and Willshaw, 1987), simulated
annealing (Kirkpatrick et al., 1983; Kirkpatrick, 1984) or the mean-field. In this
work we concentrate on the comparison of two different approaches to the Hopfield-
type Hamiltonian that claimed relative success in optimizing the TSP. We mostly
benchmark the methods with the use of the popular 318-city TSP, for which the best
known cost is 41345 (Lin and Kerninghan, 1973; Crowder and Padberg, 1980). We
also study genetic algorithms in context of the relation between distribution of energy
in the population during the evolution and the quality of algorithm. The direction
seems to be promising in view of the existing relationship between the stochastic
dynamics and the statistical mechanics of disordered systems.
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2. Analysis of the Hopfield and Tank Type Hamiltonians

Application of neural networks to optimization problems started with Hopfield and
Tank (1985) who proposed the following energy function
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where ng; is a pseudospin (occupation) variable for visiting city z in the n-th step,
dyy is the distance between city z and city y, in the last term the i variable is
modulo N. The first (second) term is zero if there is no more than one 1 in each
row (column). The third term is zero if there are exactly N 1’s, and the last term is
equal to the cost of the route. The coefficients A, B, C, D are positive, but apart
from this not precisely defined. Hopfield and Tank used 4 = B = 500, C' = 200
and D =500 in their work. In spite of initial claims the method generally failed for
N > 10. Varlous remedies were proposed. Attempts to improve the Hopfield-Tank
model and remove the illegal configurations by artificially large weights dy (Wilson
and Pawley, 1988) that made it possible to eliminate zz sequences or by adding extra
terms to the Hamiltonian (Xu and Tsai, 1991), eliminating the zyz sequences were
not fully satisfactory.

Recently, Mehta and Fulop (1993) proposed the following Lyapunov function that
removed some problems inherent in the original Hamiltonian of Hopfield and Tank
(1985)
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More precisely, this energy was used to the Hamiltonian cycle problem which is a
special case for TSP. It can be transformed into TSP by completing the connection
graph to a fully connected graph and setting weights 0 to the original edges and
weights 1 to new ones. The problem is defined by specifying the cost matrix dgy and
average connectivity between cities c.

In contrast to the Hopfield and Tank parametrization, Mehta and Fulop also gave
a relation for coefficients that produce stable solutions. For G = 1.0, V = H = 0.7,
S$=0.6 and D =0.05—0.5 they achieved 100% of legal solutions.
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Among the Hopfield-type Hamiltonians the Potts representation proposed by
Peterson seems to be the most attractive (Peterson and Sodeberg, 1989; Peterson,

1990)
= X 5 (Em)
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The advantage of this approach is that the Potts variable exactly fulfils the legality
condition for the i-th variable

Z ngi = 1 (4)

The corresponding mean-field equation is as follows:
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where | denotes two indices z,i, kg is the Boltzmann constant, T temperature,
and 7; is average population at site .

For d, normalized to a unit square and parameter values o = 1.0 and 3=0.5
one rarely obtains 100% of legal solutions (for large problem size) but these solutions
are not too far from optimal so a hybrid approach e.g. with the use of greedy heuristics
or 2-opt does not make the cost function considerably worse.

Below we will compare the Mehta — Fulop (1993) and Peterson — Sodeberg (1989)
Hamiltonians. Before using the Potts constraint ., ngs = 1 the original Peterson

and Sédeberg Hamiltonian E$S is of the form
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Writing the second term as (and dropping 1 as the constant)
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This has the same Ising spin form as the Mehta and Fulop Hamiltonian if the
following equivalences are used

D-—10, H—f, V—a G§—a §— a.

As a consequence one can compare the methods of solutions of the same effective
Hamiltonian.

For values of coefficients scaling the Mehta and Fulop Hamiltonian, by taking
D = 1.0 and multiplying the rest of coefficients by 170) we obtain

H=10=28, V=10=¢a, G=13~a, S=086~a

The largest difference (by a factor of 2) appears in the first term. The difference in
the third term is less important because it is dropped from the Potts Hamiltonian,
anyway.

We verify that using # = 1 for the Potts Hamiltonian makes the results worse.
We first compare our results for the mean field Potts model with the Sodeberg and
Peterson results for 50 and 100 cities with o = 1,8 = 0.5 (see Fig. 1). They are
approximately of the same quality (strictly, they are better than in (Sédeberg and
Peterson, 1989) because of breaking the symmetry of the direction of a tour and taking
ngy = 1 for one selected city «, but a little worse than in (Peterson, 1990), where
only one distribution of cities was used. Our calculations using the mean-field method
for the Potts representation for the 318 city problem are more effective (average cost
58000, the best 55000) than the Ising model neural network implementation by Mehta
and Fulop (1993) (the cost from 64552 to 61337). We did not recalculate the Ising
scheme here. It would be interesting to investigate why the Potts scheme still ends
with illegal matrices using the mean-field approach while Mehta and Fulop reported
100% of legal matrices.
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Fig. 1. Histograms based on 50 experiments for 50 and 100 cities TSP.
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3. Genetic algorithm

Genetic algorithms are increasingly popular in solving classical optimization problems
(Grefenstette et al., 1985; Muhlenbein et al., 1991; Boseniuk et al., 1987; Bac and
Perov, 1993; Pal, 1993; Arabas, 1993) and different solutions have been proposed
concerning the representation of each individual, the size of the population, the cros-
sover and mutation operators, and the initialization strategy. The most complete
investigation in this respect to the TSP was performed by Prinetto et al. (1993). Hy-
brid approaches are also used with the goal of including heuristic techniques into the
pure genetic algorithm schemes. In the coding strategy we use two representations:
(1) path representation for initialization (Grefenstette et al., 1985) defined as follows:
the tour is described by a vector of N integers whose i-th element holds the value j if
the city j is reached at the i-th step; (2) adjacency representation after initialization
(Grefenstette et al., 1985) defined as: the tour is described by a vector of N integers
whose i-th element holds the value j if ¢ precedes j in the tour.

We use heuristic crossover (Grefenstette et al., 1985). The starting city for the
tour is randomly chosen; then the next visited city is the nearest one along one of the
parent tours that has not been visited in yet the offspring tour. In most simulations we
use a modified version of the above, in which the choice between the two possibilities

is made at random with weights inversely proportional to the corresponding distances
(Pal, 1993).

We perform some experiments on different forms of mutation. Similarly as in
(Pal, 1993), we use (1) 2-opt mutation or (2) series of 2-opt mutations until no such
mutation can improve the tour. Using the genetic algorithm with the first mutation
scheme it is relatively easy to bring the result to 43000 for the 318-city problem. The
second mutation scheme, as already established by Pal (1993), eventually brings the
result to the exact length of 41345 (not 41269 as given by Mehta and Fulop, 1993),
see Fig. 2. Here we concentrate on energy density distributions (which in the TSP
case are equivalent to the tour length distributions) during the population evolution
as functions of type of an algorithm. It was shown recently by Prugel-Bennett and
Shapiro (1994) that the energy density distribution has the dominant effect on the
speed of convergence. We study the same effect for type (1) mutation scheme obtained
using 10000 individuals. In Figs. 3 and 4 we show the energy distribution during
the evolution for probability of mutation equal to 0.1 and 0.9, respectively. It is
seen that energy distribution looses symmetry rapidly for both cases. The reason
for this is the type of the genetic algorithm we used. Unlike Priigel-Bennett and
Shapiro, we use steady-state replacement, i.e. we introduce a new individual to the
population immediately after its creation rather than build a new population that
replaces the old one (Beasley et al., 1993). The second important fact to notice is
that in both instances the energy distribution is very similar during the beginning
stages of evolution. Then the crossover is much more effective than mutation. The
2-opt mutations are efficient only for tours not far from the optimum.

4. Conclusions

In this work we concentrate on the comparison of two different approaches to the
Hopfield-type Hamiltonian that claimed relative success in optimizing the TSP. We
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Fig. 2. Optimal trajectory for 318-cities TSP problem of Lin and

Kerninghan (1973).
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Fig. 3. Distribution of energy (tour lengths) for 10000 individuals and

probability of mutation 0.1.
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Fig. 4. Distribution of energy (tour lengths) for 10 000 individuals and
probability of mutation 0.9.

mostly benchmark the methods with the use of the popular 318-city TSP for which
the best known cost is 41345. For the Hopfield type Hamiltonian we find that the
mean field approach for the Potts implementation (however with illegal matrices that
are next corrected by the 2-opt) gives better results than the neural network Ising
type implementation. We also study genetic algorithms in context of the relation
between distribution of energy in the population during the evolution and the quality
of algorithm. We show that the 2-opt mutations cannot improve starting tours con-
sisting of random sequences of cities and they are efficient only for tours not far from
the optimum. We plan a systematic study of effect of various crossover and mutation
schemes on distribution of energy in the population during the evolution.

One way to improve any scheme for the Hopfield type Hamiltonian is to include
the long range correlations between the nyy variablese.g. by the use the local density
method (Jedrzejek and Ciepliriski, 1994). The same correlations will be useful for
genetic algorithms that presently give better results than those coming from the neural
network approach (Bac and Perov, 1993; Pal, 1993). It has recently been shown that
such correlations seem to be much more important for optimization problems, such
as office assignment problem compared to the TSP (Altschuler et al., 1994).
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