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MODEL REFERENCE ADAPTIVE CONTROL
OF UNKNOWN PLANTS USING
DYNAMIC NEURAL NETWORKS

GEORGE A. ROVITHAKIS*, ManoLis A. CHRISTODOULOU*

A direct non-linear adaptive controller solving the tracking problem for unknown
dynamic systems which are modelled by dynamic neural networks is discussed.
A complete model matching case is examined and convergence of the control
error to zero plus boundedness of all signals in the closed loop are ensured.

1. Introduction

The application of artificial neural networks to control has already gained conside-
rable attention within the control systems community, mainly due to their massive
parallelism, very fast adaptability and inherent approximation capabilities. In the
past four—five years the field has experienced a great amount of research activity,
which has led to numerous applications and, furthermore, to the development of cer-
tain control architectures, based on neural network models. A beautiful survey of the
above-mentioned techniques can be found in a paper by Hunt et al. (1992), where
links between the field of control science and neural networks were explored and key
areas for future research were proposed.

The main problem in the application of neural networks to control is the fact
that very interesting simulation results that are provided lack theoretical verification.
Crucial properties like stability, convergence and robustness of the overall system
must be developed and/or verified. However, recently, interesting theoretical results
have begun to emerge, aiming at filling the gap between theory and applications.

The problem of controlling an unknown non-linear dynamic system has been
approached from various angles using both direct and indirect adaptive control struc-
tures and employing different neural network models. However, all works share the
same key idea, that is, since neural networks can approximate arbitrarily well static
and dynamic highly non-linear systems, the unknown system can be substituted by a
neural network model, which is of known structure but contains a number of unknown
parameters (synaptic weights) plus a modelling error term. The unknown parameters
may appear both linear or non-linear with respect to the network non-linearities, thus
transforming the original problem into a non-linear robust adaptive control problem.

Several answers to the problem of non-linear, but not necessarily robust, adaptive
control exist in the literature with typical examples (Campion and Bastin, 1990;
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Kanellakopoulos et al., 1991a; 1991b; Marino and Tomei, 1993a; Pomet and Praly,
1992; Sastry and Isidori, 1989; Taylor et al., 1989). A common assumption made in
the above works is that of linear parameterization. Although sometimes it is quite
realistic, 1t constraints considerably the application field. An attempt to relax this
assumption and provide a global adaptive output feedback control for a class of non-

linear systems, determined by specific geometric conditions, is given by Marino and
Tomei (1993b).

Dynamic neural networks for identification and control, as a concept, were first
introduced by Narendra and Parthasarathy (1990). They proposed dynamic backpro-
pagation schemes, which are static backpropagation neural networks, connected either
in series or in parallel with linear dynamic systems. However, their method requires a
great deal of computational time and furthermore, lacks theoretical verification that
simulations provide. Sanner and Slotine (1992) incorporate Gaussian radial-basis-
function neural networks with sliding mode control and linear feedback to formulate
a direct adaptive tracking control architecture for a class of continuous time non-
linear dynamic systems. However, the use of sliding mode, which is a discontinuous
control law, generally creates various problems, such as the existence and uniqueness
of solutions (Polycarpou and Ioannou, 1993), introduction of chattering phenomena
(Utkin, 1978) and possibly excitation of high frequency unmodelled dynamics (Young
et al.,, 1977). Polycarpou and Ioannou (1991) employed Lyapunov stability theory to
develop stable adaptive laws for identification and control of dynamic systems with
unknown non-linearities, using various neural network architectures. Their control
results were restricted to SISO feedback linearizable systems. Recently, Rovithakis
(1994) and Rovithakis et al. (1993; 1994), developed an indirect adaptive control
scheme for unknown non-linear dynamical systems, with certain restrictions on the
form of the unknown non-linearities. However, although not all the plant states were
assumed to be available for measurement, the restrictions imposed on the system need
to be relaxed, in order to be more widely applied.

In this paper, dynamic neural networks, of the form that will be described in
Section 2, are used as models of the unknown plant, practically transforming the
originally unknown system to a dynamic neural network model, which is of known
structure but contains a number of unknown constant parameters, known as synaptic
weights. Thus we relax the need of the two-stage, identification based control in
(Rovithakis, 1994; Rovithakis et al., 1993; 1994), while we broaden the application
field. Furthermore, the direct adaptive setting we propose does not require extensive
computations and has an easier implementation.

When the dynamic neural network model matches the unknown plant, we provide
a comprehensive and rigorous analysis of the stability properties of the closed loop
system. Convergence of the control error to zero plus boundedness of all signals in
the closed loop are guaranteed, without the need of parameter (weight) convergence,
which is assured only if a sufficiency of excitation condition is satisfied.

The paper is organized as follows: in Section 2, we state precisely the problem
and the form of the dynamic neural network model, while in Section 3, the complete
matching case is examined and basic control and update laws are developed.
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1.1. Preliminaries

The following notations and definitions will extensively be used throughout the paper.
I denotes the identity matrix. |-| is the usual Euclidean norm of a vector. In case
where y is a scalar, |y| denotes its absolute value. If A is a matrix, then ||A|]
denotes the Frobenius matrix norm (Golub and Van Loan, 1989), defined as

AlI? = Z laij|* = trace{AT A}
ij

where trace{:} denotes the trace of a matrix. Now let d(t) be a vector function of
time. Then,
e = ([ tarypar)

lldlleo = sup [d(t)]
>0

1/2

and

We will say that d € Ly, when |{d]|; is finite. Similarly, we will say that d € Lo
when ||d||eo is finite.

2. Problem Formulation and the Dynamic Neural Network

We consider affine in the control, non-linear dynamic systems of the form
& = f(z) + G(z)u (1)

where the state z, living in an n-dimensional smooth manifold M, is assumed to be
completely measured, the control u is in IR”, f is an unknown smooth vector field
called the drift term and G is a matrix with columns being the unknown smooth
controlled vector fields ¢;, 1 =1,2,...,n; G={g1 92 ... gn]-

The tracking problem consists in forcing the state of the system to follow the
output of a given stable linear dynamic system of the form

Tm = —AmTm + Bmtm (2)

for every possible input u,, € IR™. The state of the reference model belongs to M;
—An, is a stable matrix which for simplicity is assumed to be diagonal.

However, the problem, as it is stated above for system (1), is very difficult or
even impossible to be solved since the vector fields f, g;, 1=1,2,...,n are assumed
to be completely unknown. Therefore, it is obvious that in order to provide solution
to our problem, it is necessary to have a more accurate model for the unknown plant.
For that purpose we apply dynamic neural networks.

Dynamic neural networks are recurrent, fully interconnected nets, containing
dynamic elements in their neurons. Therefore, they are described by the following set
of differential equations

= —Ai+ WS(z) + Wap1S' (z)u
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where & € M; the inputs v € IR*; W - an nxn matrix of adjustable synaptic
weights; W,41 —an nxn diagonal matrix of adjustable synaptic weights of the form
Wnt1 = diag[wi n41Want1 ... Wn,nt1] and A is an n x n matrix with positive eigen-
values which for simplicity can be diagonal. Finally, S(z) is an n-dimensional vector
and S’(z) is an n x diagonal matrix, with elements s(z;) and §'(z;), respectively,
both smooth (at least twice differentiable) monotone increasing functions which are
usually represented by sigmoidals of the form

s(z;) = k k

/ —
e ()= e T2

for all ¢ = 1,2,...,n, where k,I are parameters representing the bound (k), and
slope (1), of sigmoid’s curvature and A > 0 is a strictly positive constant that shifts
the sigmoid, such that §'(z;) >0 for all :=1,2,...,n.

Due to the approximation capabilities of the dynamic neural networks, we can
assume, with no loss of generality, that the unknown system (1) can be completely
described by a dynamic neural network plus a modelling error term w(z,u). In other
words, there exist weight values W* and W, such that system (1) can be written
as

= —Ac+W*S(z) + Wi15 (z)u+w(z,u) (3)

Therefore, the tracking problem is analyzed for system (3) instead of (1). Since
W* and Wy, are unknown, our solution consists in designing a control law
u(W, Wy41,2) and appropriate update laws for W and W,,; to guarantee conver-
gence of the state to z,,.

In this paper, however, we will treat only the case of complete matching. The
presence of a modelling error term and its effect on the stability and robusteness
properties of our control scheme are left as open problems.

3. Tracking in the Complete Matching Case

In this section we investigate the adaptive model reference control problem when the
modelling error term w(z,u) is zero or, in other words when we have complete model
matching. Under this assumption the unknown system can be written as

T =—Ac+W*S(z)+ W), 5 (z)u (4)

Further, assume that we want the unknown system states to follow the states of the
model

T = —AmZTm + Bmum (5)
as stated in the previous section. From (4) and (5) we obtain the error equation

¢ =—Az + W*S(z) + Wi 15 (2)u + Amm — Bpum (6)
where we have defined

e=z— 2oy,
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If we add and subtract the term Az,,, expression (6) becomes
¢ = —Az+W*S(z) + Wi 15" (2)u+ Am2m — Bntum + Az
~ Az — Ae + W*S(2) + Wi, 15" (@)u+ Azm — Bmum (7)
where
A=Am—A

Let us take a function H(e) of class C?, from M to IRT, whose derivative with
respect to time is
0H

H(t) = g [T Ae+ WHS(2) + Wiy §'(2)u + A — Brtim)

The above equation is linear with respect to W* and Wj,; and can be written as
»

. OH 0H . 0OH _OH 0H . o,
Define
. 0H OH , . OH , OH;  OH
v= g W@ + oW S (@)u— H = FrAs+ 5o Avm = 5Bt

where W and Wy are the estimates of W* and Wy, respectively, obtained by
update laws which are to be designed later. However, the above signal cannot be
measured since H is unknown. To round this problem, we use the following filtered
version of v:

E+r€ = v
_ 0H o . - O0H 0H - 0H
. OH , »
= —-H+ —g[—Ae +WS(z) + Wnt1S'(2)u+ Az, — Bt (9)
where r — a strictly positive constant. To implement (9), we take
E=n—H (10)

Employing (10), equation (9) can be written as

n+rp=rH+ %—Z[—Ae + WS(z) + Wyt S (2)u + Az — Bmuy,] (11)

with the state 7 € IR. This method is referred to as error filtering. Furthermore, we
choose H(e) to be

1
H(e) = Slef”
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Hence, (11) becomes
n4+rp=rH —el Ae + eTWS(m) =+ eTWnH.S"(a:)u +eT Az — €T B, (12)
To continue, consider the Lyapunov-like function
1 1 ~ s 1 ~ ~
L= 552 + §trace{WTW} + 5trace{W3+1Wn+1} (13)
where

W=W-—W* Wait = Wagr — Wiy
If we take the derivative of (13) with respect to time, we obtain
£ = € + trace (WTW) + traco{ Iy, Wi ) (19
Emplaying (9), equation (14) becomes
L= —re?+¢[—H—eT Ae 4+ eTWS(e) 4 T Wny1 S (2)u
+ el Az — €7 Brum] + trace{ WT W} + trace{WZ ,Wnp1}  (15)
which together with (8) gives
L= —re® +&[—eTW*S(z) — W5, S (2)u + T WS(2)
+ €T Wt S (2)u] + trace{WT W} + trace{ W, W1}
or equivalently
L=—re® +ETWS(2) + €T Wpy1S'(2)u + trace{WT W}
+trace{ Wy, Wag ) (16)
Hence, if we choose
trace{ WTW} = —¢eT WS(x) (17)
trace{WZ, ;Wni1} = —€eT Wy 415" (2)u (18)
then £ becomes
L=—-rE2<0 (19)
It can be easily verified that (17), (18) can be written element-wise as
wi; = —€e;s(z;j), Win41 = —€e;s' (zi)u; (20)
for all 4,7 =1,2,...,n, and in matrix form as

W= —£eST(z),  Wny1 = —£€/'S'(2)U (21)
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where

¢ = diagfe, e, ..., €], U = diaguy, us, . . ., uy]
Now we can prove the following Lemma
Lemma 1. Consider the system -

t=—Az + W*S(z) + W3, 5 (z)u

Tm = —AmTm + Brim

n=-rp+rH —eTAe + T WS(z) + T Wpp1 S’ (2)u + eF Az,

—eT Bpum
§=n—H
H = op

e=1T—Tpy
The update laws
W = —£eST ()

W1 = —€€'S'(2)U
guarantee the following properties
o & e[, W, Wit1,n € Leo
o [¢] €L,
o lim;_oé(t) =0, limoo W(t) =0, limy_ Wyy1(t) =0
provided that u € L. )

Proof. We have that £ € Lo, which implies ¢, W, W, 41 € Le. Since u € L, we
get e € Lo, hence H € Ly,. Furthermore, £ = n— H, hence n € Ly,. Since L is a
monotone decreasing function of time and is bounded from below, lim;_, o L(t) = Loo
exists. Therefore, by integrating £ from 0 to co, we have

o 1
/ €f? dt = [£(0) ~ Leo] < 00
0
which implies that |€] € L2. We also have that
£=—rt +TWS(z) + T Wny1 S (z)u

Hence, £ € Lo, provided that u € L. Having in mind that £ € Ly(| Ly and
£ € Ly, by applying Barbalat’s Lemma (Rouche et al, 1977) we conclude that
lim;_. £(t) = 0. Now using the boundedness of u, S(z), S’(z), = and the conver-
gence of £(t) to zero, we have that W, W, also converge to zero. [ ]
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Remark 1. From Lemma 1 we cannot conclude anything about the convergence
of the weights W and W41 to their optimal values W* and W[, ,, respectively.
In order to guarantee convergence, S(z), S'(z)u need to satisfy a persistency of
excitation condition. A signal z(t) € IR" is persistently exciting in IR" if there exist
positive constants Sy, £y, T' such that

14T
Bol < / 2(7)ZT(r)dr < /I, Yt>0
t

However, such a condition cannot be verified a priori since S(z) and S'(z)u are
non-linear functions of the state z.

To proceed further, we observe that H can be written in the form
H=¢ [—Ae + WS(z) + Wp1 S (z)u + Ay, — Brum]
—eTWS(z) — T W, 415 (z)u

Hence, if we choose the control input u to be

u= —[Wn415"(z)] " [WS(z) + Az, — Bmtim) (22)
then H becomes

H=—eTAe—eTWS(z) — " Wpy15' (z)u (23)
Moreover, (23) can be written in the form

e R R (24)
where

€= 2nAmin (A)

and Amin(A) denotes the minimum eigenvalue of the matrix A. Observe that (24)
is equivalent to the condition

H<—cH-—§¢—r¢ (25)
Furthermore,

H=n-¢
hence (25) becomes

n<—en+tcf—r{ < —cen+(c+r)ll (26)

However, in order to apply the control law (22), we have to assure the existence of
(Wn415'(2)]71. Since Wny1 and S'(z) are diagonal matrices and s'(z;) > 0, Vi =
1,2,...,n, all we need to establish is wi,41(t) # 0, ¥Vt >0, Vi = 1,2,...,n. Hence,
wint1(t), 7 = 1,2,...,n, are confined through the use of a projection algorithm
(Goodwin and Mayne, 1987; Toannou and Datta, 1991; Narendra and Annaswamy,
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1989) to the set W' = {winy1 : 0 < € < win41 < w™} where €, w™ are appropriately
chosen positive constants'. In particular, the standard update law defined by (20) is
modified to

—e;s'(zi)ui i wing1 €W or wingisgn(wl, ;) =¢€
and e;s'(z)uisgn(wy, ;) <0

0 if winy1sgn(wf, ) =¢ and
£eis’(wi)uisgn(w}"n+l) >0

27
~e;s'(zi)ui  if winp1 €W or wingaisgn(w, ) = w™ 27)

Win+1 =

and e;s'(z;)ussgn(w}f, ) >0
0 if winqisgn(wf, ;) = w™ and

Eeis'(zi)ussgn(wh, 1) <0

forall 7,7 =1,2,...,n, where the update law is written element-wise for easier under-
standing. The following Lemma presents in detail the properties of the projection
algorithm.

Lemma 2. The update law (20) with the projection modification (27) can only make
L more negative and, in addition, guarantee that wip41 € W' for all i=1,2,.. .. n
provided that win11(0) € W' and w§,,, € W'.

7

Proof. The proof of Lemma 2 is given in Appendix A. |

In principle, the projection modification does not alter ;.41 given by (20) if
Wint1 1s in the interior W/, of W’ or if win4q is at the boundary d(W') of W/
and has the tendency to move inward. Otherwise, it subtracts a vector normal to the
boundary so that we get a smooth transformation from the original vector field, to
an inward or tangent to the boundary, vector field.

Remark 2. Let us note that in order to apply the projection algorithm (27) we need
to know the sign of the unknown parameter wf,,,.

To continue, we need to recall the following well-known Lemma (Desoer and
Vidyasagar, 1975).

Lemma 3. Let ¢ be a Cl~function defined on [0,T), where 0 < T < oo, satisfying

¢ < —cC +a(t) + At)

where ¢ is a strictly positive constant and «(t) and B(t) are two positive funciions
of time belonging to Ly(0,T), that is

T :
/ a?(t)dt < My < oo
0

1 Observe that Win41 can also be confined to be negative. However, the above choice does not
harm the generality.
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and
T
/ B(t)dt < My < oo
0
Under this assumption, ((t) is bounded from above on (0,T) and precisely
2
(o) + /EVMQ} . el

Moreover, if T 1is infinite, then

(1) <es

limsup ((t) <0

t—00

Let us note that inequality (26) with » =1 becomes
N < —en+ (1+ o)l (28)

However, from Lemma 1 we have that |£| € Ly. Therefore, we obtain (1 + ¢)|¢]| €
Ly. Furthermore, observe that 7' can be obviously extended to be infinite. Hence,
Lemma 3 can be applied to (28) with M; = 0 to obtain

limsupn(t) <0 (29)

t—00

Moreover, since H =75 —¢ and H > 0, we have

n(t) > &(t)
or

—n(t) < —€(1) (30)
However, from Lemma 1 we have

lim £(6) =0 (31)

Hence, (30) together with (29) and (31) give

tgrgo n(t) =0 (32)
Furthermore, since H =n—¢, (31) and (32) yield

Jim H(e(t)) =0
which by the definition of H(e) finally implies that

Jim [e(9)] = 0

Therefore, we have proven the following theorem



Model reference adaptive control of unknown plants using ... 443

Theorem 1. The closed loop system
&= —Ar+ W*S(z) + Wy, 5 (z)u
Tm = —Amzm + Bnum

n=—rn+rH — el Ae + TWS(z) + T W, S (2)u + €T Ay,

—eT Byt

U= —[Wpt15(2)] (W S(2)Azm — Brtim]

§=n-H
H =1l
2

r=1

together with the update laws
wij = —Eeis(z;)

—€eis' (zi)ui if wing1 €W’ or winyisgn(wl, ) =€
and e;s'(zi)usgn(wh, 1) <0

0 if winy1sgn(wy,,,) =¢ and

. e (a1 uisgn(wf, 1) > 0

—eis'(zi)ui if wnp1 €W or wingpisgn(wh, ;) = w™
and Ee;s'(2;)ussgn(wh, 1) > 0

0 if winy1sgn(w}, ;) = w™ and

€eis'(zi)uisgn(wh, 1) < 0
forall t,7=1,2,...,n guarantee that

lim |e(t)| =0

t—o0

4. Conclusions

A direct adaptive model reference controller, for unknown non-linear dynamic sy-
stems, that are modelled by dynamic neural networks is discussed. It is shown that
if the dynamic neural network perfectly models the unknown system, then conver-
gence of the control error to zero plus boundedness of all signals in the closed loop
are assured, while parameter convergence is not required. The effect of a modelling

error term on the stability and robusteness of cur control scheme is left as an open
problem.
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Appendix A

Proof of Lemma 2. In order to prove that the projection modification given by (27)
can only make £ more negative, we observe that the update law (27) has the same
form as the one without the projection except the additional term

eis'(zi)u; i winyisgn(w}l, ;) = ¢ and Ee;s'(zi)usgn(wy, 1) >0

R = or if winyisgn(wf, ;) = w™ and Ee;s'(z;)uisgn(wy, 1) <0
0 otherwise
in the expression for wip41 forall 1 =1,2,...,n.

Thus £ is augmented by the following quantity
Ra= Zfeis'(l‘i)uz'@inﬂ
i=1

Furthermore, assume without loss of generality that w¥, ; > 0. Hence, sgn(w
1. Now, having in mind that @in41 = Winy1 ~ w}, 11, we obtain

?n{-l)

n

Ra = €eis' (z:)ui(Wint1 — Wiy 1)

i=1

e Case 1: wipy1 = ¢

Now R, becomes

Ra = Z&ei'sl(xi)ui(g - w;{n+1)
i=1

However, e—wj,,; < 0 and €e;s'(z;)u; > 0 hold by definition. Hence, R, < 0.

e Case 2 w;p41 = w™

In this case we have
n
Ra = Zfeisl(:ﬂi)ui(wm - w:'(n+1)
i=1

However, we have w™ — wf,,; > 0 and e;s’(zi)u; < 0. Therefore again
Ra <0.

Thus £ is augmented in either case by a negative term. Furthermore, to verify that
Win+1 € W'Vt > 0, we examine the sign of w;n41 when w;, 4 reaches the boundary
of W'. With no loss of generality we assume again that wh, 1 > 0.
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e Case 1: winy1 =€

In this case we have

. —€e;s'(zi)ui  if Wing1 € W' or Wing1 =€ and Ee;s'(2;)u; <0
wy 1= .
it 0 if winy1 =€ and Ee;s'(z;)ui > 0

Hence, when w;n+1 = € we have win41 > 0, which implies that wjny1 is
directed towards the interior of W, provided that wj,; € W' and win41(0) €
W

e Case 2: wip41 = w™

In this case

. —€e;s'(z;)u;  if Wpy1 € W' o Wing1 = w™ and &e;s'(zi)u; > 0
Wint1 = .
i 0 if wipg1 = w™ and Ee;js'(zi)u; < 0

Hence, when wp41 € W', we have win41 < 0, which again implies that w;,44 is
directed towards the interior of W/, provided that w},,; € W' and win4.1(0) €
W =
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