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APPLICATION OF A BOLTZMANN MACHINE
TO TIMETABLE DESIGN

KonraD PIWAKOWSKI*, MArREk TROJANOWICZ*

This paper contains a description of the construction of a Boltzmann machine
that can be applied to obtain a class-teacher timetable. In particular, this ap-
proach concerns requirements that are characteristic to primary and secondary
schools. The conditions of asymptotic convergence to an optimal solution are
presented.

1. Introduction

Constructing school timetables belongs to the classical discrete optimization pro-
blems. The earliest research on applying a computer to this problem was started in
the beginning of the 1960s. Even et al. (1975) showed that in a general case this pro-
blem is NP-complete which implies that the automatic finding of the optimal solution
is practically impossible even for small inputs. Recently, among many suboptimal
methods applied to solving this problem one can distinguish heuristic techniques: ge-
netics algorithms (Colorni et al., 1992) and simulated annealing (Abramson, 1987), as
the most promising. Application of a Boltzmann machine leads to highly distributed
processing of the computation. This feature could be very helpful when dealing with
the great computational complexity of the problem. The general definition of the
timetable problem is as follows.

Let U, H, S denote the set of participants (i.e. teachers, classes, educational
equipment), set of “hours” (time slots) and set of classrooms, respectively. Functions
h:U —1IP(H)and s : U — IP(S) define time and the set of classrooms in which
particular participants are able to participate in any meet (because of the fact that
some of the subjects have to be realized in specified classrooms, they can also be
regarded as individual participants). Let L denote the set of meets and function
u: L —IP(U) assign a set of participants to each meet. Constructing the timetable
is based on finding a multiple-valued function r : L — H x S, r(I) = (ra(}),rs(1))
that fulfils a list of conditions, among which the following ones are the most important

a) ¥V r(l)€ (] h(u)xs(u),ie.time and place assigned to the lesson are suitable
leL ueu(l)
for each participant;

b) V.l #l Arp(l) = ra(ly) = u(lh) Nu(ly) = 0, i.e. each participant partici-
lh,l2€L
pates in at most one lesson at the same time.
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In practice there are many other conditions such as avoiding gaps between lessons,
regularity of arranging the number of busy hours in particular days from the point of
view of some of the participants and many others.

The network considered below is defined in such a way that any of the temporary
states can be interpreted as a certain relation defined in space L x H x S. The matter
of implementation is in defining the rule of fixing the values of strengths of particular
links with assigned functions A, s and wu, taking into account conditions (a), (b) and,
if necessary, others, in such a way that at the moment of reaching stability the state of
network will, with great probability, be expressing function r fulfilling all the required
conditions. In our construction we obtained the asymptotic convergence of the global
network state to the optimal configuration and the correspondence between every
stable state and relation r being a partial function, fulfilling conditions (a) and (b).

2. The Network Construction

In the sequel, the following notation is adopted:
e y(i,t) denotes the state of the i-th unit at moment ¢,

o y(t) = (y(1,t),y(2,1),...,y(n,t)) denotes the global state of the network at mo-
ment ¢,

ce y(t, ) = (y(1,1),¥(2,1), ..., y(i —1,t), 1 —y(i,t), y(i + 1,t),...,y(n,t)) denotes the
neighbouring state, in which only the state of the i-th unit is different from that
one in state y(t),

o w(7,j) denotes the strength of connection of the output of unit j with the input
of unit 1,

e E(y,t) = Zy(i,t)y(j,t)w(i,j).
i
By (sequential) Boltzmann machine we mean the neural network that fulfils the
following conditions:
e y(i,t) € {0,1} for each unit i at each moment t,
o w(i,j)=w(j,i) for each pair of units i, j.

e In every step ¢ arandom choice of one unit takes place, and then its state is being
changed into the opposite one with probability

1

where i is the number of a chosen unit, A(¢,t) = E(y*(¢,7)) — E(y(¢)), and ¢:IN —
IR+ is a decreasing function.

In practice, the network specified in this way, for t — oo, ¢(t) — 0, always
reaches a stable state y, where the state function E(y,t) reaches its local maximum
and for ¢(t) = ¢ = const, we have

lim lim p(y(t) € Opt) =1 )

c—0 t—o0
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where Opt denotes the set of these states y, in which E(y) reaches the global ma-
ximum (Aarts and Korst, 1989).

Assume the following notation:

K = {k1, ko, ..., kxo} — set of classes,

N = {ny,ng,...,nno} — set of teachers,

S = {51,852, ..., 550} — set of classrooms,
D ={dy,ds,...,dao} — set of weekdays,
G ={91,92,---, 940} — set, of hours,
L={l,ls,. ., lio} — set of lessons.

Assume that the number of hours gg, in which meets can take place is the same
every day. None of the weekdays nor hours are preferred. Duration of each hour is
the same and hour g¢; + 1 follows directly hour g;. With every lesson ! € L there
is assoclated a set of participants u(l) = (n(l), k(1), s*({), p(1)), where n(l) € N,
k() € K, s*(1) C S, p(l) is the name of a subject. Set s*(I) denotes a classroom
where a given lesson can, but does not have to, take place and because of that it is
not a participant accordingly to the definition presented in the introduction.

In this case, the crucial point of constructing the timetable is in finding the
function 7 : L — SxDxG (r() = (s(1),d(]),¢9(1))) which fulfils the following
conditions:

n(l) = n(l') = d(l) # d(I') V g() # g(I') (3)

\
121 €L
i.e. no teacher participates in two lessons at the same time,

v k() = k() = d) #dl) Ve(l) # 9(l') (4)

I£VEL
i.e. no class participates in two lessons at the same time,

s(l) = s(l') = d(l) # d(') v ¢(1) # g(I') (5)

\
1A €L
i.e. no classroom is used by two classes at the same time,

7 s est) (6)

i.e. lesson takes place in one of the permitted classrooms,

R Hz e LIk(l) = k Ad(l) = d}[ = j{l € Lik(l) = k A d(l) = d'}' (7

i.e. each class has the same number of lessons every day — for simplicity we assume
that the number of days divides the sum of all the lessons of any class,
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kD =k =kAd)=dI)=dAg() =L Agl') =1
Yo v 2, (=R =knd0) = dt) = dAg) =k Ag(t) = )

< h <y k(") =kAd(l")=d "=
= (v i<h<i= 3 kI=kAd)=dAgl")=g) ()

l.e. classes do not have breaks between meets — i.e. (gaps).

In addition, function r should:
1) minimize the number of gaps between the meets of particular teachers,

ii) assign of the same subjects to the most distant days of the week for each class
(It often happens in practice that lessons of the same subject are being joined
together, but we omit such a case in our consideration — however, it could be
regarded in our approach without any difficulties).

Now we are going to present the network that is responsible for finding the func-
tion r fulfilling conditions presented above. Each element (I,s,d,g) € LxSx Dx G
such that s € s*(I) corresponds to exactly one unit which will be denoted by n; 4,4 ,.
The strength assigned to each connection is determined by the following formula:

8

Wt .9, Mt drg!) = D Wil R digy Mt ar,dg7) (9)
=1

where components w; are denoted in the following Tab. 1:

The global state y(t) of so denoted network determines relation » C
LxSxDxG ie. (I,s,d,g)€r iff y(nisa,,t)=1. Of course, we expect that after
reaching stability of the network the relation r will be function 7 : L — Sx Dx G

and will fulfil conditions (3)—(8) and (i), (ii). The analysis presented below shows
partial meeting of these exceptions.

Property 1. If parameters of the network (a,b, ..., f) satisfy the following conditions:

a>0,e>0,cne < —(a+ 3e) : (10)
b, cki, Cna, d < —(a + 2e) (11)
£<0 (12)

then every state y corresponding to a local mazimum of the state function E(y)
determines a partial function r: L — Sx D x G fulfilling conditions (3)-(6).

Proof. (Because of its technical character, we present only a sketch of the proof).

1) We are going to show that state 'y, where the time conflict of any teacher
takes place, cannot correspond to the local maximum of function E(y). We choose
a teacher (n), day (d) and hour (g) so that the number of lessons m, in which
teacher n takes part at the same time on day d at hour g, is maximal (for all triples:
n, d, g), while g is the earliest hour that could have been chosen (when, in many
cases, the time conflict of a teacher takes maximal value). We choose a random active
unit 7,4, such that n(l) =n (at least two such units exist if the time conflict of
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Tab. 1. Description of component strengths of links of network.

wi(ni,s,d,9; nl',S’,d’,g’)

Comments

a ffl=lAs=sAg=g And={d

0 otherwise

a > 0; each unit has small positive
autoconnection. If any other unit,
which is connected by negative con-
nection, is active, then it becomes ac-
tive itself.

Ll

iff l=I'A(s=s'Vg=g¢g'vd=d')

o

otherwise

b < 0; at most one unit correspon-
ding to a given lesson should be ac-
tive.

HE k() = k(U)Al#VAg=g' Ad=d'

Ckl

0 otherwise

cxi < 0; connection tends towards
avoidin% time conflicts of particular
C

classes (cf. (3)).

Cna 1Iff 'n.(l):n(l')/\l#l'/\g:g’/\d:d'

0 otherwise

¢na < 0; connection tends towards
avoiding time conflicts of particular
teachers (cf. (4)).

csa iff s()=s()'Al£UAg=g'Ad=4d

0 otherwise

—| — | | —

cse < 0; conmection tends towards
avoiding time conflicts of particular
classrooms (cf. (5)).

au

MR = k) ALAT Ad=d' Ag=g;
Ag' =g; N|i— 5| > AvLes(k)

0 otherwise

d < 0 AvLes(k) denotes average
number of lessons of the class k du-
ring one day. Such a connection
leads to regularity of arranging meets
in the week (cf. (7)) and to exclusion
of gaps between meets of particular

classes (cf. (8)).

™

iff a()=n(NAl#UAd=d Ag=yg:
AN =giANli—gi=1

0 otherwise

e > 0; connection tends towards in-
creasing the probability of construc-
ting the timetable where teachers
often have meets following directly
each other (cf. (i)).

(o]

iff k() = k() AL£T Ap(l) =p(l")

otherwise

f(d,d")
0

f(d,d") < 0; function f denotes how
much 1nadvisable it is for one class
to have lessons of the same subject
on days d and d'. The closer day d
approaches (in time) d’, the less value

f s (cf. (ii)).

a teacher took place). Let us show that the change of state of such a unit will cause
a positive increase of the state function AE > —((m — Deng + a4+ (2m — 1)6) >0
(by the term of (10) and m > 2).
2) Based on 1) in every state y corresponding to the local maximum E(y) the
sum of positive stimulation of an active unit does not exceed a +2e (only a and e
strengths are positive). Now it is easy to show the fulfilment of conditions (3)-(5)
and that r has to be a partial function (i.e. each lesson corresponds at most to one
active unit) on the basis of assumption (11).

3) Fulfilment of condition (6) is obvious.
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Property 2. If the parameters of network (a,b, ..., f) satisfy conditions (10)-(12),
y s the state of the network corresponding to a local mazimum of the state function
E(y) and relation r assigned by state y is a total function r: L — Sx Dx G, then
r satisfies conditions (8)-(8).

Proof. Fulfilment of conditions (3)—(6) results from Property 1. Fulfilment of condi-
tions (7) and (8) due to the assumption that r is total function, is guaranteed by the
component we of the strengths of links. It causes exclusion of the situation where

a certain class k participates in meets on the same day d at two different hours by
g,9' “distant from each other” cf. not less than AvLes(k) (Tab. 1).

Thus, each class & participates in at most AvLes(k) lessons a day. Meeting the
assumption that r is a total function, fulfilment of condition (4) and the assumption
that the average number of lessons AvLes(k) falling on one day for each class & is
integer, we obtain that each class k participates precisely in AvLes(k) lessons a day,
which implies condition (7). Fulfilment of conditions (8) is a direct consequence of
condition (7) and of the above considerations. [ |

Property 3. If parameters of the network (a,b,...,e) satisfy conditions (10), (11)
and

f=0,a>e (13)

then, if there ezists a total function r: L — Sx D x G fulfilling conditions (3)-(8),
every state of the network y corresponding to the global mazimum of the state function
E(y) determines such a function r.

Proof. We presented only the outline.

1) Based on Property 1 the relation determined by the state corresponding to the
global maximum of the function E(y) has to be a partial function fulfilling conditions
(3)-(6).

2) If f = 0, the relation r, corresponding to the state of network, is a partial
function and conditions (3)—(5) are fulfilled, then links of the negative strengths do
not influence the value of the state function.

3) If a > e, condition (3) is fulfilled and links of the negative strengths do not
influence the value of E(y), then the state function takes on the greater value the
more units are active. Of course, there can be no more than |L| active units —
otherwise negative links w; would have influenced the value of the state function.

4) Immediately from 3) it follows that r is a total function, and then, because
of Property 2, conditions (7) and (8) are fulfilled. [ |

Remark 1. Taking into account requirements (i) and (ii) this is realized by introdu-
cing component strengths of links w7 and ws. Establishing sufficiently small values
of parameters f(d,d’) for proper pairs of days (d,d’) is it possible to assert a requi-
red time distance between lessons of the same subjects for each class, in every state
of the network corresponding to the local maximum of state function. Unfortunately,
we cannot formulate a similar property for condition (i).
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3. Concluding Remarks

Properties presented above lead to the conclusion that if parameters a,b,...,f are
properly chosen, then every stable state of the network corresponds to the timetable
without any time conflicts, but some of the lessons might be omitted. In that case,
from the point of view of particular class there is no guarantee that there are no
gaps between the meets or that there is an irregular distribution of meets in week.
On the other hand, Property 3 and (2) guarantees the construction of a complete
timetable satisfying conditions (7) and (8) with arbitrary great probability (provided
that such a timetable exists) with a sufficiently small value ¢(t) = ¢ = const and time
of networks functioning long enough. In practice, despite the asymptotic warrants,
application of function ¢(t) = ¢ = const is inefficient. With great values ¢ the
network behaves completely chaotic, with small ones the stable state corresponding
to the local maximum of the state function is being quickly determined and further
changes leading possibly towards the global maximum occur too seldom. The crux
of the Boltzmann machine is in application of the decreasing function ¢(t) — 0, that
gives the best practical result. The slower c(t) decreases the longer time is needed
to reach the equilibrium, however, the probability of constructing the timetable that
fulfills all required conditions increases.

The neural network described above was implemented on a sequential computer
(IBM PC 486). The largest input data were 12 classes, 16 teachers, 14 classrooms,
with the total number of 300 lessons per week. Results of simulation confirmed the
presented properties and showed the possibility of applying of this idea in practice.
However, the satisfying efficiency for real (even small) data can be reached only by
application of specified, concurrent hardware realizing the artificial neural networks.

Finally, we would like to list the most important, in our opinion, advantages of
the approach:

— The construction is easy to modify. Therefore, additional requirements such as:
time restrictions of particular teachers, grouping some of the meets, etc., can be
met.

— Description of the method (i.e. list of units and connections) is declarative rather
than algorithmic, so that experiments can be carried out not only by programmers.

— Because of the nature of the Boltzmann machine, computations can be carried out
in a distributed environment.
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