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APPLICATION OF SWITCHED-CAPACITOR CIRCUITS
TO REALIZATION OF NEURON-LIKE BINARY
HAMMING CLASSIFIER

ZpzistaAw KORZEC*, Tomasz KACPRZAK*

In the paper, based on the literature and our own research, a concept of applica-
tion of switched-capacitor circuits for designing neural networks with constant
weights has been presented. The solution is attractive, especially in view of
designing simple classifiers and pattern recognition systems implemented in a
semiconductor very large scale technology (VLSI).

1. Introduction

One of the important areas of technology where artificial neural networks have been
successfully applied is the classification and pattern recognition (Lippman, 1987).
The main task of the classification is producing an output signal — sometimes called
“decision” — telling us which of M exemplar patterns stored in the system is most
similar to the unknown, usually distorted and noise-corrupted input, consisting of
N elements (sometimes called features). The classical classifier is composed of two
distinctive stages of information processing (Robinson et al., 1992). The inputs of
the first classifier (see Fig. la) are symbols representing N elements of an unknown
pattern (input). These symbols enter the system sequentially. Next they are enco-
ded and the so- called simililarity coefficients to each pattern class are calculated.
These coefficients, also called matching scores, are recognized as a measure of simi-
larity between the input pattern and each of the exemplar patterns. The similarity
coefficients are encoded and transferred sequentially to the next stage where the co-
efficient of the largest value is chosen. The classifier has only one output signal whose
value corresponds best to the input pattern at the given time moment. The classical
systems were usually not equipped with adaptive ability, i.e. the system parameters
were constant during operation.

The classifier based on the neural network paradigm has its main part similar
to the classical classifier, but its operation is quite different (see Fig. 1b). In the
neural classifier N elements of the input pattern are introduced to the first stage in
parallel, i.e. the whole set at the same time. Also, all the input and output signals
are processed in a parallel mode. The second stage has a separate output for each
class. The parameters of the system (synaptic weights) may be constant, established
previously while designing the system. However, the system can modify the weights
using the output signals corresponding to the actual input. In neural classifiers no
assumptions (or at least very weak assumptions) on the probability density of patterns
(classes) and inputs are required.
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Fig. 1. The classical classifier (a), and the classifier based on neural network
paradigm (b).

Neural classifiers can operate in a continous-time mode or binary mode, accor-
ding to the representation of signals. Also, according to the training method, one can
distinguish supervised or unsupervised learning procedures. The main positive aspect
of neural network paradigm applied to classification is the ability of parallel proces-
sing of information, which is especially important in the case of real-time operation
in such technology area like telecommunication, medical and/or technical diagnosis,
automatic control, robotics and many others. The neural network paradigm and its
application belong to the most important and promissing areas of high-technology
solutions for the foreseeable future.

In this paper, based on the achievements discussed in the literature and on our
own experience, we present a simple concept of switched-capacitor neural binary clas-
sifier circuits for realization in the semiconductor very large scale integration techno-
logy. The paper has the following structure. In Section 2 we present an overall concept
of a binary Hamming neural network for classification of distorted input codes (input
patterns). In Section 3, based on (Cilingiroglu, 1991), we summarize the architecture
of capacitance synaptic matrix as a fundamental subsystem for the binary classifiers.
A simple Hamming classifier constructed with small-scale integrated circuits, treated
as a workhorse in our analysis, is presented in Section 4. Experimental results are
summarized in Section 5. In Conclusions we discuss both the advantages and the
disadvantages of the concept presented here and we give some recommendations for
future work.

2. The Neural Hamming Binnary Classifier

The Hamming neural network,which has the simplest possible architecture from
among well known ones (Lippman, 1987), is very well fitted for neural classification.
This network makes performing effectively even a very complicated classification po-
ssible, using inputs of different code lengths. The classifier converges to the stable
points previously stored and can be easily realized in VLSI technology.
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The up-to-date VLSI realizations of neural networks can be divided into two
groups. The first group comprises the circuits which are based on the charge technique,
while the other — those based on current-mode technique. Typical examples of the
first group are charge-coupled devices and switched capacitor circuits. As regards
the switched capacitor circuit approach, one can point out multi-phase controlled
blocks cooperating with microprocessors and digital memory. This technique enables
us to mix analog and digital approach in one chip. As a circuit of the current-mode
technique operational transconductance amplifiers and voltage-to-current blocks are
usually used. These circuits are used mainly in the output part of the classifier.

In this paper we present an example of application of the switched-capacitor
approach to realization of the Hamming neural network. The Hamming network
(Lippmann, 1987; Robinson et al., 1992) is composed of two subnetworks, as shown
in Fig. 2. The exemplar patterns are encoded in the interconnection weights between
N inputs and M intermediate nodes at the top of the lower subnet. For the input
pattern presented by the vector z(z1,zs,...,zn) the matching scores are calculated
and these values are passed to the upper subnet called “MAXNET”. The “MAXNET”
selects the exemplar pattern with the maximum matching scores. The matching score
(or similarity score) is defined as the number of matching elements between the input
code and each of the exemplar patterns (Robinson et al., 1992):

N-1
Si(@)=N—= |lzi—wij| =N —h(zw), 0<j<M )
1=0

where x; is the element of the input code (input vector), wi; — the element of the
j-th exemplar vector, and h(z,w) is the Hamming distance for the corresponding
exemplar pattern. The Hamming distance, by definition, is a number of non-matching
elements. The maximal value of S is Smax = M for a perfect match and the minimal
value Smin =0 is when z and w are completely different. In the case of the binary
Hamming classifier which operates with z; € {0,1} and w;; € {0,1} the Hamming
distance can be expressed by the digital exclusive-or operator:

N-1
h=Y 2@y, 0<js<M (2)
=0
and matching scores are
N-1
Si=N-=Y z@uw; 0<j<M (3)
=0

One can find various software and hardware implementations of the Hamming net-
work. We shall concentrate mainly on the realization of the switched-capacitor tech-
nique.

3. Switched-Capacitor Neural

The neural network architecture can be implemented as an integrated circuit by using
analog, digital or mixed analog-digital structures (Korzec, 1994). The advantages of
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Fig. 2. The Hamming neural network.

an analog implementation are simple basic blocks and communications (interconnec-
tions). This in turn results in a small area and thus larger networks on a single chip.
However, the storage of analog weight values is “ifficult and also the noise immunity
is worse than in digital circuits. The digital structures are more straightforward to
design, their testability is better than in the analog structures and storage of the
weight values is easy in the digital form. The interfaces to the digital coprocessors are
also simpler. The mixed analog/digital, or switched-capacitor/digital implementa-
tions can join together the positive properties of both techniques. The weight storage
and input /output interfaces can be digital, but the neuron and synapse structure
can be analog or sampled analog circuit (SC circuits).

The discrete-time mode functioning of one neuron cell of an exemplary network
shown in Fig. 3 is given in the form:

N-1
WnT) = fy | 3 wie; (nT —T) - @ (4)

j=0

where z; represents the input signal, f, is non-linear transfer function (e.g. signum
or sigmoid), w; is a synaptic weight, y is the output signal, and & is the threshold
of neuron excitation. The simplest possible circuit implementation in the switched-
capacitor (SC) technique is shown in Fig. 4. This circuit represents an SC realization
of summing operation amplifier with the equivalent SC resistors

1
7.C (5)

Reg =
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Fig. 4. Switched capacitor implementation of the basic neural network.
The excitatory synaptic weigths are described by

=G
wj = cr (6)
while the inhibitory synapses
—C*
wi = 5 (7)

The inhibitory inputs which are characterized by a negative phase of the signal are
usually realized with the equivalent SC circuits presented in Fig. 5.

In this technique it is rather difficult to realize fully connected artificial neural
networks of a large size. A much more convenient approach is to use the circuit
given in Fig. 6, which is a synaptic capacitor array (Cilingiroglu, 91). Each synaptic
connection is represented here by two capacitors Cj; and Cf;.

The bottom plates correspond to the columns which are switched during the successive
clock phases to the input voltages u; or to the reference voltages Ury and Ugs. The
upper plates of these capacitors correspond to the rows and are connected to the
input of a two-stage comparator. The capacitor C, represents stray capacitance of
the rows. Most of the SC network analysis methods involve nodal analysis or modified
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Fig. 5. The non-inverting and inverting parallel SC resistor equivalent circuits.
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Fig. 6. Synaptic capacitor array for neural-like network realization (Cilingiroglu, 91).

nodal analysis based on the nodal charge equation (Korzec and Ciota, 1987). For one
node and for each clock phase, we can write the nodal charge equation in the form

or(t) = am () + go(t), ' >t (8)

where g(t') is the charge left at one particular node at equilibrium, gar(¢) is the
charge from the previous phase period, referred to as memory charge, and qc(t) is
the charge injected, designated as the contribution charge.

The circuit in Fig. 6 is controlled by a three-phase clock. During the first phase
the charge collected in the raws can be expressed by (Cilingirolu, 1993; Biakezak,
1993)

Q@) = UrCp + f; WUr—U3) + 3 Cog(Ur — Una) o)

i=1
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The feedback loop of the first stage inverter is opened at the end of the phase ®;.
Each row is in its high impedance state holding the collected charge. During the
second phase the voltage Ury is connected to the columns possessing capacitors Cj;
while the input signals are connected to the columns possessing C;;. Due to the
capacitive feedback between columns and rows the voltage U, changes from Up to
Ur + Uy . During the second stage the charge in the rows is

Qi(®2) = (Ur + Uy)Cp + Za—ij(UT + Uy — Ur2) + Z Cij(Ur + Uy — Uj) (10)
j=1 ji=1

Equating formulae (9) and (10) yields

571 (Cis = Cis)Us = [V Sy Cis = Ura Sy g
Cp+ Y71 (Cij + Cij)

Uy = (11)

The output voltage Upr of the first stage of the comparator, which is dependent on
Uw, is inverted and gained in the second stage of the inverter playing the role of the
comparator with enabling input. During the third phase the signal is written at the
output and is left there up to the third phase. The output voltage Ugsr referenced
to the power supply Upp can be described by the formula

Upp

U a ol
orr Z(C” Cij)Uj = |Ur1 Y _Cij = Urz »_Cij (12)
ji=1 j=1

where f, is an approximated function of the comparator (similar to the unit step
function).

4. Design Considerations

When we compare eqn. (12) with eqn. (4), which describes the functional operation
of the artificial neuron, we get the following relationships

yi = gf)’; (13)
b=k (14)
wij = @ (15)

i = UDD UDD (16)

where K is a positive constant used for scaling the synaptic capacitances with respect
to the weigths.
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Since all the voltages, excluding only the voltage Uy, are referenced to the ground
having the lowest potential in the circuit, the values of excitations x; and y; will
have positive values in the range from 0 to 1. Synaptic weights are represented by
the difference between capacitances C;; and Cjj, and therefore their values can be
positive and negative. Using the capacitors Cj; for excitatory inputs w;; > 0 or the
capacitors C;; for inhibitory inputs w;; < 0, one can reduce by two the number of
the capacitors in the circuit. However, during the VLSI fabrication of the capacitor
matrix still some stray capacitance Cpn is present as a result of the overlapping
effect of rows and columns. Taking this capacitance into account one can assume for
excitatory inputs Ci; = Crmin

Cij = Kwij(+) + Cmin (17)
where wjj(4) > 0, and for the inhibitory inputs Cij = Crin

Cij = —Kwij() + Crmin (18)
where w;;(-) <0.
Given Chpin and K one can determine the synaptic capacitances for the respective
weights w;;. The minimal value of the capacitance is easily determined when the area

of the overlapping of rows with columns is known. Scale factor K depends on such
parameters like values of the weights and the number of synapses of each neuron.
It is seen from formula (16) that the neural network described here is “self-

thresholded”. For given synaptic capacitances the values of these “own” thresholds
are

UR1 mm URI - UR2
q>i U Z ’ll)”(+) + Z w’.?( ) +m K UDD (19)

This equation has two independent parameters: Ugr; and Ugr2. Changing their values
one can establish the value of the threshold for all the neurons. The “self-thresholding”
feature has this dark side that thresholds cannot be set up individually for each
neuron. To avoid this drawback, a good way is to eliminate the common threshold by
nullifying reference voltages and to introduce the separate input (two more columns)
with unit excitatory value and with the weights of value ®; for each neuron. In
practice, at least one layer with “self-thresholding” is used while the weights in the
other layers are established individually.

The reference voltages Ur1 and Ugs in eqn. (19) can be used for changing the
value of the threshold. Treating these voltages as additional signals:

Ur1
= 2
S1 UDD ( 0)
Ur1
= 21
2= 5 (21)

eqn. (19) can be written in the form:

D =511+ s2(l —m) + A(s1 — 52) (22)
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where m is the number of input words, ! is the number of “ones” in the input code,
and A = mCuin/k. The difference between the thresholds for different values of |,
namely [ =1, and [ = [}, yields:

B(l) — @(la) = (51— s2)(ly — la) (23)
Equation (22) can be transformed to the form
A+l o
S A rmoI Axm-l (24)

If one assumes that the values of [ and ® are treated as parameters, then one can
obtain a set of straight lines which divide the plane s; — s; into two parts: for the
points lying below the line the excitation of the network is transferred, i.e. the input
is recognized as a member of the class suitable for the given neuron, while for the
points lying above the line the excitation disappears which means that the neuron
does not recognize the input. For different values of the threshold and for constant
number of “ones” present in the pattern code these lines are parallel while for different
numbers of “ones” and constant threshold these lines intersect at one point. One can
determine the coordinates s and s} of this intersection assuming that s; + s = 1:

A+m-—nh
*__ T 9
51 A+ m (25)
A+h
x_ T 9
*2 244+ m (26)

Taking into account that the value of the threshold & can be withim the range
from the lower value ®, to the upper one ®, for which the network recognizes input
codes and that the patterns codes can have different numbers of “ones”, one can
determine the area of correct operation of the classifier (see Fig. 7).

452
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Fig. 7 Graphical determination of the correct operation area of the classifier.
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The neural network with capacitance synaptic matrix (array) makes variations of
synaptic weights possible through using different matrices. In a general case, the
topology of the network is determined by connections existing outside the capacitance
matrix. However, if one realizes the connections of each neuron with the others
and with itself, then the topology of the network can be varied by exchanging the
capacitance matrix only (non-existing connections have zero weight values).

5. Practical Considerations

In order to face the main problems which accompany the practical realization of neural
networks in the SC technique, a binary Hamming classifier with discrete small-scale
integration digital elements has been designed and tested. The classifier has four
neurons with five common inputs (see Fig. 3). This classifier performs calculation of
the Hamming distance between the input signal and the previously stored patterns.
As a result of this calculation, the class which has a minimal Hamming distance is the
winner. The network realized here is a variant of the Hamming neural networks where
only these input codes are classified for which the Hamming distance is not greater
than some value h. This enables us to classify the codes with errors present on h
positions or not to classify them if this distance is greater than h for all the patterns.
For the network of Fig. 3, five-bit input signal makes it possible to distinguish four
separate classes of codes with the minimal Hamming distance equal to three. This
enables us to classify inputs with the error present at one position. An output signal
found at one output means that the respective input signal has been classified as a
member of the set corresponding to this neuron. Each neuron has its pattern class
stored in its synaptic weights, namely weight w;; > 0 for z;(:) = 1 and w;; < 0
for z;(¢) = 0, where ¢ is the number of patterns and j is the number of positions
in the input code. This network makes the classification of the input codes with no
more than one error. Changing the threshold one can establish the number of errors
recognized by the given neuron. The idea of this classification is shown in Fig. 8.

The neural network is controlled by the three-phase clock presented in Fig. 9.
This clock is composed of an oscillator, rewritting subcircuit, counter and logic. The
main part of the neural network is also realized with discrete elements. It is composed
of a capacitance matrix, switches, two-stage comparators, potentiometers and as block
used for signalling the decision.

The set of switches PA. . PE is used for determination of the value of input signal
(binary code). Connecting the power supply to the column of capacitors by means
of the given switch coresponds to “logic one” while connecting to ground coresponds
to “logic zero”. The group of analog switches (unit 4066) is used in the comparator
circuit and for switching the capacitors. The capacitance matrix is built of the discrete
capacitors of values Crax = 75pF and Cpin = 10pF. Capacitors Cj; = Crpax and
C'_z‘j = Cnin make the synaptic values w;; > 0 in the case of excitatory signals while
the capacitors Cj; = Cpin and C'_i]- = Crmax make the synaptic values wi; < 0 in the
case of inhibitory signals.

The state of the first stage of comparator is balanced during the first phase with
the value of logic threshold voltage Ur. The second stage of the comparator built of
the flip-flop D440449 is controlled by the signal of the third phase. This signal rewrites
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Fig. 8. Hamming classifier realization using discrete small-scale integration elements.
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Fig. 9. Three-phase clocking circuitery.

inverted results at the output. The output block has light diodes with resistors and
power inverters of type 4049. The resistors limit the currents flowing through diodes.
The power inverter works as a buffer with high fan-out factor. The high voltage level

at the input turns the light diode on, which signals the excitation present at the
output of the respective neuron.
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Given the capacitor values of the matrix one can determine the design constants
K and A from the formulas

I{M:GE)pF A=m

'Ll)ij

Using the values K and A one can calculate the slope of the set of straight lines
described by the formula (24):

A+l {073 for I=2
A+m—1" | 136 for [ =3

The operating point for correct work of the neural network must be chosen from the
central part, i.e. h = 1.5 (see eqns. (25) and (26)). Hence,

A+h
~ 0.65, Sher = Tatm ~ 0.35

. A+m-—h
1sr — 1a+m

In order to verify whether the network can recognize input codes it is necessary
to show that the minimal required change of charge AQ 1n the circuit for different
input codes is greater than the change of the circuit error charge AQp. The change
AQ can be calculated from the formula (see also eqn. (11))

AQ = K|wij|maxUpp (27)
ko by

If we set ky =k, = 1, then we obtain
AQ = (Cmax - Cmin)UDD (28)
For values of capacitances Cpax = 75 pF and Chin = 0.13Crax = 10 pF we have

AQ =0.87CmaxUpp

The biggest dominant error for the circuit described above results from the im-
perfection of capacitors. During the second phase the voltage of rows of value wu,
changes. This voltage multiplied by the capacitance of the rows gives the change of
the charge @4, which is the difference between the charges present in the rows when
the voltage u, = 0 is applied (during the second phase). From formula (11) we
obtain

5

5 5
Qa= (Cij—Cij)U; — | Ur > Cij—Urs Y Cj (29)
j=1 j=1

i=1

Taking into account the worst case for which at all inputs we have the power supply
U; = Upp and Ur; = Ugrz = 0.5Upp one can calculate the change in charge caused
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by the tolerance of capacitors, namely

5
AQb =Upp U(C?) Z(Cij - aij) =Upp @\/m(cr%ax - Cx%in)
j=1
a(C)

~ Upp C VMCrax (30)

In the system realized here the capacitors with 5% tolerance were used, hence

AQy = 0.11CmaxUnp (31)

From the above calculations one can conclude that the smallest change of charge
required in the circuit is several times greater than the value AQ, therefore the
network should properly classify the input codes.

Another crucial parameter for proper functioning of the network is the time
required for recharging the capacitors. During each phase of the clock the respective
capacitors should be recharged completely. The elements which limit the current in
the circuits are potentiometers P1 and P2. They can be regarded as voltage sources
with varied output resistance. Each potentiometer is connected to the half of the
total capacitance of the matrix during the first phase as well as during the second
phase of the clock. For the worst case, i.e. when the values of the potentiometers are
in the mid of their ranges, the time constant of charging the capacitor is given by

5

T=05R,05 ) (Cij — Cij) » 2 pis (32)

j=1

As the time duration of one phase is Tr = 28 us, therefore with time constant = =
2 us, the capacitors will be completely recharged. However, when we increase the
total capacitance of the matrix (by an increase of the number of inputs) the voltage
sources with reduced output resistance and/or lowering the clock frequency should
be used.

6. Experimental Results

In order to test the classifier, the area of correct performance on the plane s; —s; was
first determined based on measurements. Next, the network was tested under different
values of the reference voltages. During the test the input words with h errors were
presented at the input and the reference voltage at the fired output has been noted.
This test provides graphical representation of the set of lines which determine the
limits of excitations.

Figure 10 shows two exemplary families of these characteristics — one for the
neuron with the pattern 01011 (for ! = 3), the other one for the neuron with the
pattern 00110 (for [ = 2) and different number of errors (h is varied from 0 to 5).
Each line divides the plane Ugr; — Ugs into two areas: the lower area transferring the
excitation, and the upper one where the input signals are blocked, i.e. not transferred
to the output. The lines of this two families are parallel and their slopes are 0.71 for
=2 and 1.34 for [ = 3, respectively. These results are very close to these calculated
from the theoretical formulae (0.73 and 1.36, respectively).
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Fig. 10. Graphical representation of the set of lines which determine the limits of
excitations.

The network realized should recognize codes with at least one erroneous position.
In order to face the problem of sensitivity of the network to the tolerance of the circuit
parameters, measurements of input codes with one and two errors under the greatest
displacement of voltages have been taken. The results are given in Fig. 11, where the
margins resulting from the circuit tolerance can be observed. In the case when the
margins overlap one another, the area of the network correct performance vanishes.
Accordingly, the neural network cannot recognize the input codes. If the reference
voltages Ur: and Ugz take values from the dashed area, the code is recognized with
at least one error. Decreasing the threshold of each neuron one gets the network
which recognizes input codes with more than one error. If the threshold is lowered
to the level the network is able to recognize codes with more than two errors (when
five-bit input is assumed), then some input codes can be properly classified by more
than two neurons simultaneously.

For the area of the correct performance shown in Fig. 11, one can determine its
centre point P;.. The coordinates of this point are Ug; = 6.9V and Ugps = 3.1V,
which agree with the values calculated theoretically, namely: s{Upp = 6.5V and
s5Upp = 3.5V, respectively. The response of the neural network for this centre point
has been tested. The results obtained are shown in Fig. 12, as three-dimensional
excitations transferred to the outputs. Codes properly recognized are denoted in

- black colour, while the white colour represents codes with one error only. Eight codes
have not been classified to any class because their distance from the patterns is greater



Application of switched-capacitor circuits to realization of ... 497

10
ha2,ies  f
9 Wa
P
8 _ : Z
side margins
7 ~
6 area of correct , +
25 classification ~_ _* _ ?
§ -
4 L
Psr
b
3 het, =2
[, ]
4
h=2.l=2 ,,‘/n:m-a
= AT
c ' v ¥ b | v v L L) ¥
o) 1 2 3 4 5 6 7 8 9 10
Ur2 [V]
Fig. 11. Area of correct performance with the central point Psr.
Xy X3 X, %3
x 0 o1 11 10 00 0 11 10
5 0 Xy 0
1 00 1 00
T i
“H D1 ~dl
X, Xy 2
1 = 1
ol
10 ] 10
‘/ ” >
’ 1 L
a) b)
Xy ﬂ: X, X3
00 01 11 10 o ;1 11 10
Xg (] ] a
1 00 1 1 oo
01 s ' < 01
X2 % =
n 1 1}
J/A 1A . v
10 10
e 121 :
c) d)

Fig. 12. Three-dimensional representation of the classifier responses for
the pattern codes: a) 01011 b) 10101 ¢) 11000 d) 00110



498 Z. Korzec and T. Kacprzak

than one. Each neuron does classify code stored in its weights and five codes with one
error, i.e. it recognizes totally eight codes. Four neurons recognize 24 codes, which
gives with 8 codes not classified to any class, the total set of 32 combinations of
five-bit inputs.

7. Conclusions

Switched-capacitor circuits, beeing mixed analog/digital circuits, found many intere-
sting implementations among which neuron-like systems are one of the most intere-
sting. The SC technique based on the modern CMOS technology meets very well the
requirements of the VLSI implementation, giving the possibility to realize neuron-like
systems with millions of neurons placed on one chip. The Hamming classifier is one
of the interesting examples of the SC technique application in neuron systems. The
designing methodology presented in this paper and the measured results form the
basis for further developement of the Hamming classifiers. Future work should be
concentrated on the VLSI implementation with possible on-chip learning.
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