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APPLICATIONS OF NEURAL-TYPE STRUCTURED
NETWORKS FOR SOLVING ALGEBRAIC
MATRIX EQUATIONS AND COMPUTATION OF
THE DRAZIN INVERSE

AnDRrzEJ CICHOCKI*, TapEusz KACZOREK**

An overview of the methods of solving algebraic matrix equations and com-
putation of the Drazin inverse of a singular matrix with the use of neural-
type structured networks is presented. Algebraic matrix equations of the form
A1XB1 4+ A2XBy + ...+ AnXBn = C and the algebraic Riccati equation
ATX + XA- XWX +Q =0 with one unknown matrix X and the matrix
equations AX — Y B = C with two unknown matrices X, Y are considered.
An extension for polynomial matrix equations of the form AXB = C is also
presented. The presented algorithms are based on the gradient optimization
technique and the standard back-propagation learning algorithm.

1. Introduction

Recently, there has been great interest in massively parallel computing for va-
rious linear algebra problems, specially those of high computational complexity
(Charlier and Van Dooren, 1989; Cichocki and Unbehauen, 1992; 1993; Osowski,
1993; Polycarpon and loannou, 1992; Wang and Mendel, 1992). Modern scienti-
fic and engineering computing is searching for fast, efficient and robust algorithms
which are to a large extent massively parallel algorithms in the sense that a system of
non-linear ordinary differential or difference equations describing a specific learning
algorithm is solved simultaneously by a suitable VLSI network consisting of highly
interconnected processing units (artificial neurons) (Cichocki and Unbehauen, 1993;
Distante et al., 1991; Flaherty and Michell, 1990; Lillo et al., 1993; Polycarpon and
Ioannou, 1992; Wang and Mendel, 1992; Wang and Wu, 1993).

There is extensive ongoing research on neural networks and their representation
on array processors. General multilayer networks with supervising learning algorithms
which can be mapped relatively easily onto massively parallel digital architectures are
especially promising (Distante et al., 1991).

The main purpose of this paper is to show how a large variety of linear matrix
algebra problems of high computational complexity can be solved in almost real-time
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by using parallel structured networks. Parallel structured networks constitute a sim-
plified class of linear feedforward neural networks, where the activation function is
replaced by a simple identity function (Cichocki and Unbehauen, 1992; 1993; Wang
and Mendel, 1992). In fact, structured networks can be defined as multilayer feed-
forward neural networks with linear neurons in which weights of neurons give the
solution to the problem. Linear artificial neurons are often considered uninteresting
processing units, mainly for two reasons: firstly, only linear functions can be compu-
ted in linear networks, and secondly, a linear multilayer network with several layers
can formally be transformed to a network with only one layer of linear processing
units by multiplying and summing the weight matrices of the corresponding layers.
However, we should emphasize that multilayer linear structured networks are very
useful in many computational tasks and are still of great interest due to the internal
representation of the input data which are processed and linear transformation which
occur in different layers during the learning process (Cichocki and Unbehauen, 1993).

Algebraic and polynomial matrix equations play an important role in various
systems, control and filtering problems. Algebraic Riccati equations are extensively
used in control and system theory, for example in the very recent Hy or He, control,
as well as the standard LQG optimal control and Kalman filtering (Charlier and Van
Dooren, 1989; Gardiner and Laub, 1991; Kenney et al., 1989; Kucera, 1972; Laub,
1979; Wei and Yeh, 1991).

2. Set of Linear Algebraic Equations

Let IR™ be the set of n-dimensional real vectors and IR™*™ be the set of mxn
dimensional real matrices. Consider the set of linear algebraic equations (Cichocki
and Unbehauen, 1993)

Az =1 (1)

where A = [aij] e IR™*" b= [bi] € IR™ are given and z = [1:1] € IR™ is unknown.

The number of equations m can be less than, equal to or greater than the
number of variables (components of ) n. From a practical point of view it is usually
required to find an approximate solution which comes as close as possible to the
exact one subject to a suitable optimality criterion. In the ordinary least squares
(LS) approach to the problem the measurements in the matrix A are assumed to be
free from error and all errors are confined to the observation vector b, by = b + n,,
where n. € IR" is an unknown vector of the measurement noise. In this case the
problem can be stated as follows. Find a vector z € IR™ which minimizes the scalar
function (optimality criterion)

E(@) = |r(@)llp, p21, r(e)=Az—b @)

where ||r(z)||, denotes the L, norm of the vector r(z) =
the upper index 1" denotes the transposition. For p = 1,2,00 we have

D= Y @ @l = [T @r@)] @)l = max|r(e)

g=]
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The minimal norm L, solution z* satisfies the equation
Az* = b+ r(z¥) (3)
and
[[Az* = b||, <||Az —b||, for all z € IR" (4)
If m=n and det A # 0, then z* = A=1b and ||r(z*)||, =0 for p=1,2,00.
For p =2 eqn. (2) takes the form
B(z) = (Az— b (Az — b) (5)
and we have (Cichocki and Unbehauen, 1993)
1) the unique exact solution z* = A~1b (E(z*) = 0> if m=n and det A # 0;
2) the approximate least squares solution
o = (ATA) AT (B(e") = b7(1 - AA*)p>0) if rankA=n <m

where At is the Moore-Penrose pseudoinverse matrix;

3) the minimal norm Ly solution, which is unique
2" = AT(4AT) s (B(z7)=0) if rankA=m<n.

Using the gradient method (Cichocki and Unbehauen 1993) to minimize (5), we
obtain

dz

& = ~HVE(), VE(z)= A"(Az-b) (6)

where p = [#ij] is an n xn positive definite matrix g > 0. If u 1s positive definite,
then (6) is stable since

dE [BE] do

== 5| 3 =~ [VE@] uVE@) <0

From (2), (5) and (6) we have

Ti(IL‘)ZZGikxk—bi, 1=1,...,m (7)
3E )
(:c) Zakﬂ’k i=1...,n (8)

d:cJ _ Z/‘Jkagm(m) (9)
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The linear network shown in Fig. 1 follows from (7)-(9). The network consists of
integrators and adders with associated connection weights denoted by a;; and p;;.
It consists of three layers of artificial neurons. Each neuron produces its output by
computing the inner product of its input signals and its appropriate weight vector and
passing the result through a non-linear sigmoid function. The first layer computes
the actual residual errors r;j(z) defined by (7). In the second layer the gradient
components (8) are computed. The third layer constitutes the proper adaptive system.
The selection of appropriate weights p;; is crucial. A suitable choice of p;; should
ensure an appropriate convergence speed to the equilibrium state of the network. The

outputs z1,zs,...,2z, of the integrators are components of the desired solution z.
b1
o, r(lo)

oF

Fig. 1. General structure of an artificial neural network for solving a system of
linear equations.
3. Algebraic Matrix Equations
3.1. Algebraic Equations with One Unknown Matrix
Consider the algebraic matrix equation (Cichocki and Kaczorek, 1992b)

> AiXBi=C (10)
i=1

where A; e R™** B; ¢ IRP*Y, i=1,...,n, C € IR™*¢ are given and X = [.7:”] €
IR*xP is unknown.

For n=2, A1 = A, By =1 and Ay = I, By = B from (10) we have
AX+XB=C (11)
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and for B = AT the well-known Lyapunov equation. The equations
AX1+BXy+C (12)

X1 A+ X3B+C (13)

X
are particular cases of (10) for A; = [A,B], X = [Xl , Bi = I and A4; = I,

2

X = [Xl,Xg], B, = , respectively.

It is assumed that equation (10) has a solution X. But equation (10) has a
solution if and only if (Kaczorek, 1984)

zn:Az'@BiT

i=1

; A; ® BT ¢
Z H i

i=1

rank = rank

where ® denotes the Kronecker product and ¢ € IR™? is the vector consisting of the
rows of C.

Postmultiplying (10) by a non-zero, time-variable excitation vector u =
[ul,...,uq]T we obtain

n
Y AiXBju=Cu (14)
i=1
Equation (14) can be represented by a multilayer neural network shown in Fig. 2. The
layers corresponding to A;, B;, i=1,...,n and C represent neurons with fixed and
known weights, while the layers corresponding to X represent neurons with adjustable

weights which must be determined during the optimization (learning) procedure. The
network can be described by the equations

q9 m k
— .. . L — T . T r r
dj = — E Cjilly, € = E Y +d;, yi = E aj; %
i=1 r=1 i=1

q

S SR S 5
i=1

i=1
-C
g
k3 e
—%Bl! {X[ I/—h} >

L—.‘Bn—}—-‘Xl———‘Anl———i

Fig. 2. A multilayer network for solving of the matrix eqn. (10).
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where

Ay = [af], Br:[bzr’j]; X = [z4], C = [ey], r=1,...,n
"71/P ) yT:[y;"'.’y:n]T

As the error (cost) function in the optimization procedure we assume

1 >,
E= §eTe, e = ;(A.;XBi - C)u (16)
To minimize (16) we shall use the gradient method (Cichocki and Unbehauen, 1993)
based on the equation

dgzj:—/laa—w% for i=1,...0k and j=1,...,p (17

where g > 0 is the optimization (learning) rate.

Using the chain rule and taking into account eqns. (15) we obtain

dzy; SN , . .
—dt—_—uZ<Zahieh)uj for ©=1,...,k and j=1,...,p (18)

r=1 h=1

Differential eqns. (18) constitute the basic learning algorithm which can be conside-
red as a modification of the back-propagation (delta rule) algorithm (Cichocki and
Unbehauen, 1993). A realization of the algorithm is shown in Fig. 3. To check the
validity and performance of the neural network it has been simulated extensively
on a computer. Very good agreement with the theoretical considerations has been
obtained.

Example 1. Find a solution X of (10) for n = 2 with

-4 1 2 0 =2 -1 =2 4
Al = ) Bl = ) AZ = )
-2 3 -4 -2 2 -1

-1 4 5
BF[—?, -3 —2} C:[—39 4 20}
4 2 0 14 -7 -10
On the basis of the system of differential equations (18) and the network architec-
ture of Fig. 2, an appropriate circuit has been designed and simulated. As excitation
signals orthogonal (uncorrelated) sine waves of the form u1(t) = sinwt, us(t) =
sin 2wt, uz(t) = sin 3wt, with w = 10°rad/s, have been employed. The learning rate
was chosen equal to p = 10° which means integration time constants of integra-
tors 7 = 1/ = 10~° seconds. Representative computer simulated trajectories for
zero Initial conditions illustrating convergence behaviour of the network are shown

in Fig. 4. The network was able to find the correct solution in time less than 10-4
seconds independently of initial conditions. The resulting matrix X after 10~%

wW
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2
&

£O -0

002

Fig. 3. A detailed architekture of the neural network for solving matrix equn. (10)



316 A. Cichocki and T. Kaczorek

5.2g88

4.8088

3.9084

. 8060

1. 5686

3. 8898

-1. 0084

~2.8848

-3.30es F —

-4. 8848 -

-5.geeg |

B.06888 Tiae 168. 686E-86

Fig. 4. Convergence behaviour of the neural network for Example 1.

seconds was

1.0003  1.9991
X = 2.9997  3.9992
—1.9995 —-2.9994

which is in good agreement with the exact result

1 2
X = 3 4
-2 =3

The convergence speed of the network can be further increased by increasing the
learning rate and the angular frequency.

3.2. Algebraic Riccati Equations

Consider an algebraic Riccati equation (Cichocki and Kaczorek, 1992a)
ATX 4+ XA - XWX +Q=0 (19)

where A = [aij] e R W = [w”] € R Q = [Qij] € IR™*™ are given and
X € IR™*™ is unknown.

It is assumed that W and @ are symmetric and positive semi-definite with
(A, W) stabilizable and (@, A) detectable. Under these assumptions eqn. (19) has a
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unique symmetric positive semi- definite solution and the matrix A — WX 1is stable
(Laub, 1979). Postmultiplying (19) by a non-zero excitation vector u = [uy, . . .,un]T
we obtain

ATXu+ X(A-WX)u+Qu=0 (20)

A multilayer branching neural network shown schematically in Fig. 5 follows
from (20). Each block box represents one layer of linear neurons (processing units).
The layers corresponding to A, W and @ represent neurons with fixed and known
weights, while the layers corresponding to X consist of neurons with adjustable
weights which must be determined during the optimization process. As the error
function in the optimization procedure we assume

Ei%eTe, eiATXu+X(A—WX)u+Qu:[el,...,en]T (21)

Fig. 5. Multilayer neural-type structured network for solving eqn. (20).

To minimize (21) we shall use the gradient method based on the equation

d.’L‘i]' _ BE

T _'u(?:ci]- for i,7,...,n (22)

Using the chain rule we obtain

d.’Ei i 8E
and

0E <~ 0E 0z =

Bo: = 2 sy B = 2 0% (24)

¢ r=1 P ¢ =1

where

n

n n
Vv = g [aikuk—wiksk], S = g TikUk, 2; = E aijS; (25)
k=1 i=1

k=1

A realization of (23)-(25) by neural network is shown in Fig. 6. The solution
computed on the basis of (20) has no guarantee of symmetry and positive semi-
definiteness (Cichocki and Kaczorek, 1992a). In order to find the unique stabilizing
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solution of (20) we formulate the following constrained optimization problem: mini-
mize E = eTe/2 subject to the constraint uT(A — WX)u = uTv < 0 for any u
where v = (A - WX)u.

The constrained optimization problem can be mapped into an unconstrained one
by using the Lagrange multiplier method (Bertsekas, 1982; Wierzbicki, 1981; Cichocki
and Unbehauen, 1993). The unconstrained performance function has the form

AZ

E= %eTe + /\[uTV]+ — a—2—

(26)
where A > 0 is the Lagrange multiplier, [uTu]+ = max(0,uTv), a > 0 is a stabili-
zing parameter.

Minimization of (26) by using the gradient method yields a system of differential
equations (Cichocki and Kaczorek, 1992a)

evj + (Zepa,p) (przup> :l, i,j,...,n  (27)

d;c,;J
dt

% = r{[u7v], - a2} (28)

where g > 0, v > 0 are learning rates. The stabilizing parameter « is added to
eliminate parasitic oscillations and improve the convergence behaviour of the network.

Algorithm (27)—(28) assures a stabilizing solution X of (20) but still there is
no guarantee of the symmetry of X. To avoid this disadvantage the algorithm eqns.
(27)-(28) can be modified as follows

d a7 d it - 3
xdjt(t) = let(t) = ——g {em’ +ejvi— A [(p; wpiup>uj + (Z:l ijUP)ui} } ’

i,j=1,2,...,n (29)

%ﬁt) = 7{[uTV]+-—a}\(t)} (30)

The functional block diagram for the improved algorithm (29)-(30) is shown
in Fig. 7. The network architecture shown in Fig. 7 may be viewed as an analog
multivariable control feedback-loop system. This viewpoint makes it possible to use
many powerful concepts and techniques from control theory in order to improve the
convergence properties of the basic learning algorithm, for example by the use of
optional PID controllers (Cichocki and Kaczorek, 1992a).

Now let us consider matrix equation (20) with complex coefficients. Substituting
A=A1+i4y, W=W1+iW,, Q=Q1+1:Q2 and X = X; +1X,, i=+/—1, into
(20) we obtain

(Al + iAz)*(Xl + ZX2) + (Xl + ng)(Al + ZAQ) — (Xl + ZXz)(Wl + ZWQ)(Xl -+ ng)
+(Q1 +1Q2) = AT X1 + AT Xy + X141 — Xo Ay + (Xoa Wy — Xy W) X4
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F(X Wi — X, W) Xs 4+ Xo + Q1 +1[A{X2 —ATX) 4+ X2 A1 + X1 As

—(Xo W1 + X1 Wa) X1 + (XoWo — X4 W) X, + QQ} =0
and
ATX) + AT X5 4+ X1 A1 — Xo Ao + (Xoa Wy — X1 W)Xy
F(Xa Wi — Xi W) Xs + Q1 = 0 | (31)
AT Xy + AT X1 4 Xo Ay — X1 A — (Xo Wi + X, Wa) X,
H(XaWa — Xa W) X3 4+ Qs = 0 (32)

Note that the eqns. (31), (32) can be written in the form

X, A e, X,
AT AT + X1, X + X1, X +Q:=0 33
8,421 [+ il | 0] b [T 4 T aizo
and
X A W, — W X
AT ATV M+ [, Xo) 3 + X, X T Ty, =0 (34
[ 2 1] [ 1 2] A_ [ 1 2] —-Wl Wz X2 QQ ( )

Therefore, eqn. (20) with complex coefficients has been reduced to eqns. (33), (34) of
the same form with real coefficients.

The validity and performance of the proposed learning algorithm have been tested
by computer simulations.

Example 2. Solve the algebraic Riccati equation (20) with

31 =2 2.0 —0.5 —0.5 27.0 —39.5 —32.5
A=1]-12 -1|, W=]-05 1.0 =05|, Q= |-395 940 345

13 1 —-0.5 -0.5 1.0 —32.5 34.5 106.0

To solve the equation we employed the learning algorithm given by eqns. (29),
(30) with p =y =108, o = 4. The simulated network was able to find the solution

6.5162 2.5486 1.4319
X = 125486 19.5851 8.7127
1.4319  8.7127 13.2978

starting from zero initial conditions in a time of less than 70 microseconds. However,
1t was found that the network is able to compute the unique stabilizing solution
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Fig. 7. Detailed architecture for solving the Riccati equations according to

eqns. (29)-(30).
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independent of the initial conditions. The results obtained are in good agreement
with those found using MATLAB. The solution obtained from MATLAB is

6.5118  2.5503  1.4338
Xmarrap = |2.5503 19.5874 8.7150
1.4378  8.7150 13.3004

3.3. Equations with Two Unknown Matrices

Consider the algebraic matrix equation (Cichocki and Kaczorek, 1992¢)
AX-YB=C (35)

where A = [aij] e R™*" B = [bij] € IR?*? and C = [cij] € IR™*P are given and
X = [a:ij} € IR"*P, Y = [yi]'] € IR™*? are unknown.

It is assumed that eqn. (35) has a solution (X,Y). Equation (35) has a solution
if and only if (Cichocki and Kaczorek, 1992¢)

(I— AANYC(I - B*B)=0

where At and B* are generalized Moore-Penrose pseudoinverse matrices of A and
B, respectively.

Postmultiplying (35) by a non-zero excitation vector u = [ul, e up] T we obtain
AXu—YBu=Cu (36)

Equation (36) can be represented by a multilayer neural network shown in Fig. 8. The
layers corresponding to A, B and C' represent neurons with fixed and known weights,
while the layers corresponding to X and Y represent neurons with adjustable weights
which must be determined during the optimization procedure.

/ il
X » A
L [4
& —C -D—r
\
—-B Y
N

Fig. 8. Functional block diagram illustrating solving eqn. (36).
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As the error function in the optimization procedure we assume
E= %eTe, e=(AX -YB-C)u (37)

To minimize (37) we shall use the gradient method based on the equations

dzi; o0F

== for i=1,...,n, j=1,...,p
dt 6.:1:1-]- (38)
dyy; dF . .

= f =1,...m, 7=1,..,
dt l“tayzj or bl m .] q

where p > 0 is the learning rate. Using the chain rule we obtain the non-linear
differential equations

dg;] :*-/J(ZaneT)Uj for i:l"“,n’ ]: 1)“-*;]3
r=1 (39)
dyi; . '
gt] = —peiv; for i=1,..m, j=1,...,¢q
p
where v; = — ) bj,u,.
r=1

Equations (39) constitute the basic learning algorithm which can be considered
a modification of the back-propagation algorithm.

If (35) has a solution X,Y, then, in general, it is not unique and therefore the
neural network is able to find only one particular solution depending on the initial
conditions. Starting from different initial conditions we can find a set of particular
solutions of (35). In some applications additional requirements can be imposed on the
solution, for example X = X7 and Y = Y7 | positive definiteness, diagonal domi-
nancy, etc. (Cichocki and Kaczorek, 1992¢). In order to meet symmetry constraints
for the matrices X and Y(X = X7 and Y = Y7), the learning algorithm given
by (39) can be modified as follows:

.. m m
T B[ e+ (B owr)ul].
r=1 r=1 i:1)2,...,n) j:]~y2)"'1p (40)
dys; I
d_t] = ———2—(61;1/]' + ejyi):

To check the validity and performance of the proposed algorithm, we have si-
mulated it extensively on computer. A very good agreement with the theoretical
considerations has been obtained.

Example 3. Find a solution X,Y of (35) such that X = X7, YV = YT with
constraints y11 = 1, y22 = 2, y33 = 3. Assume
1 -1 -2 -1 4 -8
A=12 1], B=|-1-3|, C=1| 8 4
3 —1 1 -2 -5 =5
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On the basis of the system of differential equations (40) and the network archi-
tecture of Fig. 8 an appropriate circuit has been designed and simulated. As excita-
tion signals the following ones have been employed wui(t) = sinwt, uz(t) = sin 3wt,
w = 8 x 10%. The learning rate x was chosen equal to 103.

Computer simulated trajectories for zero initial conditions illustrating conver-
gence behaviour of the network are shown in Fig. 9. The network was able to find
the correct solution in time less than 50 x 10~% seconds independently of the initial
conditions. The resulting matrices X,Y after 4 x 10~5 seconds were

~[1.999 0.998

= ; Y =1-0.999 2.000 -2.997
0.998 2.998

} 1.000 —-0.999 -2.002
—-2.002 -2.997  3.000

which are in good agreement with the exact solution

1 -1 =2
2 1

X = y Y=1]1 2 -3
1 3

-2 -3 3

5.6688 { T T 1] 1 T T

4.9808
[
3.9809 U
. N Xﬂf
2.686R - —
1.8068 a— o iz P
Vs v s e

* 9.9800 _

~1.9900 T a5k 2
20000 PN e LS THay
-3.0809 R — 73750
-4,9888

-5. 0699 . 1 - ) ' ! 1 1 ) 3

8.6080 Time 58. 800E-86

Fig. 9. Computer simulated trajectories for Example 3.

4. Polynomial Matrix Equations

Let IR[s] be the ring of polynomialsin s with coefficients from the field of real num-
bers IR and IR™*"[s] be the set of m x n polynomial matrices in s with coefficients
from IR.
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Consider the polynomial matrix equation (Cichocki and Kaczorek, 1993)
AXB=C (41)
where A € IR™*"[s], B € IRP*4[s] and C € IR™*![s] are given and X € IR"*? is

unknown.

It is assumed that eqn. (41) has a real solution X. Using the Kronecker product
of A and B denoted by A® B we can write (41) in the form (Kaczorek, 1984)

Dx=c (42)
where

Dy
Dy
D=A®BT=| | eRM*N[s], M=mq, N=np

Dy

x:[zl,...,xn]T, c:[cl,...,cm]T

z; and ¢; are the i-th rows of X and C, respectively.

From comparison of the coefficients at s of the same powers from (42) we obtain
Dz =¢ (43)
where

— r .
D= [DfoDﬂ . -DfNDIDFQFng; DréerDso DMNDM] € RN

N = Z(NDK +1)
k=1

_ - _ T w
€= [C10C11 - - - CLNp, C20Ca1 - - - C2NpsC30 - - . CMNpyy] € IR

C1
T2 D; = Dijo+ Dins+ ...+ Dinp, s™P
c=1. i=1,....M
Ci =Cio+ G154+ . ..—I—EiND‘.SNDi
37

By the Kronecker-Capelli theorem eqn. (43) has a real solution z if and only if
rankD = rank [E, E]

The problem of finding a real solution X = IR™*? of (41) has been reduced to
the problem of finding a real solution « € IRV to the algebraic matrix equation (43)
for given D and @ To find z the method presented in Section 2 can be applied.
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Note that this approach can be easily extended for finding a polynomial solution
X € R™*P of (41).
5. Drazin Inverse of a Singular Matrix

Consider a singular matrix A € IR®*™ with its known index ¢, i.e. the least positive
integer ¢ such that rankA? = rank A9+, A matrix AP € IR**" is called the Drazin
inverse of the singular matrix A € IR**" if it satisfies the conditions

(i) AAP =APA
(i) APAAD = AP (44)

(iii) AP A+l = A¢
The Drazin inverse AP of a matrix A € IR**" always exists and is unique. The
problem under consideration can be stated as follows. Given a matrix A € IR**™, find

its Drazin inverse AP using neural networks approach. Substituting in equations (44)
X = AP and postmultiplying them by a non-zero excitation vector u € IR" we obtain

(1) AXu=XAu
(i) XAXu=Xu (45)
(i) XAy = A%y
Equations (45) can be represented by a multilayer neural network shown sche-
matically in Fig. 10. The layers corresponding to A, A9~ and A? represent neurons

with fixed and known weights, while the layers corresponding to X represent neurons
with adjustable weights which must be determined during the optimization procedure.

—;—Aq—l J
-1+ ez = (A9 — 9+1Yq,
us g X(t)
A X Ny =(XA- AX
4 wt Exe e
X A t -
J)“"(’5) — er = (X — XAX)u
I x ,@ = ( AX)
(%} +
Lxe }

Fig. 10. Functional block diagram illustrating solving set of eqns. (45).
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As the error function in the optimization procedure we assume

1
E= 5 (wleipel + wzegez + w3€§€3) (46)
where
e1 = (XA—-AX)u, e3=(X—XAX)u, e3=(A? - XA 1)y

and wj,ws, w3 are weight positive coefficients (typically wi = wy = w3 = 1). To
minimize (46) we shall use the gradient method (Cichocki and Unbehauen, 1993)
based on the equation

dXx oF

= 47

i~ Mox 47
where g > 0 is the optimization rate. Using the chain rule we obtain

dX(t ;

% = —p[elu:f — ATeuT — eng +equl — egug] (48)

Differential equation (48) constitutes the basic learning algorithm which can be con-
sidered a modification of the backpropagation algorithm (Cichocki and Unbehauen,
1993). The realization of the algorithm by a multilayer neuron — like network is shown
in Fig. 11. To check the validity and performance of the neural network approach
to the computation of Drazin inverse some computer simulations have been done. A
very good agreement with the theoretical considerations has been obtained.

T

U3
€3U3z €3
) °
A

X (@) dﬁ—ﬁ \__*_ erui
D G-
™ i uT

< AT |«

5l
V]
5
Ok
X
: 2
5y
oS

5]
]
[~4
X

Fig. 11. Implementation of the learning algorithm (48).

Example 4. Find the Drazin inverse matrix of the singular matrix

10 -1
A=10 1 0 (49)
0 -1 0

with the index ¢ = 1.
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It is easy to check that the Drazin inverse of matrix (49) has the form

1 -2 -1
AP =10 1 0
0 -1 0

On the basis of the system of differential equations (48) and the neural network with
block architecture of Fig. 10 a computer simulation on the IBM PC has been done.
The following excitation signals have been used:

sin(wt)
u = |sin(2wt)
sin(3wt)

The learning rate p was chosen as g = 107 and w = 10°. The following matrix after
10~5 seconds has been obtained

1.00447 —2.01459 —1.0081
8x 105 1.00135 9x10~*
5x 102 -1.01220 —-6x103

which is in good agreement with the exact solution.

6. Concluding Remarks

The key step in solving the above problems by the use of neural-type structured
networks has been the construction of an appropriate error function E such that
its minimal value corresponds to the desired solution. The derivation of the error
function enables us to transform the minimization problem into a set of differential
equations on the basis of which a suitable neural-type structured network can be de-
signed. The continuous-time (analog) formalism applied in these algorithms makes
the proposed neural-type structured networks more suitable for implementation in
VLSI technology. This follows from the fact that learning algorithms are expressed
by systems of non-linear differential equations instead of the usually employed diffe-
rence equations; this eliminates the timing, clocking and synchronization problems.
Moreover, the learning rate p may be sufficiently large without affecting the sta-
bility of the system in contrast to a corresponding discrete-time system where the
learning rate must be small. Simulation experiments have fully confirmed the validity
and correctness of the developed algorithms. The results obtained indicate that the
proposed approach is an alternative and promising method of solving a large class
of algebraic problems. The proposed method can be easily extended for 1) alge-
braic matrix equations with complex coefficients and slowly time-varying coefficients,
2) polynomial matrix equations with two (or more) independent variables. One of
the open problems is to extend the method presented in Section 5 for computing the
Drazin inverse of a singular matrix with its unknown index. Another open problem is
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to extend the method for computing minimal degree solutions of polynomial matrix
equations.
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