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LEARNING THROUGH INTEGRAL REPRESENTATIONS

MAREK B. ZAREMBA*, EucENIusz PORADA*

This paper addresses the issue of building neural networks capable of approxi-
mating arbitrary continuous target functions. An approach based on integral
representation of the desired function is presented. The method allows the user
to construct the network architecture by applying qualitative geometrical ana-
lysis of the space of input states.

1. Introduction

Function approximation capabilities of connectionist networks have been studied by
several authors (Funahasi, 1989; Hornik et al., 1989; Irie and Miyake, 1988). It has
been proved inter alia that the networks can approximate an arbitrary continuous
target function uniformly on compact domains in Euclidean space. The mathematical
analysis has essentially been based on the Kolmogorov theorem known as the negative
solution of the 13th problem of Hilbert. The theoretical complexity involved does
not allow us to design a constructive method of learning from the mathematical
demonstrations. A more promising method is to find the exact integral representation
of a desired function (with the use of a continuum of processing units (Irie and Miyake,
1988)) and then approximate the integral by finite subsets of the continuum. The
condition of constructiveness requires specific integral representations of the target
function; an explicit integral has to be found that will allow for uniform convergence
of its discrete approximations. This paper is a first step in the development of such
explicit regular integrals representing a target function.

The learning method has been oriented especially for use in measurement systems
(Bock et al., 1992; Zaremba et al., 1991). In such systems, a neural processor extracts
a measurand (the current value of a physical parameter) from a sensor distributed
signal. The input to the processor can be looked upon as a vector running through a
one-parameter manifold in a Euclidean space. Thus, the problem arises of uniformly
approximating, with a given precision, a target function defined on a one-dimensional
manifold.

2. Connectionist Architecture

Vector € IRV constitutes the input to the connectionist network under considera-
tion. The first layer of connections between N input units and n hidden units converts
the input signals into hidden signals that are fed to the layer of hidden units. Thus,
the input to a hidden unit has the form

H=¢(x m-0)

* Département d’informatique, Université du Québec & Hull, 101 St-Jean Bosco, Hull, Québec,
J8Y 3G5, Canada




338 M.B. Zaremba and E. Porada

where ¢ is the transfer function of the hidden unit, 8 denotes its bias coefficient, and
m is the N-vector of connection weights between the input units and the hidden unit.
We assume a transfer function of the form

z if z>0
xr) =
¢(=) {0 if 2<0

The bias of a hidden unit can be expressed as
f=b-m

where b is a fixed N-vector. Consequently, the hidden signal can be written as the
following function of x:

(x=b)-m if (x-b)-m>0

0 otherwise

Hm,b(m) - { (1)

The hidden unit itself will be denoted by (m, b).

The second layer of connections combines the hidden signals into a numerical
output signal, generated by the output unit. Thus, the network performs the following
mapping, called the output function:

Fout(®) = Z H; (iﬂ)p]’

where n is the number of hidden units and y; denotes the weight of the connection
between hidden unit j and the output unit. The problem of function approximation
by connectionist networks consists in constructing a hidden layer and defining weights
p; such that Fous(z) approximates a target function f(z) uniformly in the domain
X with a desired precision.

3. Integral Representation of the Target Function

A method for construction of connectionist networks approximating a target function
and consisting in the assumption of a continuum of hidden units was proposed in (Irie
and Miyake, 1988). Assuming a continuum of hidden units, we consider the integral
output function:

(@) = [ Hi(e)du(h)

where IK is the continuum, Hy(x) represents the hidden signal produced by hidden
unit k£, and g denotes a weight distribution in IK.

It is proved in (Hornik et al, 1989) that any sufficiently regular target function
(a continuous function f(z) defined on a compact set X € IR", and thus a uniformly
continuous target function), can be exactly represented by a continuum of hidden
units:

f(z) = Lui (), zeX
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The integral representation is defined indirectly by means of Fourier transform. Our
method aims at directly constructed finite measures and explicit integrals. In this
paper we report results for the case where X is a one-dimensional compact manifold
in RY.

Let us consider the implications of the representation theorems when it comes
to the function approximation capabilities of the connectionist networks. A crucial
result would be an explicit form of the measure . This can be used in constructive
procedures for finding discrete approximations of the exact integral representation:
we can imitate the approximations of a Riemann integral by the discrete Riemann
sums. In this way, for a given # € X, we get finite linear combinations of appro-
priately selected hidden signals which represent the output function at point x as
closely as required. This statement still holds true for any finite family of points .
By the uniform continuity of the integral output function, Foui(x) approximates the
integrals Ioyt(z) uniformly in any given compact domain X C IRY. So, finally, the
connectionist networks approximate arbitrary continuous functions defined in com-
pact domains.

4. Geometrical Method for Integral Representations

In this section, we outline the integral representation theorem for the case where X
1s a regular arc in IRV, ie. a parametric differentiable curve without loops:

z==x(s) RN, z(sq) #x(sp) for s4 % s, %#0 for s € [so,s1)

Consider an arbitrary target function f defined on X. We express the target function
by means of the variable s and assume that f(s) is a smooth function.

Now we construct an integral representation of the target function, assuming that
the parametric curve z(s) satisfies the so-called convex separability condition. The
definition of the separability involves partitioning of the curve into the two following
arcs, namely the arc

Ay ={x(s):s <o}

and the complementary arc
Bo =X\ A, ={z(s) :s >0}

The curve meets the convex separability condition if
conv(Ay)N By =0, 5o <5< 5

where conv(A) denotes the convex hull of a set A C IRY. Notice that a planar spiral
curve or a helix in IR® will satisfy the condition. In fact, any geometrical smooth
curve in IRY satisfies the convex separability condition if we allow for discontinuous
parametric representations that are piecewise regular. In the case of piecewise regu-
larity, the method described below is applied for each regular arc of the geometrical
curve. The general method involves extensive geometrical procedures which we will
not go into in detail in this paper. However, for the planar curves, we developed
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numerical methods for creating splines to combine local approximation functions into
a global approximation function.

For a given o € [so, 51], let g, be a vector othogonal to the hyperplane tangent to
conv(A,) at point #(c); the length and the sense of g, is determined by the condition
de

=g =1 9

ds |, 9o (2)

The tangent hyperplanes are not uniquely defined, so the vector function
0—43s

called the generic function, can be constructed in different manners. For planar
curves fulfilling the convex separability condition, we developed numerical methods
for finding continuous generic functions (such that the initial value g;, 1s co-linear
with the derivative dz/ds at s = sp).

Let o denote the hidden unit (g,,#(s)). We use the o units for the integral
representation of our target function f(s), so IK = [so,s1]. In this way, the generic
function is expressed as a continuous function defined on a compact topological space.

Now we determine the weight distribution p(c). Mathematically, 1 is a measure
(not necessarily positive) containing a continuous component p. (a measure vani-
shing at points) and a discrete component pg (a measure accumulated in a discrete
set). Thus, the continuous and the discrete components of the representation will be
constructed.

First notice that (x(s) -z (0)) g, < 0for o > s and that there exists a positive 6
such that (z(s) — #(0)) - g, > 0 when s — § < 0 < s. Using compactness arguments
one can prove that a positive 6 independent from the point s can be selected. Thus,
according to (1), we have for all s

1) Hy(z(s)) = (x(s) —=x(0))-g, if s—b6<o<s

)
i) He(x(s))=0 if o>s

The construction of weight distribution on IK is accomplished by locally extending
both the distribution x and the domain where the output function exactly represents
the target function. Thus, we extend p(s) and the exact representation on segment
[a,a + 6], assuming that weights pu(c) are already defined in [so,a] and f(s) = F(s)
for s < a, where F(s) is the current output function. Under condition ii) in (3),
hidden units ¢ > a do not modify the output function at points s < a, so, for the
purpose of the extension, it is sufficient to find p(¢), a < 0 < a + 6 such that:

a+d
HOH(e(6) + [ Hula(s)du(o) = £(5) = F(s), a<s<ats

We create the discrete component by setting the weight x(a) to the value of é(—fd_s—F) .
at
The continuous component will represent the function

f7(s) = f(s) = F(s) — paHa(2(s)),  f*(a)

= df*

ds =0

a



Learning through integral representations 341

Now, the problem is to find a continuous distribution x(c), a < ¢ < a+4§, such that

a+é
/ Ho(z(s))du(o) = f*(s), a<s<a+$ (4)

The following theorem gives a solution. In what follows we will write interchangeably

L] or & The outer (tensor) product of vectors will be denoted by x. We will use

the following general formula: [a x blc = (b - ¢)a.

Theorem 1. Consider the solution v(o) of the linear differential equation

d_v+ [g dzm:| o(0) = dzf*

X — —
do 77 do? doz
with the initial condition v(a) = 0. The deriative dv/do is co-linear with g, :

dv
E - ,u(a)g(,

where the function p(o) fulfils (4).

This theorem shows that the continuous component of an integral representation
can be generated by means of linear differential equations. This is particularly impor-
tant in neural network practice: various well established methods of approximative
solutions (such as the Picard method of successive approximations or the method of
Euler tangents) can be applied as learning methods. Moreover, the regularity of exact
solutions ensures good convergence of discrete representations to the integral repre-
sentation, allowing for construction of optimal connectionist networks approximating
a given target function with a desired precision.

do? do?

Proof of Theorem 1. Since [ga X dZw} v(o) = (dzm m(a)) g, we have

dv d?f* d2=z
15 = Mo)g,,  where (o) = = = g - 0(0)

Thus

dzf* d?x d [d=z
= ko) + 52 0(0) = o (200
The second equality can be checked by direct computation, using (2). Thus

d *
v(o) = d];

dz
ds

[

since the two members coincide at ¢ = a and have equal derivatives. The left-hand
member, in turn, is a derivative of the expression

1) = [ fots) ~ a(r)]- {2 r
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L adg(z(s)./: dv(r)——/as :B(T)'d”(T))

dx § dv dv
= E_/; do(7) + z(s) - E_-s—w(s)-a—;s

In fact,

= T ) - v(@)] = T v(s)

having taken into consideration the initial condition. Thus I(s) = f* (s), because
I(a) = f*(a) = 0. On the other hand,

s s a+é
I(s) = / [2(s) — 2(0)] - g, () do = / Ha(2(s)) du(o) = / Ha(z(s)) do
because of (3). The theorem is proved. |

5. Conclusions

The method of integral representation proposed in this paper makes it possible to
construct a neural network for a particular function approximation task. The con-
struction process works efficiently even if the number of hidden processors is fairly
limited. This capability is of particular importance in a number of applications, a
typical application being in measurement systems. The constructive learning method
based on geometrical analysis of the input space and subsequent integral representa-

tions has already been proved useful in opto-electronic measurement systems (Bock
et al., 1992).
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