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TEXTURE SEGMENTATION AND CLASSIFICATION
USING NEURAL NETWORK TECHNOLOGY

Maruke F. AUGUSTEIJN*

Texture is an important characteristic used in the identification of objects and
regions in images. Textured regions can be classified as belonging to one of a
finite set of categories. This requires the supervised training of a classifier to
associate the values of a set of texture features with the appropriate texture cate-
gories. Alternatively, an image can be segmented into regions showing the same
texture without categorization. An unsupervised clustering technique is often
used to group the feature vectors for this purpose. Neural networks can be used
to achieve both the supervised texture classification as well as the unsupervised
segmentation. The paper discusses how the cascade-correlation architecture can
be used for both texture classification and segmentation. This supervised neu-
ral network architecture is shown to be capable to segment images containing
textures not used for training the classifier. The usefulness of several texture
representations is also investigated.

1. Introduction

Texture is one of the most basic characteristics of a visible surface. It has been
demonstrated that texture plays an important role in human visual perception and
provides important information for object recognition and scene interpretation. There
are two basic approaches to texture analysis: structural and statistical. The structural
approach describes textures as repeating patterns of substructures and uses rules
or grammars to generate and describe these relationships. This is considered most
appropriate when describing textures from high resolution images that display much
regularity (Ballard and Brown, 1982). Statistical methods describe textures in terms
of the spatial distribution of the gray levels in an image. This approach seems more
suitable for natural textures and low resolution textures such as those seen in aerial
1mages which have barely discernible primitives. It involves the extraction of textural
features and the classification and segmentation of textured images based on these
features. This paper will only be concerned with the statistical approach.

Image segmentation is the technique which partitions an image into units that
are homogeneous with respect to one or more characteristics. It is often viewed as the
bridge between low level image processing which involves edge detection and linking
and high level object recognition and region labelling. Most image segmentation
techniques use pixel gray level values as the main criterion for grouping. This is not
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possible for textured surfaces which may show large variability in small-scale gray
level values. Texture segmentation and classification both require feature extraction.

Many features have been proposed in the literature that measure texture pro-
perties. Textures can be described in terms of features like homogeneity, contrast,
correlation and entropy. These measures can be obtained from statistical distributions
of the gray level values. For example, Weszka et al. (1976) calculate the frequency
of pixel value differences in an image fragment and base a set of texture measures
on this one-dimensional distribution. Haralick et al. (1973) have introduced the co-
occurrence matrix as a two-dimensional distribution of specific gray level occurrences.
Their co-occurrence measures, calculated from these matrices, are among the most
widely used textural features. Experiments, performed in the areas of psychology and
biology, suggest that the probabilities of spatial gray level distributions play a role in
human texture identification (Conners and Harlow, 1981). Other feature sets empha-
size the frequency and direction of pattern repetition. Features of this type can be
obtained from the Fourier transform of an image fragment. Weszka et al. (1976) have
experimented with a certain kind of Fourier features and found this representation in-
ferior to co-occurrence measures. Augusteijn et al. (1993), on the other hand, showed
that a different variety of Fourier measures could outperform co-occurrence features.
However, the Fourier transform is a global transformation of an image segment and
may not be the most appropriate method to represent local gray level variability.
Gabor filters measure the spectrum locally and have recently been used profusely
for texture classification and segmentation. Lu et al. (1991), Jain and Farrokhnia
(1991), and Greenspan and Goodman (1993) have all based their texture identifica-
tion methods on Gabor filters. It is also possible to emphasize the stochastic nature of
textures and use Markov Random Field features or fractal features as a texture cha-
racterization. Markov Random Field features were used by Khotanzad and Kashyap
(1987) for texture classification and Pentland (1986) has used a fractal representation
for this purpose. Alternatively, local gray level variability could be used directly as
a texture representation. He and Wang (1992) have introduced the texture spectrum
and have shown how this representation can be used for texture classification and
segmentation. This method defines the notion of a texture unit which specifies the
location of pixelsin a 3 x 3 neighborhood with larger and smaller gray levels than the
centra] pixel. The texture spectrum is a histogram of texture units. Augusteijn et al.
(1993) have used a gray level averaging scheme which represents a texture by means
of the gray value of a central pixel and a set of average gray values of increasingly
larger neighborhoods. This representation is particularly simple to calculate.

Independent of the texture representation used, some further processing is ne-
cessary for classification and segmentation. Statistical clustering techniques are com-
monly employed, neural networks can be used as an alternative. The appeal of neural
networks for pattern classification is based upon several considerations. They appear
to perform as well as or better than other classification techniques and require no as-
sumptions about the nature of the distribution of the pattern data. A comparison of
neural networks to other methods like K-nearest neighbor and discriminant analysis
has shown that neural networks can achieve equal performance using a much smaller
set of training data (Hepner, 1990). Neural networks can be divided into two catego-
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ries with respect to basic learning strategies. One category uses supervised learning.
These networks employ a set of training patterns to establish an association between
feature patterns and their corresponding categories. This association is manifested
by the internal structure of the network consisting of units and weighted connections.
The well-known backpropagation architecture (Rumelhart et al., 1986) is the proto-
type of this category. A backpropagation network is a static structure requiring the
researcher to specify the number of hidden layers and number of units in each of
these layers. It has been found that network performance is strongly dependent on
an appropriate design of this internal configuration (Baum and Haussler, 1989), but
determining the correct number of internal layers and units is more an art than a
science. The cascade-correlation architecture (Fahlman and Lebiere, 1990) solves this
problem by allowing a network to build its own internal arrangement during training.
This dynamic architecture will build a near-minimal structure sufficient for a given
pattern recognition task. The other neural network category employs unsupervised
learning and does not require the existence of a training set. Networks of this cate-
gory cluster their input data based on pattern similarity. The Kohonen architecture
(Kohonen, 1988) serves as the prototype. This network, also called the Kohonen self-
organizing map, has no internal structure. It simply consists of an input layer which
accepts the feature patterns and an output layer representing the clusters. It creates
a topology preserving map in which units which are geometrically located near each
other will learn to respond to similar input patterns. This architecture can help to
gain insight into the underlying structure of the classification problem because it can
show how the various textures are clustered. An example of this capability can be
found in Augusteijn and Dimalanta (1992).

Both supervised and unsupervised network learning have been used for texture
classification. A large literature is available on the use of neural networks for texture
classification and segmentation. The following is a small sample of some more recent
publications. Kirk and Pimmel (1992) employ a standard backpropagation network to
classify synthetic image textures produced by a Markov process model. Scarberry and
Zhang (1991) use this same architecture to categorize textures in biomedical images
according to their dominant orientation. Shang and Brown (1992) use a combination
of two cascaded backpropagation networks for texture classification. The first net-
work in the cascade performs feature extraction by means of a principal component
transformation, while the second network is responsible for the actual classification.
Schramm and Spinnler (1992) compare the performance of backpropagation networks
and restricted coulomb energy (RCE) architectures on some industrial texture seg-
mentation tasks. An RCE architecture is configured dynamically during training.
They found that the two architectures showed similar performance. Simula and Visa
(1992) report on the capability of a Kohonen architecture to perform unsupervised
texture classification and segmentation. Lu et al. (1991) use Gabor filters in combi-
nation with a Kohonen network for texture segmentation. A similar combination was
employed by Greenspan and Goodman (1993). Their work is an example of a combi-
ned neural network and rule-based approach for unsupervised and supervised learning
while providing probability estimates for the output classes. Hybrid networks have
also been studied. Hernandez et al. (1992) use a hybrid of a backpropagation network
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and Kohonen’s learning vector quantization (LVQ) method for satellite image data.
LVQ is a supervised extension of Kohonen’s self-organizing map. This study uses
gray level values, not textures, but the network architecture could also be employed
for texture classification.

2. The Cascade-Correlation Neural Network Architecture

Texture classification and segmentation are pattern recognition tasks. Pattern recog-
nition is a major application area for neural network technology and many different
architectures can be used. The experiments, described in this paper, apply cascade-
correlation (Fahlman and Lebiere, 1990), and this architecture will be discussed in
some more detail. Cascade-correlation is a feed-forward neural network designed to
improve the slow learning characteristics of standard backpropagation. Its main dis-
tinguishing feature is its dynamic character: the network builds its internal structure
incrementally, during training. Thus, the programmer need not be concerned with
the appropriate number of units in the hidden layer(s) because the network itself
will allocate the number of nodes required to solve the problem. The essence of the
training algorithm is as follows. The initial network consists of only two layers: an
input and an output layer which are completely connected. These connections are
trained until no significant changes occur anymore. If, at that point, the total error
is still unacceptably high, a hidden node will be allocated to further reduce the total
error.

The training of hidden nodes occurs off-line. A pool of candidate hidden units
is allocated. Each candidate receives activations from all input units and all hidden
nodes previously inserted into the network. At first, only the input connections of the
candidate units are trained. The algorithm attempts to maximize the correlation be-
tween a candidate’s output and the remaining output error of the network calculated
over all training patterns. The candidate whose output correlates best with this error
will be able to reduce it to the greatest possible extent. This candidate is selected as
the hidden node to be inserted into the network. It is placed in a separate layer above
all previously allocated hidden nodes. In this manner, a cascade of hidden nodes is
built. Figure 1 shows this architecture. The newly allocated hidden unit is inserted
together with its trained input connections. The weights of these connections will
remain fixed during the remainder of the training session. Each hidden node serves as
a permanent feature detector. Once inserted, its functionality will never be corrupted
by the allocation of other hidden units. This also enables incremental learning by
this architecture. The training set can be partitioned into lessons. Each lesson may
represent a certain aspect of the problem which can be learned by itself.

After its insertion into the network, a hidden node is connected with the output
units, and these connections are now trained. All output connections are re-trained
after each insertion. The actual training procedure is the quickprop algorithm, a
second-order improvement to back-propagation, also developed by Fahlman (1988).
The cycle of hidden node allocation and training of the output connections is repeated
until the total error falls below a preset limit (successful termination) or until a preset
maximum number of hidden units is reached (unsuccessful termination). There are
basically two ways to measure the network’s error. One measure considers the
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Fig. 1. The cascade-correlation architecture.

individual outputs of the network and continues training until all of them are within a
preset distance from their targets. In this manner, all patterns in the training set are
learned within this tolerance. The other measure considers the total distance between
the network’s outputs and the corresponding targets. Trainingis completed when the
average error falls below a preset limit. In this case, some training patterns may
still be misclassified after successful termination. These patterns are often outliers
(exemplars, not characteristic of the texture class). Overall classification performance
may be improved if the network is not forced to learn to classify these outliers correctly.
A network, trained in this manner, is also likely to be more noise resistant. If the
patterns in the training set are noisy, the network will learn the noise as well as the
classification features. By not requiring the network to learn the noisiest patterns in
the training set overall performance on a test set can be significantly improved.

3. Texture Representations

A surprisingly small number of comparative studies has been performed to deter-
mine which ones of the many texture representations are best for classification and
segmentation purposes. One of the older comparisons is the study by Weszka et
al. (1976) who compared the performance of gray level difference density measures,
co-occurrence measures, a set of features derived from the Fourier transform, and
run-length matrix analysis on a terrain classification task. They obtained the best
performance from the co-occurrence measures. Their work is experimental in na-
ture and performed on a very small data set. Conners and Harlow (1980) compared
features on generated textures and concluded that the co-occurrence features perfor-
med better than run-length matrix analysis, gray-level difference density, or measures
derived from the Fourier spectrum. This study essentially agrees with the work of
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Weszka et al. but the results are based on theoretical analysis rather than experi-
ments. Du Buf et al. (1990) compared features for image segmentation and found
that co-occurrence measures performed among the best. Ohanian and Dubes (1992)
compared co-occurrence features, Gabor filters, Markov random field features, and
fractal features on several synthetic and natural scenes. They did not find a single,
universally best, feature set, but concluded that co-occurrence measures were best
for the classification of natural scenes. Augusteijn et al. (1993) compared gray level
averaging, co-occurrence features, gray-level difference density, texture-tone analysis,
Gabor filters, and a variety of features derived from the Fourier transform on satellite
image data. This study also did not result in a universally best set, but showed that
certain Fourler features could sometimes outperform co-occurrence measures. This
result was confirmed in a different study (Augusteijn and Clemens, 1994) involving a
small set of textures from the Brodatz atlas (Brodatz, 1966). However, when these
experiments were repeated on a larger collection of Brodatz textures, co-occurrence
measures again proved to be superior. These measures require extensive calculations
and a system using them may be relatively slow. Some of the alternative represen-
tations can be calculated faster. Some of the more important texture measures are
discussed in the following sections.

3.1. Co-occurrence Features

Co-occurrence features were introduced by Haralick et al. (1973) and are defined
entirely in the spatial domain of the image. The method assumes that the texture
information is adequately specified by a set of gray-tone spatial-dependence matri-
ces, called co-occurrence matrices. A co-occurrence matrix measures the frequency
of the simultaneous occurrence of two specified gray levels at two designated rela-
tive positions in an image fragment. These matrices can be computed for various
angular relationships and distances between pixel pairs. The textural features are
calculated from the two-dimensional probability densities provided by the normalized
co-occurrence matrices. Haralick et al. (1973) define fourteen different measures. Not
all researchers use the entire set. A subset of four measures: homogeneity, contrast,
correlation and entropy is commonly used, and the formulae of these measures are
included here as examples. If p(i,) denotes the (7,7)-th entry in a normalized co-
occurrence matrix, N, is the number of distinct gray levels in a quantized image, p,
and p, represent the marginal-probability matrices obtained by summing the rows
and columns of p(4,j), respectively, and pg, oz, py, 0, are the average values and
standard deviations of p, and p,, then these measures are calculated by means of
the following formulae:

Ny Ng
Homogeneity : Zzp(i>j)2 (1)

i=1j5=1

Ny-1 N, N,

Contrast : Z n? ZZP(i,j) ) li—jl=n (2)

n=0 i=1j=1
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These measures are often combined with the average value and standard deviation of
the gray levels of the image fragment.

3.2. Fouriler Measures

The Fourier transform of an image fragment f(z,y) is defined by:

F(u,v) :/ / e?miustvy) £ o) dedy (5)

where u and v are the spatial frequencies in the z- and y-direction, respectively.
The fast Fourier transform (FFT) algorithm, when applied to an image fragment,
calculates a complex-valued spectrum of the same size as the image fragment. This
algorithm performs a transformation from the spatial coordinates (z,y) to the spatial
frequencies (u,v) The Fourier power spectrum is defined as |F?| = FF*, where *
denotes the complex conjugate. This real-valued power spectrum is used to provide
the feature sets. Weszka et al. (1976) describe a “rings and wedges” representation.
The “ring” features are averages of |F'?| taken over ring-shaped regions centered at
the origin. They provide a measure of texture coarseness. The “wedge” features
are averages of |F?| taken over wedge-shaped regions, also centered at the origin.
They represent the angular distribution of values in |F?| and are sensitive to the
directionality of a texture.

Alternatively, it is possible to derive statistical measures from the Fourier power
spectrum. Phillips! has introduced the following four features. If I(j,k) = |F(j, k)|
is the matrix containing the amplitudes of the spectrum and N is the number of
frequency components, then these features are defined as:

Maximum Magnitude : max{I(j, k) : (j, k) # (0,0)} (6)
Average Magnitude(Ap) :  »_ I(j,k)/N (7)
ik
, 1/2
Energy of Magnitude : Zl(j, k)? (8)
ik
Variance of Magnitude : Z[I(]’, k) — Ap)?/N (9)
ik

1 Dr. Keith Phillips, Department of Mathematics, Univ. of Colorado at Colorado Springs, private
communication
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These measures can be used in combination with statistical features derived from
the pixel gray level values of the image fragment. The average value and standard
deviation of the pixel gray levels are good examples of such features.

Another option is to use the amplitudes of a selected set of frequencies as a feature
set. Frequency selection is problem dependent. In certain cases, the power spectra
of the various textures may contain characteristic frequencies; i.e., frequencies that
consistently appear with high energy for certain textures. These are called the “do-
minant” frequencies of the texture set. The amplitude values of a set of “dominant”
frequencies can be used as a feature set to distinguish between the textures. This re-
presentation was found to be extremely useful by Augusteijn et al. (1993). However,
determining which frequencies are most characteristic for a given set of textures is
not straightforward and requires extensive experimentation.

3.3. Gabor Filters

The Gabor kernel has properties which make it attractive as a receptive field for image
feature extraction (Lu et al., 1991). A symmetrical, two-dimensional Gabor kernel
(filter) is the product of a Gaussian-shaped window and a complex exponential term:
. 24 .2
¥ewioun = fop 2@ ) bepita ) (10
where (z,y) are the variables representing position in the spatial domain, (u,v) are
the spatial frequencies, and o is the width of the Gaussian. A different width may
be used in the z- and y-direction which would give the filter a directional prefe-
rence. Thus, each Gabor filter is specified by three (or four in the case of different
width) parameters: ¢, u, and v and is a function of (z,y) The Gabor transform,
G(z,y), of an image segment, I(z,y), is defined as the convolution of a Gabor kernel
¥(z,y;0,u,v) with I(z,y):

G(u,v)://\If(w,y;a,u,v)f(m,y)d:cdy 4 (11)

The resultant transform is complex. However, only the magnitude is used because
the phase information does not seem to improve classification (Lu et al., 1991).

4. A Texture Classification Experiment

A set of classification experiments was performed on nine weave textures taken from
the Brodatz atlas (Brodatz, 1966). The objective was to compare a variety of texture
representations with respect to their classification performance. A more detailed
discussion of these experiments can be found in Augusteijn and Clemens (1994);
only the most important results are reported here. Twenty image fragments of size
32 x 32 pixels were selected from each texture. These fragments were divided into a
training and a test set of equal size. Three feature sets were found to provide the best
classification results. They are: a set of co-occurrence measures, a set of amplitudes
of “dominant” frequencies in the Fourier transforms of the texture fragments, and a
set of Gabor filters. These feature sets were used as inputs to the cascade-correlation
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neural network which served as the classifier. The network was configured with nine
output units corresponding to the nine texture classes. The output unit showing the
highest activation determined the classification of the input pattern. Each experiment
consisted of five trials; i.e. a network was always trained five times on the same set
of data. This is because the network weights are initialized to small random values.
Thus, each trial has a slightly different starting point and the resulting trained network
may show different performance. Both the range of performances and the average
value are reported in percentages for each experiment.

Four co-occurrence matrices, each computing the frequency of gray-level co-
occurrence at neighboring positions in four different directions (horizontal, vertical,
and along the two diagonal directions of the image) were calculated for each image
fragment. The set of co-occurrence features consisted of thirteen of the fourteen meas-
ures defined by Haralick et al. (1973). Only the maximal correlation coefficient, which
requires the calculation of the second-largest eigenvalue of a co-occurrence matrix and
is sometimes found unstable, was not implemented. Features were calculated from
each one of a set of four matrices and then averaged over the four directions. The
thirteen co-occurrence measures were combined with the average value and standard
deviation of the gray level values in the image fragment. The performance of this
feature set is shown in the leftmost columns of Table 1.

Many experiments were performed with Fourier measures. The weave textures
show a great deal of similarity which was reflected by a resemblance in their Fourier
transforms. Therefore, it was not possible to find frequencies in the Fourier spectra
that were characteristic for specific textures in the set in the sense that they appeared
with high amplitude values only for these textures. However, a set of frequencies
could be identified that appeared with relatively high amplitudes on the average, as
measured over the entire texture set. When the amplitude values of these frequencies
were selected as a feature set their performance achieved better results than any other
feature set used in the experiments. The results obtained from a set of fourteen of
these frequencies are shown in the middle columns of Table 1.

The selection of a set of Gabor filters requires the identification of appropriate
spatial frequencies and Gaussian widths. Many experiments were performed in this
category. The best results were obtained from a set of dyadic modulation frequencies,
similar to the ones defined in Lu et al. (1991). Given a set of spatial frequencies (u, v),
the modulation frequency is defined as wq = (u?+v?)*/? which, when combined with
the orientation 6 = tan=!(v/u) and a Gaussian width o, can be used in equation
(10) to calculate a specific Gabor filter. The most successful experiment in this
category employed 24 filters covering all combinations of parameter values wy =
w/4, 7/8, m/16 ©/32 and 6 = 0, 30, 60, 90, 120 and 150 degrees. Each filter had
the same size as the image fragments and used a Gaussian width ¢ = 10 pixels.
Features were calculated as dot products between the filters and the image fragments.
The results are shown in the rightmost column of Table 1.

Table 1 shows that the set of amplitude values of selected frequencies of the
Fourier transform gave the best classification performance. It is also noticeable that
this set showed a very narrow performance range compared to the other two sets.
Therefore, these are the preferred measures to classify the nine Brodatz weaves. The
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Tab. 1. Peiformance in % of various texture measures on the classi-
fication of nine weaves.

Performance| Average Performance Average Performance Average
Range Performance| Range of |Performance of| Range of |Performance of
of Co- of Co- Amplitudes of| Amplitudes of Dyadic Dyadic

occurrence | occurrence Dominant Dominant Gabor Gabor
Measures Measures Frequencies Frequencies Filters Filters
82.2-91.1 86.2 93.3 -94.4 93.8 77.8 - 85.6 82.0

main disadvantage of this method is that finding an appropriate frequency selection
is very much a matter of “trial and error”, requiring an appreciable amount of expe-
rimentation. Figure 2 shows the set of weave textures and the classification result
obtained by means of the Fourier features and co-occurrence measures. This figure
clearly shows that some weaves can be classified with great accuracy while others
show relatively poor results. It is also seen that for some textures one classification
method is much better than the other. The weave pattern shown in the middle of
the bottom row can be classified accurately by means of the Fourier features but not
by means of the co-occurrence measures. The weave pattern in the right bottom cor-
ner, on the other hand, is classified somewhat more accurately by the co-occurrence
measures. The co-occurrence measures also suffer more from an edge effect than the
Fourier measures as shown by the sequences of misclassifications of image fragments
located near the edge of a segment. These examples clearly show the problem with
identifying a universal best set of texture measures since performance depends on the
collection of textures employed.

5. A Texture Segmentation Experiment

The goal of texture segmentation is to find borders between differently textured re-
gions in an image. In order to accomplish this segmentation, it should not be necessary
to have any knowledge about the actual textures present. Unfortunately, most clus-
tering methods generally used for this purpose require an estimate of the number of
different textures. The neural network approach presented here does not require any
e priori information about the application once a network is properly trained. The
cascade-correlation architecture is again used, although other neural network archi-
tectures may also be appropriate. The network is trained to compare two feature
vectors originating from textured image fragments and decide if these feature vectors
were generated by the same texture or by two different textures. The main objective
of this research is to show that a network can be trained on a given set of textures
and generalize its training to the segmentation of other textures. In this way, a gene-
ral segmentation network can be obtained which can be used on any image showing
textured surfaces.

The initial experiments employed the same nine weave textures used for classi-
fication. These experiments were unsuccessful. It was discovered that the network
required a large texture set and many training examples before it could generalize the



Texture segmentation and classification using neural network technology 363

<)

Fig. 2. Classification performance of two sets of texture measures, misclassified
segments are shown in black: (a) the textures used in the experiment,
(b) performance of Fourier features showing 93.4 % correct classifica-
tion, (c) performance of co-occurrence measures showing 87.1 % correct
classification

essence of the segmentation problem. The experiments that were successful used 48
different textures, provided by the Brodatz atlas (Brodatz, 1966). These textures
were partitioned into three groups: one group to train the network, a second group
to serve as a validation set, and a third group to test the network on new textures.

A validation set is used to prevent overtraining. Overtraining occurs when the
data are noisy and the network learns the noise in the training set as well as the
features that distinguish the classes. There are several ways to prevent this problem.
One of the simpler methods is early termination. This approach attempts to terminate
a training session before the acquisition of noise begins to dominate the learning
process. This can be achieved by means of a validation set. During training, the
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overall error is measured over the validation set after each allocation of a hidden
unit. This error is expected to pass through a minimum value when the acquisition
of noise becomes greater than the acquisition of useful features. Network training is
terminated at that time.

The three texture sets are shown in Fig. 3. They are referred to as set 1 (repre-
sented by two segments of each texture, see Figs. 3a and 3b), set 2 (Fig. 3c) and set
3 (Fig. 3d). Two different kinds of tests were performed. Both tests used the first
texture collection of set 1 to train the networks while the textures of set 2 formed a
validation set. One test measured the ability of trained networks to segment images
consisting of the same textures as used in the training set. The second collection of
set 1 was used for this purpose. The other test measured the ability of these same
networks to generalize their segmentation capability to images consisting of textures
not used to train the network. This test used the textures of set 3. All texture seg-
ments were of size 160 x 160 pixels patitioned into fragments of size 32 x 32 pixels.
Texture features were extracted from each of these fragments.

Experiments were performed with several feature selections, but co-occurrence
measures gave by far the best performance. The same set of four co-occurrence
matrices as used for the classification experiments were calculated for each image
fragment. The best results were obtained with the four measures stated in equations
(1) through (4), but these measures were not averaged over the four directions in
this case. Instead, the values resulting from the different matrices were concatenated,
leading to a 16-component directional representation of the textures. Each set was
combined with the average gray level value of the image fragment. Thus, each textured
fragment was converted to a 17-dimensional feature vector.

Network training required input data obtained from two image fragments. Three
kinds of input patterns were generated. The first kind simply concatenated two fea-
ture vectors, the second kind used the difference of these vectors and the third kind
only employed the magnitude of the difference vector. Thus, the cascade-correlation
architecture was configured with 34, 17, or 1 input unit for the three kinds of input
patterns, respectively, and a single output unit. The output was trained to generate
a value 4+0.5 if the network input originated from two image fragments of the same
texture and a value —0.5 otherwise. It was found that the network required a large
training set to learn the segmentation task reasonably well. Only 400 image frag-
ments were available for training. But the pair combinations need not be limited to
neighboring fragments. If all combinations are used a training set of 159,600 patterns
will result. However, this set has a pronounced lopsided representation of the two
classes. The “equal texture class” is represented by only 9,600 patterns which amo-
unts to approximately 6% of the training data. A network trained in this manner is
expected to learn the “unequal class” extremely well but will make many errors in the
“equal class”. To remedy this problem, it was decided to use the full set of patterns
belonging to the “equal class”, but only a fraction of the patterns of the “unequal
class”. Five image fragments were randomly selected from each of the 16 textures of
set 1, and these 80 patterns were combined to generate 6000 pair patterns belonging
to the “unequal class”. Thus, the complete training set consisted of 15,600 patterns
with a somewhat stronger representation of the “equal class”.
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c) d)

Fig. 3. The texture sets used in the experiment. The top row shows the textu-
res of set 1 used for training (a) and for testing (b). The bottom row
shows set 2 (c) and set 3 (d).

It was found that many of the networks trained with concatenated vectors were
not successful in reaching a low minimum error on the validation set. Five of the
better performing networks in this category were selected for testing. The networks
trained with difference vectors showed much more consistent performance, and the
networks trained with the magnitude of the distance all performed approximately the
same. The networks were tested with the patterns derived from the textures of sets 1
and 3. Any negative network output was interpreted as an indication of the existence
of an edge between the two image fragments while a positive output indicated the
absence of an edge. Table 2 shows network performance as percentages of correct
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classification. This table also includes the results of the validation set (the textures
of set 2). It should be taken into account that networks were selected based on their
performance on the textures of set 2. True test performance should not be measured
on a validation set.

Tab. 2. Network performances in % using a set of directional
co-occurrence features.

Network Input | Performance on set 1|Performance on set 2 | Performance on set 3

Range | Average | Range | Average| Range Average
Concatenated |87.7 -92.2| .91.2 87.4 — 89.8 88.3 82.4 - 85.4 83.8
Vectors
Difference 92.0 -93.4 92.6 88.7T — 89.4 89.0 87.7 — 89.7 88.8
Vectors
Magnitude of [86.9 — 87.1 87.0 89.0 - 89.3 89.2 85.8 — 86.6 86.1
Difference

The same trained networks were also used to scan the images shown in Figs. 3b,
3¢ and 3d. During scanning, only feature vectors from two adjacent fragments were
used to generate the input data. Some representative scanning results are shown as
“edge maps” in Fig. 4. The scanning results are better than the performances shown
in Table 2 because neighboring fragments of the same texture show greater similarity
than fragments at a larger distance used in the test set.

6. Conclusion

Neural networks have been successful in the classification of texture sets and the seg-
mentation of textured surfaces. A variety of architectures, employing both supervised
and unsupervised training, can be used. The experiments in this paper show how
the cascade-correlation architecture can be employed for both texture classification
and segmentation. This architecture dynamically allocates its own hidden structure
during supervised training and shows relatively fast learning compared to standard
backpropagation.

Both classification and segmentation require the definition of appropriate texture
measures. The same measures can be used for both tasks. A large variety of texture
measures have been defined. Several comparative studies have not been conclusive in
rating these measures, but many studies have indicated that co-occurrence measures
(Haralick et al., 1973) are among the best. The calculation of these measures tends to
be slow depending on the implementation details. This paper discusses some features
based on the Fourier spectrum which provide an alternative to co-occurrence measures
and can often be calculated faster. However, performance may be dependent on the
application domain and more study is required to assess their value.

The application of a supervised neural network architecture to accomplish general
purpose segmentation is unusual. Segmentation of an unknown texture set is generally
accomplished by means of clustering, and an estimate of the number of textures
involved is often required. An additional disadvantage of clustering techniques is that
they do not take geometrical distance of the image fragments into account. It may
often be the case that fragments of the same texture that are located neareach
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)

Fig. 4. A representative set of edge maps obtained from the same network,
trained with directional difference input vectors, of test set 1 (a), set 2
(b) and set 3 (c).

other in an image show greater similarity than fragments that are further apart.
The neural network method discussed does not require an estimate of the number
of textures present and processes neighboring image fragments. During training, the
network essentially extracts a threshold from the training data. If the feature patterns
of two image fragments differ by more than this threshold, then the patterns are
assumed to be generated by different textures. But the network does not simply learn
the geometrical distance between the feature vectors since Table 2 shows decreased
performance when the magnitude of the difference vector is used as input. Apparently,
not all components of the feature vector are equally useful in discriminating between
the textures. The network learns to weight these components appropriately. The
network segmentation worked extremely well on the set of textures also used for
training. Its performance on other texture sets was less convincing, but the fact



368 M. F. Augusteijn

that it could segment those textures at all is remarkable. This segmentation can be
followed by a post processing method which can add missing edges to a border and
remove edges without continuation. The usual edge linking methods used in computer
vision are also applicable to these texture edges which may lead to greatly improved
segmentation.
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