Appl. Math. and Comp. Sci., 1994, vol.4, No.3, 371-395

A NEURAL NETWORK APPROACH TO GENOME
SEQUENCE ALIGNMENT

RoMAN W. SWINIARSKI*, D. WAAGEN*

A technique for the alignment of genome sequences based on an adaptive non-
linear dynamic neural network is proposed. We present an extension to the fixed
weight Hopfield neural network, creating a non-linear dynamic neural network,
with weights values adaptively changing during neural processing. The weights
of the proposed neural network are not fixed during the processing, but are
continuously updated to achieve the minimal alignment according to the mini-
mal sequence distance criterion. The binary coding of the alignment process
has been adopted from the original work of Sellers (1979) to adaptive dynamic
neural processing. The behaviour of the proposed neural network is modelled
by computer simulation and the corresponding results are discussed.

1. Introduction

One of the main objectives of nucleic acid and protein sequence analysis is disco-
vering significant patterns and interpreting them in relation to the course of DNA
processing, polypeptyde folding, protein biochemical function, and evolutionary de-
velopment related to each of these levels. Similarities and differences detected among
the sequences can be used among others for phylogenetic classifications, analogy ver-
sus homology evaluation, and understanding of evolutionary events of substitution,
insertion, deletion and recombination (Waterman, 1989; Sankoff and Kruskal, 1983;
von Heijne, 1989; Weir, 1983; Lesk, 1988).

Due to the enormous possibilities of combinations and size of existing genome
data bases the new effective techniques for genome sequence analysis and recognition
are needed. There are now thousands of DNA sequences with millions of bases in the
GenBank, EMBL and other international huge genome data bases (Coulson et al.,
1987; Dayhoff et al., 1978). Thousands of these sequences contain coding regions that
can be translated into aminoacid sequences and may be considered as a supplement to

directly determined protein sequences existing in the Protein Identification Resource
(PIR) data-base.

The fundamental works of biological sequence metrics (Sellers, 1974; Waterman
et al., 1976; Waterman, 1989), the dynamic programming concept (Bellman, 1957),
sequence analysis and transformations (Delahaye, 1988; Wimp, 1981), as well as finite
automata and regular expressions (Hopcroft and Ulman, 1979) may be considered as

* Depé.rtment of Mathematical Sciences, Computer Science, San Diego State University, San
Diego, USA, (and Warsaw University of Technology, Warszawa, Poland)

372 R. W. Swiniarski and D. Waagen

a basis for the biological sequence processing. In the mathematical analysis of macro-
molecular sequences one of the most demanding and developed areas is the comparison
and characterizing of sequence differences. A fundamental problem is associated with
the development of efficient optimal sequence alignment algorithms and corresponding
fast computer programs. The sequence alignment, due to a large size of sequences
and enormous number of possible insertions, deletions or substitutions of bases in the
sequences (growing exponentially with a number of bases being considered) belongs
to the class of hard NP-complete combinatorial optimization problems.

So far most of sequence alignment algorithms have been dynamic programming
algorithms. Originally introduced by Needleman and Wunsch (1970), the application
of the dynamic programming technique (Bellman, 1957) in sequence alignment assu-
med the maximization of a similarity measure (maximizing the amount of matching
in an alignment). Sellers (1974) introduced the minimization of a distance measure,
but it has been shown (Smith et al., 1981) that similarity maximizing and distance
minimizing are essentially equivalent. Both techniques allow for the inclusion of gaps
(by insertion or deletion operations), but the weighting (penalty) functions conside-
red only the existence of single sequence element gap per sequence. Over the last
decade many different sequence alignment techniques both for a pair of sequences
and for multiple sequences have been developed (Waterman, 1989). Waterman et al.
(1976) have introduced a generalization of the treatment of gap weights by including
gaps of more than one sequence element in length with the only restriction that the
weight function must be monotonically increasing with the gap length. Then Sellers
(1979) proposed the idea of separating the weights assigned to the gaps at the end of
sequences from those in the interior of a sequence, why particularly suggesting that
the terminal gap should be unweighted. Many sensitive methods for protein sequence
alignment use the PAM-250 matrix (Dayhoff et al., 1978) of similarity scores for pa-
irwise amino acid matching. Dayhoff’s matrix bias can be shown to produce a linear
gap weighting, which makes it possible to find a solution in time proportional to the
square of sequence length, unlike the cubic time required for weights as a non-linear
function of gap lengths. Fitch and Smith (1983) as well as Altschul and Erickson
(1986) studied assigning the penalty for gap in alignment as a linear function of the
inserted or deleted residues. The early sequence alignment algorithms were designed
for the single pair of sequences. Fitch (1970) showed how to align the third sequence,
and Murata et al. (1985) extended the pioneering dynamic programming algorithm
of Needleman and Wunsch (1970) to operate on three sequences. Recently several
methods have been proposed for multiple sequence alignment. The techniques of
Sankoff (1975), Felsenstein (1982), Sobel and Martinez (1986), Queen et al. (1982)
and Carillo and Lipman (1988) are well applicable in the situation when the sequence
homology there is known to be strong. Freedman (1984) proposed an algorithm for
similarity measures with length independent gap penalties. Waterman et al., (1984)
proposed an algorithm for finding unknown patterns that occur imperfectly above
preset frequency. Gotoh (1986) proposed some efficient algorithms for three sequen-
ces alignment using a traceback procedure. Bacon and Anderson (1986) introduced
a technique for aligning segments of several sequences at once. Miller and Myers
(1988) analysed sequence comparison with concave weighting function. Zucker and

A neural network approach to genome sequence alignment 373

Somorjai (1989) extended the use of dynamic programming algorithm into molecular
sequence comparison in three dimensions. Altschul and Lipman (1989) have extended
the concept of Carillo and Lipman’s algorithm (1988) of alignment to the definition
of multiple alignment cost as the cost of an evolutionary tree.

Recently, a few attempts have been made to develop a rapid alignment method
to facilitate sequence data base search (Fickett, 1984; Lipman and Pearson, 1985;
Coulson et al., 1987; Arbanel et al, 1984). These algorithms extend the classical
distance minimizing dynamic programming algorithms for sequence alignment to the
alignment of protein molecules in three dimensions using a linear penalty. The concept
of match density in pattern similarities in genetic sequences was introduced by Goad
and Keneisha (1982) and was extended by Sellers (1984) as a continuation of the
dynamic programming technique, proposed by Needleman and Wunsch (1970). There
are also several works on sequence alignment which use statistical procedures. Fitch
(1970) and have used a modified likelihood-ratio test to estimate the probabilities of
best scores. Ohya (1989) employed the mutual entropy for the analysis of molecular
evolution.

The majority of sequence alignment algorithms belong to the class of the sequen-
tial digital dynamic programming techniques. All sequence alignment algorithms are
time consuming, particularly for multiple sequence alignment, and critically depend
on the sequences length. For example, dynamic programming methods take time and
storage of O[(2n)'] to compare [sequences of length n. Some algorithms mentioned
above, provide some reduction of the computation burden, however a computational
complexity of classical sequential numerical algorithms is very high, and alignment
of the sequences with large length and matching the sequences in a huge data bank
create a basic computational difficulty.

There are also limited attempts in the application of formal languages, regular
expressions and automata to sequence processing, as well as the application of ar-
tificial intelligence concepts (perceptron) (Stormo et al., 1982; Minsky and Papert,
1969). These methods are related to the statistical linear discriminant techniques
(Gnanadesikan, 1977). Quian and Sejnowski (1987) applied a feedforward backpro-
pagation neural network for predicting the secondary structure of globular proteins.
Bohr et al. (1989) applied a static neural network for semi-empirical studies of pattern
matching between the primary and secondary structures of proteins.

In the paper we propose a technique for the alignment of genome sequences based
on an adaptive non-linear dynamic neural network. We propose an extension to the
fixed weight Hopfield neural network (Hopfield and Tank, 1985; Swiniarski, 1991),
creating a non-linear dynamic neural network, with network weights values adaptively
changing during neural processing. The weights of the proposed neural network are
not fixed during the processing, but are continuously updated to achieve the minimal
alignment according to the minimal sequence distance criterion. The binary coding
of the alignment process, used in the proposed dynamic neural network, has been
adopted from (Sellers, 1979) to adaptive dynamic neural processing. The behaviour
of the proposed neural network is modelled by computer simulation, and the results
are discussed.

376 R. W. Swiniarski and D. Waagen

In the sequel, we will use the terms “node” and “neuron” interchangeably. A
legal path in the lattice consists of a path that traverses all characters of both se-
quences. A legal path starts at the upper left node and finishes at the lower right
one of the alignment lattice. The internal nodes represent intermediate steps in an
alignment process. A diagonal edge denotes a continuation or a mutation. A vertical
edge denotes a deletion, and a horizontal one an insertion transformation on a single
position of sequences.

Visually, we will consider as legible only the sequences having no positive “gra-
dient” over coordinates of the alignment lattice. The alignment lattice clearly illu-
strates the possibility of minimal alignment solution by the dynamic programming
method. The final result of the alignment process may be interpreted on the align-
ment lattice as a binary image of states of nodes (4,5) (i = 1,2,...,k; j = 1,2, e)
The node with state ‘1’ will indicate the node belonging to the transformation path
which results in an alignment, while the one with state ‘0’ will indicate other not
applied transformations (Fig. 3).

b —
Sat . ;N R E S T
o, v Fomer s o —————
a 1 : : ' : : i
e S S
* N : : : : : : :
P . AL T T T SEEEE SEEEE
1] 1] Y 1 1] 1 L]
D . : ‘o, : : .
L e -
Ui R
E'""E""'E' -------- 'r---:f.;---:-----:
S 1 1 [: : ®e : :
1 L} 1 1] M N 1
:r-'--i--"-:- TR {---‘4;0----:
TGRS N
A e N
R : H : A H
SN O P A .
Y E E E : : N
[A— L.T....t.-...:..---:....-:.......;
Minimal alignment 1 Minimal alignment 2 End
a INDUSTRY a INgd DUSTRY
Cost J=6 Cost J=6

Fig. 3. Example of binary coding of alignment.

On account of the combinatorial complexity of the dynamic programming techniques,
an approach was sought that would perform the optimizations based on interactions
between the elements of the alignment lattice. Indeed, the work of Hopfield and Tank
(1985; 1986) provided the intellectual inertia for this research. Hopfield and Tank
lluminated the possibility of using an interconnected set of analog processors to solve
optimization problems, including the traveling-salesman problem.

A neural network approach to genome sequence alignment 377

We have proposed the dynamic, Hopfiled type neural network for solving the
above-stated sequence alignment problem (Fig. 4).

Inputs

Feedback

Fig. 4. Dynamic Hopfield neural network.

3. Introduction to the Hopfield Neural Network

The Hopfiled dynamic neural network is the system of N dynamic (with internal
memory) neurons interconnected through the weights. From the topological point
of view the Hopfiled dynamic neural network consists of one layer of neurons. The
output of each neuron is fed back to the inputs of all other neurons. The strength
of the feedback connections is modelled by the connection weights. The weight w;;
denotes the connection strength from the output of the j-th neuron to the input of
the i-th one.

Every neuron is considered as a simple first-order input-output dynamic system,
with the internal state (memory) «;(t) (i = 1,..., N) and influencing the environment
via the output signal y;(t) (¢ = 1,2, ..., N). All the internal states of the network may
be denoted by the state vector @(t) = (21(t), 22(t), ..., zx(t))T € RN and the output
vector y(t) = (y1(t),y2(?), ..., yn(?))T € IRN. The input to the neuron (control
input) is defined as a weighted sum of outputs of all the neurons of the network with
additional input bias I;

N
ui:Zwijyj(t)-!-Ii, t=1,2,..,N (4)
=1

The signals y; (j = 1,2,..., N) come as a feedback from the neuron outputs, while
signals I; are external inputs to the network (denoted as a vector I € IRV).

378 R. W. Swiniarski and D. Waagen

The following model describes the behaviour of the dynamic “motion” of the
neuron in the dynamic neural network

dz; N .
dt(t) :—%_-mi(t)—}—Zwijyj(t)—i—Ii, 1=1,2,..,N (5)
j=1
zi(to) =&, 7=RC (6)

The sigmoid (continuous) output activation function y;(t) = fr(z;(t)) describes the
relation between the neuron internal state (representing the internal memory of neu-
ron) and a neuron output signal. The activation function should be a monotonically
increasing and bounded function. Monotonicity guarantees a response without a lo-
cal maxima or minima, while bounding the response protects the nodes from their
mutual excitation into a resonant state. A shifted hyperbolic tangent function was
chosen because 1t fulfils these criteria. The formula for the function is as follows:

y= f(z,8) = % (1 + tanh (%)) (7)

The domain of this function is the interval (—oo,00), while the corresponding range
is [0,1]. The parameter 8 modifies the slope of the response function, allowing
the function to vary from a smooth response to approximating a hard delimiter. This
function describes the natural saturation of the neuron output. The output activation
function with “steep” characteristic of a graph limits the neural network outputs
(corresponding to the stable equilibrium states) to the corners of N-dimensional
hypercube. Since the neuron output activation functions are non-linear, the whole
neural network is a non-linear dynamic system with the internal memory.

As a matter of fact, the neural network under consideration processes the infor-
mation in a concurrent and distributed way. The evolving of the internal states of
the network depends on the initial conditions ® () at the initial time ¢, and exter-
nal input I. All neurons update their states asynchronously as in electric circuits.
The output saturation functions limit the network internal state to the interior of an
N-dimensional hypercube.

In the neuron (network node) paradigm, the voltage of each neuron (node) multi-
pled by the corresponding connection weight constitutes one of the inputs into another
neuron. Let us assume that the output activation function of the neuron f; produces
the output from the interval [0, ymasz]. The voltage values of the j-th neuron output
y; multipled by the connection weight w;; of the ¢-th neuron is considered as one of
the inputs to the i-th neuron. Since voltage values of the neuron output are positive
(ranging from 0 to Ymax), positive weights values will cause excitation of the neuron
(rise of neuron voltage). This input with positive weight will be called the ezcitatory
input to the neuron. On the other hand, negative values of the weights will inhibit
the input voltage influence (lower neuron voltage). The inputs with negative weights
are called the inhibitory inputs to the neuron.

The Hopfield dynamic neural network with N dynamic neurons having “steep”
sigmoid output activation functions, is based on the paradigm of natural tendency

A neural network approach to genome sequence alignment 379

of the evolving dynamic system towards the internal state equilibrium in one of 2V
corners

(Y1, Y205 s Yiw), v € {min, max} (8)
of an N-dimensional hypercube with the boundaries
Yiy, v € {minmax}, i=12,..,N (9)

This equilibrium state is associated with the minimal energy defined in the system.
For the network with the neurons having steep (high gain) continuous sigmoid acti-
vation function we can write the following Liapunov energy function for the network

LA N ‘
E=—3 SO wijui(t)y; (t) - Zyi]i ' (10)

i=1j=1

As it was shown by Hopfield (1985), the equations of network motion with symmetric
connection w;; = wj; always lead to convergence to the stable states z{ and, of co-
urse, “stable outputs” y (since output activation function is increasing). This results
from the fact that the derivative of the energy equation with respect to time 0E/0t is
non-negative or zero for all ¢ for any change of the states. For the steep neurons out-
put activation function (with the high gain) the stable states of network guarantee the
local minima of the energy function. These stable states y* = (yi)u, Va0 Uiy D7
(v € {min, max}) correspond to the state location in the interior of an N-dimensional
hypercube with 2 corners. These states may act as “binary coded” results. The
neural network feature of tending to the “binary” stable states which correspond to
the minima of network energy function is the basis for analog computations. The sta-
ble states (results) may by “programmed” by the preselection of the weights values.
The specific weights values depend on the computational problem.

To ensure the stability of the solution, several characteristics or properties of the
interconnection matrix W are required. One property is that the interconnection
matrix, W, representing the reinforcement or inhibitionary relationship between two
processors, is symmetric, i.e. w;; = wj; for all 4,j. Another property is that the
diagonal elements are equal to zero (i.e. w;; = 0 for all ¢). The elements of this
matrix are derived from the energy equation, and are fixed or constant in value.

The fixed nature of the weights matrix in the Hopfield neural network is a se-
rious limitation. In fact, we assert that, since the elements of interconnection matrix
W are constants and cannot change with time but are fixed, the Hopfield network
cannot consistently represent the legal paths in an alignment lattice. This limitation
is illustrated in the following section.

4. Neural Network for Genome Sequence Alignment

As it has been discussed earlier, the transformation events of deletion, and matching
or substitution, are represented by legal paths on an alignment lattice. The legal
paths are shown graphically in Fig. 5. Due to the triangle inequality, an insertion
followed by a deletion or vice versa has a higher cost than an equivalent substitution,
and constitutes an illegal path.

380 R. W. Swiniarski and D. Waagen

Start b
INDUSTRY | NTERE S T
INTEREST

a

R L L L LR RS

<A wrcCcgz~-

End
a’ IN¢¢ DUSTRY
b’ INTERESD ¢

Fig. 5. Binary coding and legal paths.

4.1. Dynamic Neural Network for Genome Sequences Alignment

We propose a dynamic neural network for genome sequences alignment. Even though
from the topological point of view the proposed network consists of one layer of
neurons, for the design logical purposes we will consider this network as a rectangular
lattice. This lattice is similar to the alignment lattice described previously. For the
alighment of the sequences a and b of lengths k and I, respectively, the neural
network will consist of k¥ + 1 rows and [+ 1 columns of neurons.

We will denote by z;; the internal state and by y;; the output of the 7j-th
neuron, corresponding to the node in row i and column j of the alignment lattice,
Similarly, we will denote by T(i-1),j—1) and yi_1y,j-1) the state and the output
of the neuron corresponding to the node in row (i — 1) and column (j — 1) of the
alignment lattice. The connection weight from the output y;; of the neuron 7j to
the input of the neuron (i — 1), (j — 1) will be denoted by Wij)i(i-1),(j-1)-

4.2. Inadequacy of the Hopfield Paradigm for Genome
Sequence Alignment

If the node y;; is not active, then the path Y(i+1),j Yi+1),j would constitute a legal .
insertion. To enable the legal insertion, wjj (i+1)j4+1) should have a positive value,
so that if y;; is active, then it will excite the nodes Y(i+1),(i4+1)s YGi+1),j, and the
formation of this legal path.

If a fragment of a path selected from the ij-th node is a deletion operation, then
both y;; and yg41); are active. The weight W5 (i+1)(j4+1) would have to suppress
or inhibit the y(i41),j4+1) node from becoming active, or, otherwise, an illegal path
Yij» Yi+1),5> Ye+1),(j+1) can be formed. To inhibit the node y;41 j41, the value of
w;41,j+1 would be negative.

Obviously, the weight w; (i41)j+1) cannot be preselected as in the Hopfiled
neural network, since preselection prohibits the formation of all possible paths on the
alignment lattice given a priori the input data. Thus, as shown in the example above,

A neural network approach to genome sequence alignment 381

to enable all paths in the alignment lattice to be possible, a weight must be able to
assume both positive and negative values.

The contradiction stems from the fact that the state of inhibition or excitation
of a weight between two nodes in an alignment lattice depends not only on the state
of the nodes themselves, but also on the current state of the neighbouring nodes. A
constant weight matrix W cannot contain the information necessary to support all
legal paths in an alignment lattice. Therefore, the matrix cannot be statically defined
before execution, but is a dynamic-valued matrix whose elements change their values
according to the current state of the network and the input.

5. Genome Sequence Neural Network

To solve the genome sequence alignment problem, the dynamic nature of the weight
matrix forces one to abandon the Hopfield paradigm as a viable solution. We propose
anew network, without the constraints imposed by the Hopfield criteria. This network
has non-linear weight values that are a function of the current state of the network
and input sequences. Unlike the Hopfield weight matrix, the genome sequence matrix
is no longer symmetric, i.e. w;; = w;;. Without the criteria of symmetry and constant
weight values, the Hopfield model does not guarantee stability. The genome sequence
network, and the functions which define local and global weight values (which will be
discussed in more length below), were therefore designed to produce stable results.
This is not to say that stability is mathematically guaranteed, however, the chance
of oscillation is small. In the genome sequence network, oscillation is possible only
when two viable paths in the lattice have exactly the same node values at exactly
the same time. This chance is made negligible, not only by the nature of non-linear
functions modifying the weights, but also due to the small randomization of input
voltages occurring at the beginning of the system.

The genome sequence network shares many properties with the Hopfield network,
including the use of the sigmoidal activation function, as well as the equations descri-
bing the state of the network, and the updating of nodes in the network. However, the
constants found in previous equations are now replaced with functions. These func-
tions provide the necessary ingredient to allow the system to generate the optimal
paths in the alignment lattice.

- A description of the genome sequence neural network follows. The weight matrix
is described more fully, with the corresponding equations describing local and global
interactions. Then, the activation function is discussed, which is the function applied
to the input of a node, generating the nodes (bounded) output. The following section
describes how the network is controlled by the input sequences, and shows that the
matching of sequence character elements ultimately controls the behaviour of the
network and the path generated on the alignment lattice. The update formula for a
node is discussed, providing a basis for understanding the evolution of a node over
time. Finally, an overview of the algorithm is given.

382 R. W. Swiniarski and D. Waagen

5.1. The Dynamic Weights Matrix

To allow a network to describe the legal paths in the alignment lattice, the weight
matrix W needs to be a dynamic structure W (¢). The value of the weight w;; xi(?),
which represents the connection strength between the output of the neuron kl and
the input of the given neuron ij, must be adaptively changed during the network
processing. In the proposed approach, the value of each weight wij ki(t) s a function
of the current value of the nodes (neurons outputs) in the alignment lattice. We
propose the following way of weight changing in time during the processing

wij k() = fi(Vijineighb(ii)(t)) + fo(yri(t)) (11)
where ij and kl cover indices of all neurons in the alignment lattice.The vector
vij;neighb(ij)(t) =

(y(i—l),(j—l)(t):y(i—l),j(t);yi,(j—l)(t)xyi,(j+l)(t)yy(i+1),j(t)xy(i+1),(j+1)(t)) (12)

is the vector of the neighbouring neurons outputs (with respect to the ij-th neuron).
These neighbouring neurons influence the values of the weights w;; ki(t) of the given
ij-th neuron by the functional term fi(vij neighb(ij)(t)). This is the local adjustment
of the weights values which are adaptively provided for every moment of time ¢
as a function of the current output values of the neighbouring neurons denoted by
the vector jjineighb(ij)(t). The term f1(V3j neighb(ij)(t)) Tepresents a function which
determines a local path in the alignment lattice. This function is described in the
following section.

The second term f, (yi(t)) in the equation determining the weights value denotes
the influence of the ki-th neuron output on the weight w;; k1 of the given ij-th
neuron. This is the so-called global structural influence on the weights values from
every neuron (not necessarily local) in the alignment lattice providing an input to a
given neuron.

The weight values are not constant, as.in the Hopfield network, but vary depen-
ding on whether they represent (at the current time) a legal or illegal path in the
alignment lattice. The current value of weight w;;1i(t) at time t consists of two
parts

wij ei(t) = wij (t) + wf; () (13)
The first part
wi; 1i(t) = fi(vij neigh(ii)(t)) (14)

denotes the contribution to the weight value from the neighbouring neurons outputs
(governing the legal paths in the alignment lattice).
The other part

wi; () = fo(yu(t)) (15)

denotes the global structural influence of lattice neurons on the weight of a given
neuron.

A neural network approach to genome sequence alignment 383

In terms of weights matrix we have
W(t) = W'(t) + Wi (t) (16)

where W'(t) denotes the matrix of the contribution to the weights values wf-j,k, and
W(t) denotes the matrix of the contribution to the weights values wigjik,.

5.1.1. Local Legal Path Equations and the Weight Matrix W

The equations which govern the weight matrix W' values, contributed by the local
neurons, are computed dynamically and, for any node, are represented by a (possibly
proper) subset of the following set of equations:

Wiiio1),; = B4 dija+ Imax(ye-1),¢-1), ¥i (i +1)) (17)
w41y = B+ dija+ Imax(y(ign), G 41), Y-1),5) (18)

wéj;(i+1),(j+1) = E; + dymismatch(char;, char;)

+1 max(y(i+1),j;yi,(j+1)) (19)
Wiir1y; = Br+ diga + Imax(¥i 1), Yi41),(+1) 20)
wzl‘j;i,(j—l) = B+ dija+ Irmax(y+1),5, Yi-1),G-1)) 1)

wz(ji(i—l),(j—l) = By + d;mismatch(char;_1, char;_1)
+1; max(yi,(j—l);y(i—l),j) (22)

The quantities E; (E; < |d,]), ds, and d;/q are constants which reflect the positive
excitation value between nodes, and the negative costs of substitution and deletion
(or insertion), respectively.

The mismatch(-) is a binary function which returns 1 if two characters are not
the same and 0 otherwise

0 if char; = char;

. (23)
1 if char; # char;

mismatch(char;, charj) = {

Note that if two characters match, the cost of matching the characters is zero.

The quantity I; is a (negative) local inhibition constant which is multiplied by
the maximum output voltage of the two competing nodes relative to the node and
the weight.

5.1.2. Global Weight Interactions

In the alignment lattice, the position of a node in the array determines which nodes
can be linked to it in a path from the upper left node to the lower right. For a node
located in a position ij (in a row { and a column j) in the alignment lattice, all
nodes with position k! can be linked to node 45 in a path if ¢ > k and j > I, or

384 R. W. Swiniarski and D. Waagen

1t <k and j <. Conversely,if ¢ > k and j <[, then the two nodes cannot be linked
in a legal path in the alignment lattice.

The weight values between nodes which are not in close proximity to each other
are determined by the preceding relationship of the existence or non-existence of a
legal path between the nodes. If a legal path exists between two non-local nodes, the
weight values between them (in both directions) are positive values. These positive
values tend to allow a partial path to excite possible nodes and guarantee, after a
sufficient length of time, a complete path across the lattice. The weights between
these non-local nodes related by a legal path are currently set to a positive constant.
In other words, if a legal path exists between the non-local nodes ij and kl, then

wi; = wi ;= +C (24)

Conversely, if two non-local nodes are oriented so that no legal path can link them,
then the two nodes are competing, and the output voltages of the two nodes are
mutually exclusive (i.e. they both cannot be in the final state). The weights between
these types of nodes should be negative (inhibitory) in nature, forcing the nodes to
compete against each other for path inclusion.

Initially, weight values between competing nodes were set to a negative constant.
This produced a bias in the network, with nodes in the upper right or lower left of the
lattice being inhibited by more nodes than corresponding nodes around the diagonal
of the matrix. This caused an unfair bias toward paths formed around the diagonal.
To alleviate this problem, a non-linear function which makes the weight value into a
function of the output voltage is used. The formula for the computation of the weight
value from the node ¢j to the competing node k! is as follows:

wl 1y = —tany x 59.7(deg)))

All neurons start at low input voltage levels (due to the low level outputs voltage
in the initial network state). Thus, an inhibition is not strong at the start, but
becomes stronger as the network evolves, with these neurons which are increasing
faster inhibiting their competitors. The excitation of possible nodes, along with the
strong inhibition of competing nodes, forces the network to produce one and only one
path across the alignment lattice.

5.2. How the Input Sequences Are Used in the Network Processing?

The input strings or sequences ultimately determine the behaviour of the network. A
binary function mismatch(char;, char;), which compares sequence elements (i.e. cha-
racters), returns 0 if two characters char; and char; match and 1 otherwise. The
value of this character comparison function is used to alter the weight values for the
corresponding diagonal weights. Since every character of one sequence is being com-
pared (in some location on the lattice) with every character of the other sequence,
the diagonal weights from the node (ij) to the node (i+ 1),(j+ 1) correspond to
the weights affected by the comparison of the i-th character of sequence 1 with the
j-th character of sequence “2. These diagonal weight values of the lattice correspond
to the cost of substitution or matching of the respective characters. If the characters

A neural network approach to genome sequence alignment 385

match, a positive weight value is assigned between the nodes, whereas a less positive
or even negative value is applied if the characters mismatch. These relationships are
described by the equations

] _
Wij,(i41),G+1) =
Eq + dymismatch(char;, chary) + Imax(ygit1),5, ¥i,j+1)) (26)

{ _
Wigii-1),(-1) =

E; + dsmismatch(char;—1, charj_1) + Irmax(y; -1y, Y-1),j) (27)

which express the influence of the neighbouring neurons on the weights values. Since
the system evolves in time, the nodes corresponding to characters which match and
are along a possible path have their output voltages converging to 1 faster than other
nodes which do not match. This accelerated convergence, along with the constraints
from other weight interactions described in the following sections, allows the system
to evolve into paths which minimize the cost associated with the path across the
alignment lattice, thus minimizing the dissimilarity between the aligned sequences.

6. Neural Network Simulation Algorithm

The real implementation of the proposed neural alignment technique must involve
using VLSI technology, which will provide essential reduction of computation time.
In the following section we will discuss computer simulation of the dynamic neural
network under consideration.

6.1. Numerical Update Formula for the Nodes Dynamics

Since the dynamics of the neural network implementing the alignment matrix is mo-
delled by a set of dynamic non-linear differential equations, a numerical integration
technique is used to model the evolution of dynamic states of the network which
should converge to a solution. The Euler integration technique was used to model
the dynamic interaction between the neurons in the dynamic neural network. This
practically means solving the set of non-linear differential equations representing the
network dynamics by using Euler’s integration method.

For a given neuron (node) ij, the equations for the intermediate output and
output neuron values (or voltage levels) are given by the following formulae:

J:,;j(t) = .’L'ij(t - At) + At(—Tl.’Eij (t - At)

30 g a(t — Atywijea(t - At)) (28)

k=11=1

yij(t) = % (1 + tanh(#)) (29)

where for every time ¢ the input, output, and weight values are recomputed. The
time ¢ is assumed to be less than one to allow a smoother transition to a stable state
and to avoid oscillatory behaviour in the alignment lattice.

386 R. W. Swiniarski and D. Waagen

These equations, with the right-hand side values defined for various constants (i.e.
inhibition between local nodes d;;4, local substitution cost ds, etc.), evolve toward
a stable state where a single path is defined. The active nodes thereby compete and
kill all competitors, while general excitation maintains a constant source of energy to
the system so that output voltage of all the nodes will not go to zero.

6.2. Simulation Algorithm

The previous sections described the types of interactions between the nodes and the
way in which the weights are dynamically assigned values in the alignment lattice.
This section will give an overview of the steps involved in the algorithm.

The algorithm proceeds as follows:
1. The length and contents of the sequences are read from a file.

2. The network is initialized to the appropriate size based on the size of the input
sequences. The initial values of the input voltages of the network are initialized
with a randomized negative number (around -2). This negative input to the
node produces a small output voltage from the node of approximately 0.006.
The variance of the negative input voltages is kept very small (less than 0.002)
so that the system is not pushed into a local minima by the random values.

3. A positive external bias is added to the input voltage of the top-left corner node
to apply an external force to guarantee that the network’s top-left node output
voltage is driven to 1.0 as the system evolves to a solution.

4. The algorithm now iterates over the nodes and weights, allowing the interaction
between the nodes to drive the network to a solution. During each iteration,
the algorithm performs steps (a) through (d), which computes the next internal
states zi;(t) (¢ = 1,2,..k+ 1, j = 1,2,...,1+ 1) of the neurons at time t
based on the previous internal state x(—At) at time ¢ — At (and of course
the previous output signals y(t — At) of the neurons). This algorithm is an
implementation of Euler’s approximation of the solution to the set of non-linear
differential equations being the model of the proposed neural network.

(a) We assume that the previous internal state vector x(t — At) = (z11(t —

At), z12(t — At), ..., zki(t — At))T of the network, and the output voltage
vector y(t) = (y11(t), y12(t), ..., ys1)T of each neuron (node) for the pre-
vious time t — At is computed. The initial state of the network x(¢) at
the initial time tq is assumed to be known.
First, the total input voltage of the neuron is computed as a sum of wei-
ghted outputs of all the neurons (computed in the previous step t — At)
creating feedback in the network (including feedback from the given neu-
rons as well). The total input voltage is transformed by a sigmoid output
activation producing the current output voltage of a given neuron.

(b) For the current computation time ¢, the weight values are recomputed,
using the current output voltages and a function comparing sequence ele-
ment values. For local or neighbourhood weight computation, the input

A neural network approach to genome sequence alignment 387

(d)

sequences are compared for matching or mismatching, with excitation or
positive weight values for a match and less positive (or negative) values for
a mismatch. The neighbouring node output values also control the final
result of the weight, to guarantee legal paths. Global weight values are
excitatory or inhibitory in nature, and are designed to force the network
to find a single complete path across the network. The inhibition values
are computed as a non-linear bounded (exponential) function of the output
voltage. The excitatory weight value, which denotes a possible path to or
from a given node, is a positive constant value. This value helps drive po-
ssible nodes up in voltage to guarantee the generation of a complete path
across the alignment lattice.

The instantaneous total input voltage at the current time ¢ of a neuron
is computed from the summation of output voltages from all the neurons
output voltages multiplied by the corresponding weight values from the
nodes to the given node.

The new internal state z(¢) of the network for the current time ¢ is com-
puted using the Euler approximation. The Euler approximation technique
is applied for each neuron in the random order. We assume that the pre-
vious network state a(t — At) and previous output y(t — At) have been
“frozen” for the sampling period At¢. For each neuron, the total input
voltage at time ¢ is computed first, which is the sum of weighted outputs
yi;(t—At) (i=1,..,k, j=1,2,..,1) of all the neurons plus external bias
input (if it exists)
n

i‘ > et = At)wijp(t — At) (30)

k=11i=1

Then, the “derivative value” at the previous time is computed as

_Tlxij (t— At) + f: zn:yk,l(t - At).’zij(t) = Ijj (t— At)

k=11=1
m n

+At (:;:cij(t —At)+ Z Z vk (t — At)w;jx 1 (t — At)) (31)
k=11=1

To compute the next state of the neuron, according to the Euler scheme,
the above computed approximation of derivative for the whole period At is
multipled by the time constant At¢ which gives the increment of the neuron
state at time ¢ with respect to the previous state z;;(t — 6t). Finally, the
next state of the neuron at time ¢ is computed as

zi;(t) = ;L‘ij(t — At) 4+ At (—Tlxij (t— At)) + i Zn:yk,l(t — At)z;;(t)

k=11=1
_1 m n
= T (t—At)—l—At <—T—:c,'j (t——At)—l—Z Z ykll(t—At)) wij;k,;(t—At)(BQ)
k=1 1=1

This computation is repetad for all the neurons in the network.

388 R. W. Swiniarski and D. Waagen

(e) The output values y;;(t) (i=1,2,..,k j=1,2, ..., 1) of the neurons at the
current time ¢ are computed from the equation for the output activation
function

yii(t) = % (1 + tanh(%t—)>> (33)

The algorithm iterates and the constraints force the network to a stable state. The
state is a complete path through the alignment lattice which minimizes the cost
function associated with the traversing of the lattice. This is equivalent to maximizing
the alignment of the sequences.

6.3. Numerical Results

Using the values shown below in the equations defined previously produced a system
which found optimal or near-optimal paths maximizing the alignment of two string
sequences. The values used for both local and global weight calculations are as follows:

e Global weight constants:

P =0.05 possible path excitation
I =—-15.0» impossible path inhibition

e Local weight constants:

Ei=20.0 local excitation between cooperating nodes

d.=0.0 local cost associated with a continuation

dijg= —10.0 local cost associated with an insert (delete) path
d;=—12.0 local cost associated with a substitution (mutation) path
L= -30.0 local inhibition between competing nodes

6.4. Numerical Experiments

Several computer numerical experiments have been conducted to test the proposed
design of dynamic neural networks applied to the human genome alignment. The
C' language program has been developed to design and simulate dynamic adaptive
neural networks. The experiments allowed us to select the proper design parameters
of the networks, like P—possible path excitation, N—impossible path inhibition, local
excitation Fp, local inhibition I;, insert-delete cost dijq, substitution cost d;, as well
as the simulation timing conditions like the time interval 7.

Experiment 1.

Parameter Values

Possible path excitation (P) = 0.250000
Local excitation (E) 20.000000
Local inhibition (I) -20.000000

Insert-Delete Cost (D) = -10.000000

A neural network approach to genome sequence alignment

389

Substitution Cost (S)
Activation Lambda (1) =

Node Initial Input Voltage (V)
External Voltage Bias (b) =
time interval (T) =

random number seed (r) =
number iterations (n) =
output mod number (m)

a c d c d a

0.00 0.00 0.00 0.00 0.00 0.00 0.
! 0.00 0.00 0.00 0.00 0.00 0.00 O.
: 0.00 0.00 0.00 0.00 0.00 0.00 0
¢ 0.00 0.00 0.00 0.00 0.00 0.00 O.
‘ 0.00 0.00 0.00 0.00 0.00 0.00 0.
¢ 0.00 0.00 0.00 0.00 0.00 0.00 0.
: 0.00 0.00 0.00 0.00 0.00 0.00 0.
‘ 0.00 0.00 0.00 0.00 0.00 0.00 0.
¢ 0.00 0.00 0.00 0.00 0.00 0.00 0.
: 0.00 0.00 0.00 0.00 0.00 0.00 0.
§ 0.00 0.00 0.00 0.00 0.00 0.00 0.
f 0.00 0.00 0.00 0.00 0.00 0.00 O.
‘ 0.00 0.00 0.00 0.00 0.00 0.00 0.
‘ 0.00 0.00 0.00 0.00 0.00 0.00 O.
: 0.00 0.00 0.00 0.00 0.00 0.00 0.
¢ 0.00 0.00 0.00 0.00 0.00 0.00 0.

a c d c d a

0.03 0.02 0.02 0.02 0.02 0.02 0.
f 0.02 0.02 0.02 0.02 0.02 0.02 O.
: 0.02 0.02 0.02 0.02 0.02 0.02 0.
¢ 0.02 0.02 0.02 0.02 0.02 0.02 0.
‘ 0.02 0.02 0.02 0.02 0.02 0.02 0.
d

0.02 0.02 0.02 0.02 0.02 0.02 0.

00

00

.00

00

00

00

00

00

00

00

00

00

00

00

00

00

02

02

02

02

02

02

-12.000000
0.700000
=2.000000
1.000000
0.025000

1
60
10

0.00 0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

.00 0.

.00 0.

.00 0.

.00 0.

.00 0.

.00 0.

.00 0.

.00 0.

.00 0.

.00 0

00 0.

00 0.

.00 0.

00 0.

.00 0.

01 0.

02 0

02 0.

02 0.

02 0.

02 0.

00

00

00

00

00

00

00

00

00

00

.00

00

00

00

00

00

02

.02

02

02

02

02

0.

0

0

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

00

.00
.00
.00
.00
.00
.00
.00

.00

00

00

00

.00

.00

.00

00

01

02

02

02

02

02

0.

0.

0.

0.

0.

0.

0

0.

0.

.00

.00

.00

.00

.00

.00

.00

.00

00

00

00

.00
.00
.00
.00

.00

01

01

02

.01

01

02

390 R. W. Swiniarski and D. Waagen

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

¢ 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
: 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
! 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
! 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
‘ 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
‘ 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
: 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
¢ 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03
a c d c d a c c 1 a

0.72 0.33 0.17 0.09 0.05 0.03 0.01 0.01 0.01 0.00 0.00
! 0.79 0.48 0.34 0.25 0.14 0.17 0.04 0.02 0.01 0.01 0.00
: 0.29 0.70 0.74 0.20 0.36 0.11 0.14 0.04 0.02 0.01 0.00
Ny 0.19 0.71 0.22 0.91 0.12 0.33 0.18 0.11 0.03 0.02 0.00
‘ 0.13 0.23 0.85 0.15 0.91 0.13. 0.14 0.18 0.10 0.03 0.01
‘ 0.29 0.19 0.17 0.62 0.16 0.90 0.13 0.12 0.09 0.07 0.01
: 0.06 0.65 0.17 0.56 0.21 0.20 0.81 0.27 0.11 0.07 0.04
‘ 0.04 0.10 0.70 0.15 0.85 0.21 0.22 0.54 0.31 0.11 0.03
¢ 0.05 0.08 0.11 0.48 0.16 0.87 0.23 0.26 0.21 0.27 0.06
o 0.02 0.09 0.10 0.14 0.23 0.27 0.70 0.26 0.50 0.21 0.18
! 0.01 0.05 0.09 0.13 0.19 0.30 0.31 0.33 0.57 0.48 0.12
f 0.01 0.06 0.06 0.20 0.15 0.20 0.63 0.53 0.26 0.56 0.16
‘ 0.00 0.03 0.07 0.13 0.23 0.16 0.41 0.87 0.47 0.30 0.21
‘ 0.00 0.01 0.04 0.05 0.15 0.31 0.18 0.42 0.74 0.73 0.27
: 0.00 0.01 0.02 0.03 0.09 0.10 0.34 0.25 0.35 0.48 0.78
d

- 0.00 0.00 0.00 0.01 0.02 0.06 0.06 0.11 0.19 0.36 0.73 °

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A neural network approach to genome sequence

alignment 391

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
: 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
¢ 0.00 0.00 0.00°1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
‘ 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
¢ 0.00 6.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
: 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00
‘ 0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00
¢ 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
: 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
! 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
f 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
‘ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00-0.00 0.00 0.00
‘ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00
* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

a c d c d a c £ a

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
! 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
: 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
¢ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
‘ 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
¢ 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
© 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
¢ 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
: 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
! 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
! 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00°0.00 0.00 0.00

392 R. W. Swiniarski and D. Waagen

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00

: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
¢ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
a c d c d a c c f a

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
§ 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
: 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
‘ 0.00 0.00 0.00 0.00 1.00 0.00 0.06\0.00 0.00 0.00 0.00
¢ 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
‘ 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
¢ 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
: 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
i 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
; 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
‘ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
‘ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00
: 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Input Sequences:
acdcdaccfa
fadcdacdaffccad

Sequence Alignment Results:

*acdcd***a*xkccfa*
fa*dcdacdaffcc*ad

7. Conclusions

As the results show, the genome sequence neural network has the capability of finding
optimal and near-optimal alignments of strings. Experimentation has shown that the

A neural network approach to genome sequence alignment 393

genome network is very stable, but sub-optimal results can occur when the system of
equations evolve to a solution too quickly. Research on the relationship between the
size of the delta-time constant and the size of the sequences is continued.

Due to the parallel nature of the genome sequence neural network, this algorithm
provides a distributed and asynchronous solution to the genome sequence alignment
problem, and can find minimal cost paths in alignment lattices in a fraction of the
time needed for sequential techniques. Once implemented in a VLSI curcuit, or ported
to a parallel computer, the computational time required will not depend on the size
of the sequences, but on the capability of the respective curcuit or computer.

Currently, the network does not optimize the path for multiple (without gap)
matching, neither does it assign a penalty for non-adjacent matching of characters.
This capability is a focus for future work.

Because of the immense storage requirements (for a 50 x 50 string comparison,
a welght matrix requires 25MB of storage space), the proposed neural algorithm for
genome sequences alignment would be practical only if embedded in a VLSI electronic
device. On the other hand, the computation time of the alignment a in VLSI device
will not depend on the size of processed sequences. Of course, for longer sequences the
VLSI circuit will require more neurons implementing the alignment lattice. The num-
ber of neurons N, required for implementing this alignment matrix, for a sequence
a of length L, and a sequence b of length L;, is equal to

Np = Lax Ly (34)

The neural alignment method presented in the paper may be also implemented in the
parallel computer, using the simulation technique described here.

References

Altschul S.F. and Erickson B.W. (1986): Optimal sequence alignment using affine gap costs.
— Bull. Math. Biol., v.48, pp.603-616.

Altschul S.F. and Lipman D.J. (1989): Trees, stars, and multiple biological sequence align-
ment. — SIAM J. Appl. Math., v.49, pp.197-208.

Arbanel R., Wiencke P.R., Mansfield E., Jaffe D.A. and Brutlag D.L. (1984): Rapid searches
for computer patterns in biological molecules. — Nucl. Acid. Res., v.12, pp.263-280.

Bacon D.J. and Anderson W.F. (1986): Multiple sequence alignment. — J. Molec. Biol.,
v.191, pp.153-161.

Bellman R.E. (1957): Dynamic Programming. — New Jersey, Princeton: Princeton Uni-
versity Press.

Bohr H., Bor J., Burnak S., Cotterill R.M.J., Lautrup B., Norskov L., Olsen O.H. and
Peresen S.B. (1989): Protein secondary structure and homology by neural networks:
the alpha helices in rhodopsin. — Private notes.

Carrilo H. and Lipman D. (1988): The multiple sequence alignment problem in biology. —
SIAM J. Apl. Math., v.48, No.5, pp.1073-1081.

Coulson A.F.W., Collins J.F. and Lyall A. (1987): Protein and nucleic acid sequence data-
base searching: a suitable case for parallel processing. — Comput. J., v.30, pp.420-424.

394 R. W. Swiniarski and D. Waagen

Delahaye J.-P. (1988): Sequence Transformation. — Berlin: Springer-Verlag,

Dayhoff M.O., Schwartz R.M. and Orcutt B.C. (1978): A model of evolutionary change
in proteins. — In: Atlas of Protein Sequences and Structure, Washington: National
Biomedical Research Foundation, v.5, Suppl.3, pp.345-352.

Felsenstein J. (1982): Numerical methods for inferring evolutionary trees. — The Quart.
Rev. Biol., v.57, pp.379-404.

Fickett J.W. (1984): Fast optimal alignment. — Nucl. Acids Res., v.12, pp.175-180.
Fitch W.M. (1970): J. Mol. Bil., v.49, pp.1-14.

Fitch W.M. and Smith T.M. (1983): Optimal sequence alignments. — Proc. Nat. Acad.
Sci., USA, v.80, pp.1382-1386.

Freedman M.L. (1984): Algorithm for computing evolutionary similarities measures with
length independent gap penalties. — Bull. Math. Biol., v.46, pp.553.

Gnanadesikan R. (1977): Methods of Statistical Data Analysis of Multivariate Observations.
— New York: John Wiley.

Goad W.B. and Keneisha M.I. (1982): Pattern recognition in Nucleic Acid Sequences. I. A
General Method for Finding Local Homologies and Symmetries. — Nucl. Acids Res.,
v.10, pp.247-278.

Gotoh O. (1986): Alignment of three biological sequences with an efficient traceback proce-
dure. — J. Theor. Biol., v.121, pp.327.

Von Heijne G. (1989): Sequence Analysis in Molecular Biology. — San Diego: Academic
Press.

Hopcroft J.E., Ullman J.D. (1979): Introduction to Automata Theory, Languages and Com-
putation. — Reading: Addison-Wesley.

Hopfield J.J. (1982): Neural networks and physical systems with emergent collective com-
putational abilities. — Proc. Natl. Acad. Sci., USA, v.79, pp.2554-2558.

Hopfield J.J. (1984): Neurons with grade response have collective computational properties
like those of two-state neurons. — Proc. Natl. Acad. Sci., USA, v.81, pp.3088-3092.

Hopfield J.J. and Tank D.W. (1985): Neural computation of decisions in optimization
problems. — Biol. Cybern., v.52, pp.141-152.

Hopfield J.J. and Tank D.W. (1986): Computing with neural circuits: a model. — Science,
v.233, pp.625-633.

Lesk A.M. (Ed.) (1988): Computational Molecular Biology. Sources and Methods for
Sequence Analysis. — Oxford: Oxford University Press.

Lipman D.J. and Pearson W.R. (1985): Rapid and sensitive protein similarity searches. —
Science, v.227, pp.1435-1441.

Miller W. and Myers E.W. (1988): Sequence comparison with concave weighting function.
— Bull. Math. Biol., v.50, pp.97-103.

Minsky M. and Papert S. (1969): Perceptrons. — Cambridge: MIT Press.

Murata M., Richardson J.S. and Sussman J.L. (1985): Simultaneous comparison of three
protein sequence. — Proc. Natl. Acad. Sci., USA, v.82, pp.7657.

Needleman S.B. and Wunsch C.D. (1970): A general method applicable to the search for
stmilarities in the amino acid sequence of two proteins. — J. Molec. Biol., v.48,
pp.443-453.

A neural network approach to genome sequence alignment 395

Ohya M. (1989): Analysis of molecular evolution by mutual entropy. An application of
informational theory in genetics. — Int. Rep. Dept. Information Sciences, Univ. of
Tokyo, Japan.

Quian Ning, and Sejnowski T.J. (1987): Predicting the secondary structure of globular

proteins using neural network models. — Private notes.
Queen C., Wegman M.N. and Sommer R. (1982): Improvement to a program for DNA
analysis: a procedure to find homologies among many sequences. — Nucleic Acids

Res., v.10, No.1, pp.449-456.

Sankoft D. (1975): Minimal mutation trees of sequences. — SIAM, J. Appl. Math., v.28,
pp.35-42.

Sankoff D. and Kruskal D. (Eds.) (1983): Time Warps, Strings Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. — Reading: Addison-Wesley Publ.
Comp. Inc.

Sellers P.H. (1974): An algorithm for the distance between two finite sequences. — J.
Combinatorial Theory, v.16A, pp.253-258.

Sellers P.H. (1979): Pattern recognition in genetic sequences. — Proc. Natl. Sci., USA,
v.76, pp.3041-3049.

Sellers P.H. (1984): Pattern recognition in genetic sequences by mismatch density. — Bull.
Math. Biol., v.46, No.4, pp.501-514.

Smith H., Waterman M.S. and Fitch W.M. (1981): Comparative biosequence metrics. —
J. Mol. Biol., v.18, pp.38-46.

Sobel E. and Martinez J.T. (1986): A multiple sequence alignment program. — Nucl. Acids
Res., v.14, pp.487-496.

Stormo G.D., Schneider T.D., Gold L. and Ehrenfeucht A. (1982): Use of the 'Perceptron’
algorithm to distinguish translation internal sites in E. coli. — Nucl. Acids Res., v.10,
pp.2997-3011.

Swiniarski R. (1991): Introduction to Neural Networks, In: Handbook of Cybernetics and
Systems (C. V. Negoita, Ed.). — New York: Marcel Dekker.

Tank D.W. and Hopfield J.J. (1986): Simple 'neural’ optimization networks: an A/D con-
verter, signal decision circuits, and linear programming circuits. — IEEE Trans. Cir-
cuits Systems, v.CAS-33, pp.533-241.

Waterman M.S. (Ed.) (1989): Mathematical Methods for DNA Sequences. — Boca Raton,
Florida: CRC Press, Inc.

Waterman M.S., Smith T.F. and Beyer W.A. (1976): Some biological sequence metrics. —
Adv. Math., v.20, pp.367-387.

Weir B.S. (Ed.) (1983): Statistical Analysis of DNA Sequence Data. — New York: Marcel
Dekker, Inc.

Wimp J. (1981): Sequence Transformations and Their Applications. — New York: Acade-
mic Press.

Zucker M. and Somorjai R.L. (1989): The alignment of protein structures in three dimen-
stons. — Bulletin of Mathematical Biology, v.51, No.1., pp.55-78.

