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ON PATTERN CLASSIFICATION AND SYSTEM
IDENTIFICATION BY PROBABILISTIC
NEURAL NETWORKS

LEszeEk RUTKOWSKI*, Tomasz GALKOWSKI*

In the paper probabilistic neural networks are discussed in detail. Neural ne-
twork structures for non-parametric pattern classification and system identifi-
cation are developed.

1. Introduction

If the process is characterized by the absence of a priori information, the most popular
methodology for identification and pattern classification is based on non-parametric
approach. Such techniques — derived from non-parametric estimates of probability
density and regression functions — have been developed by many authors to clas-
sify and identify different types of systems (see e.g. Galkowski and Rutkowski, 1985;
1986; Rutkowski, 1988; 1991; 1993; Rutkowski and Rafajlowicz, 1989). The purpose
of this article is to propose neural network structures for implementation of non-
. parametric algorithms. We shall define a neural network structure as a collection of
parallel processors connected together in the form of a directed graph, so organized
that the network structure corresponds to the non-parametric problem being consi-
dered. We shall use the so-called probabilistic neural networks (Specht, 1990). It
should be emphasized that our neural networks do not require learning phase and are
asymptotically optimal.

2. Density Estimation

Let X4,..., X, be a sequence of independent, identically distributed random varia-
bles taking values in IR¢ and having a probability density function f. The Parzen-
Rosenblatt estimate of f is given by the formula

o) = g 2o (52) )

where K is an appriopriately choosen function fulfilling the conditions:

s1;p K (y)| < o0 (2)

/ K (y)ldy < oo (3)
Ré
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lim ly||K (y)| =0 (4)

llyll—o0

/ K(y)dy =1 (5)
Re

In eqn. (4) symbol ||:|| stands for the Euclidean vector norm. Sequence h, is a
function of n and satisfies the conditions :

lim h, =0 and lim nhd = oo (6)

n—00 n—od

We assume that the function K is of the form
K(z) = (2m) 39~ 3lel’ (7)

where ||||* = 272. Then we can rewrite estimator (1) as follows:

~ 1 = (x— X)T(z ~- X;)
o) = g Lo () ®

Observe that

(@ = X)" (2 = Xi) = =2 (aOXD 42X 44 20x()
n (mm)z + (z(z))2 o+ (a:(d))z (9)

+(x) g (X}”)2 +o+ (x9) ’

Now assuming normalization of the vectors x and Xi formula (8) simplifies to

—~ 1 n 1—=zTX;
fn(w):_——(%')d/?nhg ZZ:;exp <_( " )> (10)

Figure 1 shows a neural realization of algorithm (10). The proposed net has
d inputs and two layers. The first layer consists of n neurons and each neuron
has d weights. The output layer has a single neuron with the linear activation
function. We should emphasize that the proposed network does not require a training
procedure (optimal choosing of connection weights). The succeeding coordinates of
the observation vectors X;, 1 =1,...,n play the role of the weights.
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Fig. 1. Neural network density estimation.

The following theorem is a consequence of results presented by Parzen (1962)
and Cacoullos (1966).

Theorem 1. If the number of neurons in the first layer of the prabability neural
network presented in Fig. 1 is chosen 1o satisfy conditions (6), then

- 2
B [fa@) — fal@)] 20 (11)
in the points at which f is continuous. [ ]

3. Pattern Classification

Let (X,Y), (X1,Y1), (X2,Y3),..., be asequence ofi.i.d. pairs of random variables;
Y takes the values from the set; S = {1,..., M}, whereas X takes the values in IR%.
The problem is to estimate Y from X and V,, where V,, = (X1,Y1),...,(Xn,Y5)
is a learning sequence. Suppose that p, and fn, m = 1,..., M, are the prior class
probabilities and the class conditional densities, respectively. Define

1 if Y;=m
Tim = .
0 if Yi#m

for i=1,2,..,n and m=1,2,..., M. The Bayes discriminate function is given by
gm(z) = f(:z:)E[Tnlen = w] (12)
where f(z) = Z%zl Pm fm ().
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We consider a procedure of classifying every & to a class m, m € S, which
maximizes Gnm(x), where gnm(x) is the following estimate of the Bayes discriminate
function

~ 1 - 1-2TX;)
Fon®) = ey 30 Tm o () (13)
n ;=1 n

Figure 2 shows the neural network classifying pattern = € IR? to the class m,
m € S = {1, 2}, for which the expression

- g 1-2TX;
gnm(w) = Zsz exp (“Tﬁ>
i=1 n

takes the maximum value.

)51) )62)' )éd)

I

nyqw
3
nou

Fig. 2. Neural network pattern classification.
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Let Y, be a decision obtained according to the classification procedure defined
above. Let D, = P(Y, # Y|V,). The procedure is said to be weakly (strongly)
Bayes risk consistent if D, —— Dy in probability (with probability one), where Dy
is the Bayes probability error. The result below follows from the theorem presented
by Greblicki et al. (1984).

Theorem 2. If the number of neurons of the probabilistic neural network presented
in Fig. 2 satisfies conditions (6), then D, —— Dy in probability. [ ]

4. Neural Realization of the Recurrent Non-parametric
Estimation Algorithms

The following recurrent estimate of the probability density function was first proposed
by Wolverton and Wagner (1969)

20 1K1l [(z-X))
fol®) = —~ ; E?R (T) . (14)
Expression (14) can be rewritten as

n—

fa@) =

L (@) + %K (m”h—i(”)) (15)

n

For the kernel K of form (7), using the same arguments as those in Section 2, one
gets

n —

(@) +

Fola) = ke

1
(2m)4/2 nhd P ( h2

n

(16)

Figure 3 shows the neural network performing algorthm (16) in a fixed point
z € IRY The net consists of one neuron in the first layer having d inputs —
coordinates of the vector X,,, n = 1,2,.... Let us notice that the role of weights is
played by the coordinates of the vector x. The second layer also consists of only one
neuron with the feedback typical for recurrent neural networks. When the density is
to be estimated at several points x,...,xr, then the proposed structure should be
copied L times. We shall obtain the neural network of L neurons processing the
input observations in the parallel way.

Observe that the recurrent version of algorithm (13) takes the form

- n—1_ 1 1—2TX,
gn,m(w) = = n gn—l,m(m) + WTn,m €xXp <—T)> (17)

The corresponding recurrent neural network for pattern classification is shown in
Fig. 4.
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Fig. 3. Neural network density estimation — recurrent algorithm.
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Fig. 4. Neural network pattern classification — reccurent algorithm.

5. Identification by Regression Function Estimation
5.1. Stochastic Input Signal

Let (X,Y) be a pair of random variables. X takes values in IR?, whereas Y takes
values in IR. Let f be the marginal Lebesgue density of X. Based on the sample
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(X1,Y1),...,(Xn,Y,) of independent observations of (X,Y’), we wish to estimate
the regression IR of ¥ on X, ie. IR(z) = E[Y|X = x]. The probabilistic neural
network that provides estimates of function IR and converges to the underlying (linear
or non-linear) regression surface is presented in Fig. 4. In system identification the
independent variable X 1is the system input and the dependent variable Y is the
system output. Assume that k(x,y) represents the joint probability density function
of a vector random variable X and a scalar random variable Y. The conditional
mean of Y given = (particular measured value of random variable X) is given by

“+o0
R(z)=E[Y|X =z] = %/_m yk(z,y) dy (18)

If the probability density functions f and k are unknown, then they should be
estimated from a sample of observations of X and Y. The joint probability density
estimator derived from the Gaussian kernel takes the form:

- 1 . (1-=2"X) (v—Y:)*
kn(z,y) = PR hEFT Z;exp (— %) ) exp (— oh2 (19)

Replacing k(z,y) by /Ign(z,y) and f(x) by fn(w) in (18) and performing the indi-
cated integration we get the following estimate of the regression function:

n
1-2TX;
ZYi exp (T)

R () = “=—————— (20)
Eexp <—————h2 Z)
i=1 n

Figure 5 shows a neural network realization of algorithm (20).

One may easily derive the neural network structure for recurrent regression func-
tion estimation. The corresponding net is shown in Fig. 6.
Theorem 3. If F|Y| < oo and the number of neurons of the probabilistic neural

network presented in Fig. § satisfies conditions (6), then I/E\{,,Z 25 IR in probability
for almost all = € IR [ |

This result follows the theorem given by Greblicki et al. (1984).

5.2. Deterministic Input Signal
Many engineering problems are concerned with systems described by the following
equation:

yi:]R(:ci)—I—Zz-, t=1,..,n
relating the input z; and output y;, and the measurement noise Z;.

Consider the d-dimensional unit cube @ = [0,1]%. Let n!/¢ be an integer, and

i; =1,..,nY4 j=1,.. d. Partition the interval [0, 1] on each axis into n!/¢ subsets
Az; ;. Define the following Cartesian product

Al’l,il X A(I:Q’jz X vee X Amd,id = Qd,z'

Let Q4iNQqa; =0, for i #j and UQqg; = Q4. The inputs «; are selected so that
z; € Qay-
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Fig. 6. Recurrent neural regression estimation.

We propose the following algorithm

~ 1 = (1-2TX;
Po(e) = g 2% (<45 ) @
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The appropriate net is shown in Fig. 7.
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Fig. 7. Neural regression function estimation — deterministic input signal.

Theorem 4. If the number of neurons of the probabilistic neural network presented
in Fig. 7 satisfies conditions (6) and sup;c;<, SUP; 4eo, |l® — || = O(n=119), then
R = IR in probability at all continuity points = of IR. |

The above theorem follows from theorems presented by Galkowski and Rutkowski
(1985) and Georgiev (1990).
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