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FINITE ELEMENT DYNAMIC MODEL OF MULTILINK
FLEXIBLE MANIPULATORS

Wiestaw BERES*, Jerzy Z. SASIADEK*

Lagrange’s finite element approach is used to formulate the dynamic model
of a flexible manipulator system in the three-dimensional space. All manip-
ulator links are considered as slim beams connected in one d.o.f. frictionless
revolute joints. Beam-type finite elements, with interpolating polynomials of
degree three and six generalized perturbation coordinates per finite element
nodal point, are used for description of the link small displacement field. The
Denavit-Hartenberg 4 x4 matrix method is used to describe the flexible ma-
nipulator kinematics. Joint and link transformation matrices, describing the
transformation of coordinate systems between the ends of the deformed ma-
nipulator link, have been applied. The resulting equations of motion take into

account a coupling between the rigid body motion and elastic deformations of
links.

1. Introduction

One of the main criteria space systems must satisfy is the demand for a minimum
weight of the structure, due to the limitations in launch capabilities. That is why all
the space structures are relatively flexible, including robot manipulators. In addition
to that, the application of non-conventional robot structures made of aluminum alloys
or composite materials, with long lightweight links, enable us to achieve a good ratio
of payload capacity to manipulator weight, but the resulting robot structures are
much more flexible. As the robot operational speed increases, the inertia forces also
increase and link deformations cannot be neglected in the robot modelling, simulation
and design processes. These three factors cause that the robot structure flexibility
should be taken into account for robot dynamics and control calculations, especially if
the positioning and force control accuracy, as well as the small total weight of the robot
are of importance, as is in space applications. Particularly, designing sophisticated
robot control system algorithms and choosing proper control devices call for more
accurate mathematical models of controlled flexible robot systems. All these factors
require creating and testing effective methods of modelling of flexible robot structures.

Mathematical modelling of flexible robot systems is a difficult problem, mainly
due to a coupling between the rigid body motion of links and their elastic deforma-
tions. The rigid body motion of links causes changes in the geometrical parameters
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of the system, which affect the small perturbation deformations. Similarly, small
perturbation deformations affect the rigid body motion of the manipulator.

In the rigid body modelling approach, robot links are treated as rigid bodies
connected in robot joints and the stresses in links are assumed to originate from
external load forces and inertia forces only. In the flexible body modelling method,
robot links are treated as flexible bodies that are able to store and release potential
energy and also undergo finite deformations.

General reviews of the methods of modelling and control of flexible multibody
structures are given by Huston (1990; 1991), Meirovitch (1989), Shabana (1989) and
Rao et al. (1990), Amirouche and Huston (1988), Silver (1982), Vincent et al. (1990).
There are many still unsolved problems regarding modelling methods of flexible multi-
body structures. The advantages and disadvantages of different modelling methods,
pertaining to their accuracy and efficiency, are still widely investigated.

Two methods, the assumed mode method, also called the modal expansion one
and the finite element method are commonly used to approximate the deformed shapes
of manipulator links. Modelling techniques using the first method consider a flexible
manipulator link as an elastic body with an infinite number of degrees of freedom.
A deformed shape of link is expanded using the assumed modes. Various modal shapes
and boundary conditions have been considered. The assumed modes approach was
shown by Baruh and Tadikonda (1989), Benati and Moro (1988), Book and Majette
(1983), Book (1984), Castelazo and Lee (1990), Chang and Gannon (1990), Chiou
and Shahinpoor (1990), Chonan and Aoshima (1990), Chonan and Umeno (1989),
Judd and Falkenburg (1985), Low and Vidyasagar (1988), Morris and Vidyasagar
(1990), Sasiadek (1985), Sasiadek and Srinivasan (1986, 1987, 1989), Spector and
Flashner (1989), Shamsa and Flashner (1990), Singh and Schy (1986), Wang and
Vidyasagar (1986).

The finite element approach assumes that manipulator links are divided into
finite elements, whose elastic behaviour is described by arbitrarily established shape
functions. This method of approximation of the deformed shape of link, is combined
with various procedures of generating equations of motion. The main techniques
used are: Lagrangian methods, Newton-Euler methods, virtual work methods, appli-
cation of Gibbs- Appell equations and application of Kane’s equations, as stated by
Huston (1991).

A lot of studies were carried out, where the response of the robotic mechanism was
calculated as the superposition of the large rigid body motion and small perturbation
components. In this type of contribution, the large and small motions of the robot
are separated. The finite element method was used by Jonker (1989) for mechanisms
with deformable links and Liou and Erdman (1989) for a flexible planar four-bar
linkage. Sunada and Dubowsky (1981; 1983) described dynamic equations formulation
and their solution, using the finite element method, where a small elastic motion
of links is imposed on the given rigid body motion of the entire mechanism. The
finite element method was used for a flexible manipulator by Naganathan and Soni
(1987; 1988). They presented an application of the Newton-Euler formulation, for
beam finite elements with linear shape function. Usoro and Nadira (1984) and Usoro
et al. (1986) discussed the formulation of dynamic equations and simulation results
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for a planar finite element manipulator model with beam-type elements. Asada et al.
(1990) expanded the deformation of links by using directly the Rayleigh-Ritz method.

Turcic and Midha (1984) as well as Nagarajan and Turcic (1990) derived a set of
equations of motion for the elastic mechanism systems. The finite element method,
with three-dimensional beam elements, was used to descretize the deformation of links.
Unfortunately no numeric implementation of the models presented was discussed.

Li et al. (1990) presented a computational algorithm for the linearized dynamic
model of a robot manipulator. The method deals with the rigid link manipulator, but
the algorithm mentioned above makes fast computation possible. Golla et al. (1989)
described an algorithm for the dynamic calculation of the flexible manipulator, on
the basis of the Newton-Euler method applied to chain multibody dynamics prob-
lems. Ku and Chen (1990) applied the Timoshenko beam model to take into account
the shear deformation of a link. Gordaninejad et al. (1991) studied the motion of
a planar robot arm consisting of one revolute and one prismatic joint. Chang and
Hamilton (1991a; 1991b) introduced the concept of the Equivalent Rigid Link System
(ERLS) for modelling the kinematics and the dynamics of the robotic manipulators
with flexible links. The improved calculation methods of derivation of a manipulator
inertia matrix were discussed by Lilly and Orin (1991). Kalra and Sharan (1991)
formulated dynamic equations of a flexible manipulator using the Galerkin method.
Bouttaghou and Erdman (1991) described a unified approach to systematic derivation
of the dynamic equations for flexible bodies. The proposed approach is independent
of the field kinematic representation of deformations. The Euler-Bernouli and Tim-
oshenko beam models were considered in the paper. Castelain and Bernier (1990)
presented a program for the computation of motion equations for robot manipulators
using hypercomplex algebra methods.

Shabana (1986) discussed the inertia coupling between the large motion and elas-
tic deformations in flexible multibody systems and a proper choice of the generalized
coordinates, so that the numerical procedure could be simplified. Shabana (1990)
described the general dynamic model of flexible multibody systems, using the gener-
alized Newton-Euler equations. Deformable bodies in this model can undergo large
translational and rotational displacements. Tzou and Wan (1990) focused on the
damping of the vibration of flexible manipulators modelled by the finite elements.

During the last few years a considerable amount of new contributions to the
problem of simulation of the flexible mechanism and robot structures with the fi-
nite element method have been published. Among others, the papers by Bricout
et al. (1990), Gao et al (1989), Hac (1991), Yang and Sadler (1990) are mentioned.

In this paper, the finite element approach is used to formulate the kinematic and
dynamic model of a flexible n-link manipulator. The Lagrange recursive technique
was used for formulation of the system equations of motion. As an example of the
application of this method, one- and two-link planar robotic systems were chosen for
analysis. The equations presented were developed independently from the formulae
rublished by Nagarajan and Turcic (1990). This paper demonstrates an attempt to
apply the direct approach to the problem of dynamics of a flexible manipulator.
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The links of the manipulator analysed in this paper may undergo large rela-
tive rotational motions. These links are considered as slim beams connected in one
degree-of-freedom, frictionless, revolute joints. The mass of a link is uniformly dis-
tributed within each finite element. Different distributions of mass along the link
could also be incorporated in this method. Control torques are applied at manipula-
tor joints only. Linearly elastic robot structures having small relative displacements
due to dynamic loads have been assumed. It has been also assumed that there is no
interaction between axial, torsional and flexural deformations. The deflections of links
and relative rotations of nodal points are small, so that the direction cosine matrix
could be simplified, Beres et al. (1993).

The global motion of the flexible manipulator links was described as the super-
position of a large rigid body motion of links due to the rotations in joints and small
perturbation components due to elasticity of links. Therefore, the set of generalized
coordinates was divided into two subsets. The subset of joint coordinates describes
the large relative rotational motion of links. The subset of perturbation coordinates
describe the deformation of links, with respect to the undeformed shape of that link,
treated as a rigid body.

The consistent mass matrix for a flexural link deformation is generally composed
of two parts, namely the translational and rotational inertia terms. The translational
inertia terms are much bigger than the rotational ones, therefore only the former are
considered and all the rotational deformation terms are neglected. For simplicity, the
torsional kinetic energy of links is neglected. These neglected terms can be easily
taken into account by analogy to translational inertia terms.

The beam-type finite elements, with interpolating polynomials of degree three
and six generalized perturbation coordinates per finite element nodal point, were
used for description of the link small displacement fields. All the matrices included in
the kinetic energy equation were explicitly calculated. The matrices in the potential
energy equation are calculated with the application of a finite element software pack-
age. Joint and link transformation matrices, describing the kinematic transformation
of coordinate systems between the ends of the deformed manipulator link, have been
used. Two sets of differential equations of motion were obtained. These are: large
motion equations and small perturbation equations. The dynamic model of the ma-
nipulator motion obtained in this paper takes into account couplings between the
large rigid body motion and flexible elastic deformations of links. The equations are
derived consistently, which allows for creating software for the manipulator dynamics
and control computation.

On the basis of the algorithm presented in this paper, a computer program was
built. As a programming environment, the software package MATLAB was used. To
generate the stiffness matrices for each link, another software package — MSC/pal 2
— was applied. The calculation results were presented.

2. Finite Element Model of Manipulator Links

It is assumed that each flexible link of the robot is composed of beam type ﬁnlte
elements. The first and last nodal points of the link coincide with the joints of the-
manipulator. A set of six scalar perturbation coordinates, i.e. three translations and
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three rotations, is assumed for each node. The deformed shape of the link could be
described by using a set of perturbation coordinates for the entire link and a set of
shape functions that characterize the displacements of the link points located between
the finite element nodes.

The decomposition of a link into finite elements is presented in Fig. 1. Two
coordinate systems are used for each link. A global link coordinate system y07 is
attached to the link, whereas a local finite element coordinate system y0z is attached
to each finite element of the link.

link i

.7

Fig. 1. Deformed shape of the manipulator link, decomposed into finite elements.

The analytical method discussed in this paper uses the Hartenberg-Denavit
4 x 4 matrix method to describe the kinematics of the flexible manipulator. Posi-
tion vectors are 4 x 1 vectors of Cartesian coordinates augmented by an additional
element equal to 1.

A point P located at 7 on the neutral axis of the link ¢ is, after deformation
of the link, located at r:(%)(n)

() = +Np® (1)

o O3 =

where (e) is the ordinal number of the element in the link ¢, N is the matrix of
shape functions in the element coordinate system, p(®) is the vector of generalized
nodal perturbation coordinates for the element (e), r:-(e)(n) is the position vector of

the point P in the element (e) of the link ¢ expressed in the coordinate system of
the link 3.
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The shape function matrix IV that relates nodal perturbation coordinates to the
deformed position of the point P has a general form

0 0 00 0 O 0 O 0 0 0
N 0O 00 0 0 Ng O 0 0 0
0 N; 00 0 N3 0 Ns 00 0 Ns
0 0 N3O —-N3 0 0 O Ns O —Ns 0

0
N = 0 (2)

The flexural deformation shape functions has been chosen as polynomials of de-
gree three, whereas the longitudinal deformation shape functions are linear

Ni=1-¢ (3)
Ny =263 -3¢ +1 (4)
Ny = (£ - 282 +¢)L (5)
No=¢ (6)
Ns = —2¢3 4 3¢2 (1)
Ne= (€ - €))L (8)
In the above equations ¢ denotes the normalized coordinate, which is defined by
E=1 9)

where L is the length of the finite element.

The fourth and tenth columns of the shape function matrix are zero vectors,
because the torsional inertia and torsional potential energy of the system were initially
neglected for simplicity. These neglected terms can be easily taken into account by
inserting a linear torsional shape functions into the fourth and the tenth column.

3. Set of Generalized Coordinates of the Manipulator Link
3.1. Generalized Coordinates

The generalized coordinate set describes the position of any point of a link with
respect to the undeformed configuration of that link, with respect to the other link,
or the base of the manipulator. It is divided into two subsets: the subset of joint
variables ¢; (i = 1,2) that describes the revolute displacement in joints and the
subset of generalized perturbation coordinates, pig, reflecting the link deformation.
The subscript 7 relates to the link number, while the subscript # relates to an ordinal
number of the perturbation coordinate in the perturbation coordinate vector.

Figure 2 presents a finite element in the local coordinate system. The set of local
perturbation coordinates, numbered consecutively from 1 to 12 within each finite
element, forms a vector of local generalized coordinates for the element () that
describes the relative motion of nodal points of this element

PO = [0, 520, ... 800, K2 0)] (10)
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Now, a set of global generalized perturbation coordinates for the link i is built as
follows

() i,j=1,2,..12
pi t - p t fOl‘ . 11
o) B=6(e—1)+j 7 ®) B=12,..,NP(®i) (11)

where NP(i) is the number of generalized coordinates and NG(i) is the number
of nodal points in the link 7. The procedure of assembling the local finite element
coordinates to create the global vector of coordinates is typical for the finite element
method. Because six generalized coordinates per nodal point were assumed the
following equation holds

NP(i) =6 x NG() (12)
P 1/’: \1) y"y
' y
y
M NODE 0 NODE 1
I
L/ — s et S —— CP,
Yo Z/ // Y‘;\Z/ ]
L

f

Fig. 2. The beam finite element in the local coordinate system.

After comparing the local perturbation coordinates for two adjacent finite ele-
ments it can be seen that the following formula can be written down

PO =p00, =126 (13)

For future reference, the vector of global generalized perturbation coordinates
for the entire manipulator is built, using the joint coordinates, g¢; and the global
generalized perturbation coordinates for the link i, p;g, as follows

z(t) = [QI(t); ‘I2(t), ey QH(t)ypl,l(t): -+ DP1,NP(1),

T (14)
P2,1(t), -, P2,NP(2)s s Pra (1), -+ Pr N P(n)

This set of the generalized perturbation coordinates is general and does not take

irto account necessary boundary conditions, that must be imposed on coordinates to

maintain the compatibility criteria between coordinate values.
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3.2. Boundary Conditions

In order to relate the deformed and undeformed shapes of a manipulator link, a set of
boundary conditions must be imposed on the set of global generalized perturbation
coordinates. These boundary conditions must satisfy criteria of compatibility between
the positions, velocities and accelerations of the manipulator points that are common
in two links. The fixed, cantilever beam boundary condition model was adopted. In
this model, it is assumed that all six generalized perturbation coordinates attached to
the first finite element node of the link are set to zero. This can be written in terms
of the system global perturbation coordinate vector as

Dig :0, 1= 1,2 (15)
f=1,2,...,6

By imposing these boundary conditions, kinematic realations were used to elim-
inate the dependent coordinates, so that the resulting dynamic model contains the
minimum number of independent variables.

3.3. Generalized Velocities and Accelerations

Analogically, sets of global link generalized velocities 2(¢) and accelerations 2(t) are
obtained by differentiating eqn. (14) with respect to time. These generalized coor-
dinates, velocities and accelerations are the basis for the calculation of the potential
and kinetic energies of the system.

4. Transformation Matrices
4.1. Joint Transformation Matrices

Joint transformation matrices Ag;_1 are defined for the manipulator system analysed
in this paper. These matrices are the standard homogeneous rotation transformation
matrices. A matrix Ag;_1 relates coordinate systems in the joint that connects links
i—1 and 1.

In the case of the plane motion of the manipulator system, the joint transforma-
tion matrices reduce to simple matrix expressions

0 0

cosq; —sing;
Agi =
sing; cosg;

0 0

o O O
- o O O

where ¢; (i =1,2,...n) is the joint variable in the joint .

The time derivatives of the joint transformation matrices have the general form
. n.
Agioy = UM, (17)

Ay =UPE +UW; (18)
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where the matrices Ugl) and USZ) stand for partial derivatives

(1) _ OAsiy

Uy === 19
(= 2 (19
@) 0*Agi_4

U= —-—-—- 20
R (20)

Using the derivative matrix @, the time derivatives of joint transformation ma-
trices can be expressed in the following way

A = QA (21)
A = QA + QAL (22)
Az = QAsgs ‘ (23)
Az = Q% A3} + QAsg, (24)

These derivatives together with the time derivatives of link transformation matri-
ces presented in the following subsection are used to calculate the kinetic and potential
energies of the system.

4.2. Link Transformation Matrices

In addition to the joint transformation matrices described above, matrices that de-
scribe the transformation of coordinate systems between two ends of the deformed
manipulator link were introduced as in (Book, 1984) and (Judd and Falkenburg,
1985).

This transformation is expressed as the transformation between two local coor-
dinate systems, connected to the first and the last finite element node of the link

Ay =H;+ Z; (25)
where
1 000
; 100
H; = (26)
0010
0001

and I; is the length of the undeformed link 1.

Taking into account the boundary conditions presented in the previous section,
the general expression for the matrix Z; takes the form

0 0 0 0
Z; = Pij, 0 —Di,je Pijs (27)
Pij, Pije 0 —pij,

Pijs —Pijs Pija O



240 W. Beres and J.Z. Sasiadek

The indexes attached to the last finite element of the link are expressed as

jk:G(NG(z')—l)—Hc, k=1,2,...,6 (28)
These link transformation matrix could be presented in a consistent form as
NP(i)
Ay =H;+ Z pipAip (29)
B=1

where A;p arethe 4 x 4 transformation matrices. If the boundary conditions specified
above are taken into account, only six of these transformation matrices are not equal
to zero for each link.

The general form of these matrices is given in (Beres and Sasiadek, 1990; 1991).
The first and second derivatives of the link transformation matrix are easily obtained
from eqn. (29).

_ NP(i)

Ay = Z pipAip (30)
B=1

) NP()

A= ) PipAig (31)
p=1

The derived formulae are components for the formulation of the general kinematic
expressions relating the position of any point in any link to the manipulator base.

5. Kinematics of Flexible Manipulator Link

The position of the point P in the link i, expressed in terms of the fixed inertial
coordinate system of the base, is given by

Tge) = Wzi_l'r:;(e) (32)
where W;_; is the homogeneous transformation matrix between the link ¢ and the

base.

In general, the transformation matrix W; is expressed as a product of transfor-
mations due to the displacement in the joint i, Ag;—;, and transformations due to
the deformation of the link i, Ag;, as proposed by Book (1984).

From the notations shown in Fig. 3 it could be seen that the following formula
holds

J
w; =] Ar= 414245 4; (33)
h=1
Also the following recursive formulae can be written down

W;=W; 14 (34)
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Wj = Wj—lAj -+ Wj_l.Aj (35)

Wj = Wj._lAj +2Wj_1Aj + Wj_lAj (36)

A un

wzm

Fig. 3. Link and joint transformation matrices.

If j is an odd number, (j = 2{ — 1), the transformation As;_; represents the
Joint transformation; if j is an even number, (j = 2i), then the transformation Aj;
represents the transformations due to link deformation. Both of these transformations
have been described in the previous section.

For the case of a two-link manipulator, the transformation matrices W; and
their time derivatives have the following form

W= A (37)
W, = A A, (38)
Wi = A AA;3 (39)
W, = A, (40)
W= A1 A+ A1 Ay (41)
Wi = A1 AsAs + A1 AsAs + A1 Ay As (42)
W,=A (43)
Wo=A1A)+ 2414, + A A,y (44)

Wi = A1 AsAs + A1AzAs + A1 Ay Ay

o T > (45)
+2(A1A2A3 + A1 A2 A3 + A1 A2 A3)
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The state space form requires calculating the second derivatives of joint and
perturbation variables from the general expressions (37)—(45). This can be done by
applying decomposition used by Book (1984).

J
W;=> Wi 14w (46)
h=1

where W;"H denotes the product of elementary transformation matrices and
W?+1 = Ap1Ap42.. . Aj_14; (47)

The second derivatives of the transformation matrices can be written in the form

J
W;=) Wi AW +W,; (48)
h=1

where W, ; does not contain any second derivatives of joint and perturbation vari-
ables. It can be proven that

Wogio1 =W ai_2Agi_ 1+ 2Wai2Ag 1 + Wi oUDg? (49)

W,oi=W, 2 142 + oW i1 A (50)

For the case of a two-link manipulator it was obtained that

W,1=Q%A¢? (51)

W2 = Q*A1 Az + 24; 4, (52)

W,3= QA1 A,A34} + A1 A,Q° Azl

.o . . oo (63)

+2(A1A2A3 + A1A2A3 + Ay A2A3)

Having computed the transformation matrices W; and their derivatives, the

inertial velocity of the point P in the link ¢, that must be used to calculate the
kinetic energy of the system, can be derived from the equation

,’-‘ge) = Wzi—l"':;(E) + Wzi-lT'::(e) (54)

This equation expresses the velocity of any point of the manipulator in terms of
the link and joint transformation matrices, as well as the velocities expressed in the
local link coordinate system.

6. Kinetic Energy of the System

To obtain the total kinetic energy of the manipulator system, the kinetic energy of
each elemental mass dm is first determined and then the individual kinetic energies
are summed up to form the kinetic energy of the entire manipulator.
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An elementary kinetic energy of a mass element dm in the finite element (e) of
link 7 can be expressed as

() _ 1 - (e).. (e)T
»dK,- _2dmtr{ri T } (55)

which, using egn. (54), can be written in the form
nge) = -:lz-dm tr{Wzi—lr::(e)r::(e)TWg;_l

. . (56)

+2W2¢_11':-(e)1.':-(e)TWg;-_l + Wz,'_l'l.':(e)‘r.':(e)TWg;_l}

where Wo;_1 and Wy;_; are the transformation matrices described in the previous
section.

The kinetic energy of the finite element (e) in the link 7 is determined by
integration over the element length, which yields
()
kI = / dK () : (57)
8

The kinetic energy of the entire manipulator is obtained by adding contributions
from all the finite elements in all the links

K= i :\: dK (" (58)

i=] exl

In this equation the following notation was used: n is the number of links, m; is the
number of elements on the link ¢, whereas n((,e) and nge) are the coordinates of the

finite element end points of the element (e) in the link :.

The integrations and summations may be performed within the brackets. Thus,
eqn. (58) may be rewritten in the following way

n . .7 .
K=Y t{Wu 1 BOWy_, +2Wau 1 BOWE | + W BPWL_ 1 (59)

i=1
where the expressions for ng) (k =0,1,2) are calculated as the sums of contributions

from each finite element

B =5"B"O k=012 (60)

e=1
6.1. Kinetic Energy of the System Expressed in Terms of the Local
Finite Element Generalized Coordinates

To calculate the kinetic energy of the entire manipulator in terms of the local finite
element generalized coordinates, each term in eqn. (59) is expressed as a function of
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the finite element generalized coordinates pj(e) and their derivatives. Each term of
the sum in eqn. (59) was calculated as

()
e 1 n 1 i(e
BEO)( ) — 5 /(e) ur:-(e)'ri( )T dn (61)
o
@ _ 1 [ e
B; = 5/@) pr; e dn (62)
Mo
@0 _ LM i
B; = 5/() ur; T dn (63)
o

where p denotes the mass of a unit length of the link.

Now, the three terms that constitute eqn. (59) are expanded. For the third of
these terms, the product under the integral sign in eqn. (63) can be written in the
form

7—,:;(6),,-.::(6)7’ = Np©pTNT (64)
where p(¢) is the 12 x 1 vector of generalized velocities of the element (e), numbered

in the local element numbering system.

Renumbering the terms and calculating the integrals, the following formula is
obtained

12 12
BO = 3% 505955 (65)

j=lk=1

where S;j are the 4 x4 matrices that include integrals of the products of shape

functions, N;, multiplied by the mass of the unit length of the element of the link 1.
The matrices S;; are symmetric and the formula S;z = Si; holds. These

matrices were calculated for j, k = 1,2,...,12. They are specified in (Beres and

Sasiadek, 1991). As can be seen, the formula for B,@)(e) has the shape of a quadratic

form with respect to generalized velocities pge) (7 = 1,2,...,12). The matrices Sjj

are the generalized coefficients of this quadratic form.
The product under the integral sign in eqn. (62) can be written in the form

,,.:;(e),".::(e)T — + Np(e) j)(e)TNT (66)

O O 3 =

In order to include finite elements in the calculations and after taking into account
a simple geometrical relation illustrated in Fig. 2, the position vector is decomposed
into two terms

T
190 0] =d9+p (67)
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where

d9=[1 5 0 0 ](e)T (68)

] (e)T

59 =[0 2 0 0 (69)

This decomposition expresses the geometrical coordinate of the point P as a
sum of two distances: the position 79 of the finite element, expressed in terms of
the link coordinate system, and the distance z measured within the finite element.
Thus, the product in eqn. (62) can be rewritten as follows

ri@RIT _ gpT NT | bpOTNT 4 Np(&pe)T NT ' (70)

After rearranging these terms and performing calculation of the integral, the first
term in eqn. (70) can be written as

1 "Ee) ) (e)T nT 12 .(e) o(e)
5/ o HEOBITNT dn =3 5SS (71)
Mo 1

j=

where S, j=1,2,..,12 are the 4 x 4 matrices that include integrals of the shape
functions. These twelve matrices differ for each finite element. They are specified in
(Beres and Sasiadek, 1991).

Similarly, the second term in eqn. (70) can be written as

1 /’75"
2 ,’gc)

where R;, j=1,2,...,12 are the 4 x 4 matrices, which include integral of the shape
functions multiplied by the variable z. These twelve matrices are specified in (Beres
and Sasiadek, 1991).

12
ﬂb(e)i’(e)TNT,dT) = Zi);e)Rj (72)

ji=1

Summarizing the last results, the integral in eqn. (62) may be expressed as

12 12 12
Bﬁl)“) _ Zf";‘e) ( sg'e) " Rj) n ZZ p§~e)15§f) Sjk (73)
j=1 - j=1k=1

where the matrices S;, R; and Sji, j,k = 1,2,...12 have already been specified.
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The integral in eqn. (61) is calculated similarly. The product under the integral
sign can be written as

X . T
PO [ge) 4 p@) 4 Np<e>] [d<e) IO Np<e)] (74)

The integrals of five of nine terms have already been calculated, thus only four re-
maining integrals have to be computed. These integrals, after performing calculations
have the following forms: -

0000

1 0100
c©Xe) - — 13 75
6" 0000 (75)

(0000

[0 1 00

1 0 7o 00
cWe) = —, 12 76
4’u 00 ( )

[0 0 00
Cc(e) — )T (77)

0 m 0 0

1 no n¢ 0 0
c®©) = —ur o 78
Pl 0 0 00 (78)

0 0 00

Using previously obtained results, the integral in eqn. (61) can be expressed as
follows

3 12 12 12
BOO =32 00O 437 0[50 + 57+ By + BT | + 30 3 r7r554(79)

k=0 j=1 j=1k=1

Summarizing the obtained results, the kinetic energy of the entire manipulator
system can be calculated from eqn. (59) using the coefficients BEO), BSI) and BSQ),
as well as the transformation matrices W; and their derivatives. The coefficients
BEO), Bgl) and Bgz) are expressed in terms of local, finite element coordinate sys-
tems.

To prepare an effective algorithm for calculation of the kinetic energy of the

manipulator systems, the expressions for the coefficients BEO), Bgl) and Bgz) must
be transformed to the global coordinate systems.



Finite element dynamic model of multilink flexible manipulators 247

6.2. Kinetic Energy of the System Expressed in Terms of the Global
Link Generalized Coordinates

Transforming the above equations to the global coordinate system the expressions in
eqns. (65), (73) and (82) can be written as follows

Be 1
2)(e CR
BO = 3" 3" pippig S (80)
B=Ps 1=7s :
(1) _ © L p©) , o & ©)
e . e e . €
BN = 5 5y (sﬁ + R} )+ > pispin S, (81)
B=8. B=Ps Y=Ts
. ( T T By Yt
BO® = ¢ 4 Z (5’5;)+S§f) +R§f)+R§;) )+ D piﬁpwsp,y(SQ)
B=P, B=B: 7="7s
where
By=6(e—1)+1, Bi=6(e—1)+12 (83)
$0-se  EO-m, 0
B=6(e—1)+j, y=6(e—1)+k (85)

‘The second-order terms, i.e. the terms which contain the products of generalized
coordinates, although given in eqn. (82), were omitted in the final expression for
kinetic energy, since their values are small in comparison with other terms.

To get the final formulae for the coefficients Bgo), BEI) and Bg2) in eqn. (59),
the assemblage process, typical for the finite element method, is used.
7. Potential Energy of the System
Two terms contribute to the potential energy of the flexible manipulator system: the
elastic deformation of links and the gravity.
7.1. Potential Energy of Elasticity

The elastic potential energy is independent of joint variables g; and can be expressed
as a sum of terms for each link

n NP(i) NP(i)

Ve=52 . > pispinKipy (86)
i=l f=1 =1

where the matrices K;p, are link stiffness matrices. They are symmetric, banded
and have dimension of (N P(i)x N P(3)).
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The calculation of the element stiffness matrices and their assemblage to the link
stiffness matrix can be done using any standard finite element computer package that
incorporates beam elements.

In the paper, the finite element software package MSC/pal2 was used for gener-
ation of the link stiffness matrix. An application of this package allowed taking into
account the boundary conditions formulated in Section 3.2.

7.2. Potential Energy of Gravity
The potential energy of one finite element due to gravity takes the form

(e)

LB
o= [ 0 o)
Mo
where 'r,(-e) is the position vector in the base coordinate systems and

g=[0 9s 9y 9 ]T (88)

is the gravity vector.

The position vector can be written as a function of the transformation and the
shape function matrix as

7'26) = Waiar? = Wiy {d(e) +5) + Np(e)] (89)
Calculating integrals and rearranging the terms, the potential energy of gravity,

for a finite element is

1 (e) 0 (e)

172088
Mo N /2L;

V) = —pg" W1 L x + N1p® | (90)

The potential energy of gravity for one link is expressed as

Vi = —pgt Waii ZL,(&)NIP(C) —g" WaaMiri. (91)

e=1

where L,@ is the length of the finite element (e) in the link ¢, M; is the mass of
the link,

T
rie=[1 2 0 0] (92)
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z;c is the distance, along the neutral axis, from the joint i to the centre of gravity
of the undeformed link i, Ny is the matrix of integrated shape functions.

- -

0000 O 0 0000 O O
%0000 0%0000 0
Nr= 1 1 1 1 (93)
0500 5L 0500 0 —L
1 1 1 1
~ 0 —= Z 0 —-L
00 50-5L 0 0050-3L 0 |

Finally, the total potential energy of gravity for the entire manipulator can be
given as

n
Vg = gT Z W2i—13i (94)
1=1
where
NP(i)
8i = Miric + Z Pipip (95)
p=1

and the vectors a;s are calculated using the matrix IN; and the values LS‘*) by as-
sembling element coeflicients simultaneously to those in the kinetic energy calculation
process.

In the last equation, the sum on its right-hand side describes the influence of the
link deformation on the change of the potential energy of gravity. This effect could
be neglected as being small. Therefore, the total potential energy of gravity for the
manipulator can be expressed as

V, = ~g7 ZMiwzi-lric (96)
i=1
8. Partial Derivatives of the Kinetic and Potential Energies

8.1. Partial Derivatives of the Potential Energy of Elasticity
with Respect to Joint Variables

" Since the potential energy of elasticity is independent of joint variables, the partial
- derivatives of this energy with respect to joint variables are equal to zero.

av. .
=0, i=12,...,n 97
8g; ®7)
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8.2. Partial Derivatives of the Potential Energy of Elasticity
with Respect to Deflection Variables

Derivatives of the potential energy of elasticity with respect to the deflection variables
are found from eqn. (86) using the formula of quadratic form differentiation

av. NP(j)
pig K 98
ap]p 2-:1 i BEN G By ( )

8.3. Partial Derivatives of the Potential Energy of Gravity
with Respect to Joint Variables

Derivatives of the potential energy of gravity with respect to the joint variables can
be obtained from eqn. (94)

oV, ow
9V _ Z 2i-1 8 (gg)
dq; 9q;

As was mentioned, for simplicity, it was assumed that the quantities s; do not
depend on perturbation variables.

8.4. Partial Derivatives of the Potential Energy of Gravity
with Respect to Deflection Variables

Derivatives of the potential energy of gravity with respect to the deflection variables
can be written as

o, oW
L=—g" Z TEL L Wy qas|, 1<j<n—1  (100)

Ipip 51, Opis

A7 T

9 - _gTW,,_1an 101
3Pn/3 g 2n—1Q%np ( )

8.5. Partial Derivatives of the Transformation Matrices with
Respect to Joint and Deflection Variables

Partial derivatives of the joint transformation matrices Wy;—1 with respect to joint
and deflection variables are described in Section 4.
8.6. Partial Derivatives of the Kinetic Energy with Respect

to Joint Variables and Their Derivatives

To prepare for the application of Lagrange’s equations, the partial derivatives of
the system kinetic energy with respect to joint variables and their derivatives were
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calculated. Also, the time derivative of the second expression was found and both
terms were subtracted. The results are as follows.

d /0K oK i 6W2,'._1 () 1% T
— =) - == —_— W,
% (aq,j) 3g, 2;1;1'{ e [G 2i-1t

q;
NP(i) NP(i)
+ Z PzﬁD(‘)sz 1t Z PzﬁD )Wzg 1]} (102)
=1 B=1
where
NP(i) ‘
D9 =59 +R+ 3 pi, Y (103)
y=1
NP(i)
G(‘) — C(t) + E [S(’) + S(t)T—{-R(’) +R(‘)T] (104)
p=1

In the above equations the products p;g piy were neglected as the terms of second
order. In these equations the upper index denotes the link number.

8.7. Partial Derivatives of the Kinetic Energy with Respect
to the Deflection Variables and Their Derivatives

Analogically, the partial derivatives of the system kinetic energy with respect to per-
turbation variables and their time derivatives were calculated. Also, the derivative
of the second expression was found, and both terms were subtracted. The following
result was obtained.

NP(:)
d /0K OW 54_ 1[ T
— (35— =2 tr i DWW
dt(apjﬁ) 5Pm Z { 9pip 2, BoDy Wi

i=j+1

NP(i) NP(j) _
+2 Y 5 DPWy_ + GOW,_ 1] +2tr [Wz,--l 3" bivSY) (105)
=1

p=1
) NP(j) ) . )
+2W2j_1 E pj.,S(ﬁ’_Y) + sz_ng):l Wg"i—l , 1=12,...,n
y=1

The coefficients DY) and G in these equations have already been calculated.
The partial derivatives described by eqns. (102)-(104), (106)-(107) and (110) con-
tribute to the Lagrange equation of motion of the manipulator system.
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9. Lagrange’s Equations of Motion

The partial derivatives calculated in previous section are now assembled to form the
Lagrange equations of motion of the entire flexible manipulator system.

For joint variables

d /0K 0K 0V, 0V, _ .

7o) gt o e = I=Lhen 1o
For perturbation variables

d s 0K 0K 6Ve v, i=1,2,..,n

—l=) - + =0, 107

dt (3Pjﬁ) 5pip | Opis | Opis f=12,.,m; (107)

The generalized forces, 7;, that correspond to the joint variables g; are joint torques.

Substituting eqns. (97)-(105) into general expressions (106) and (107), the La-
grange equations of motion of the entire robot have the following forms:

¢ for joint variables

oW 2i-1 ; NEG)
2Zt { 2i—1 I:G(') Z (Wh_lAhW;‘?-_I ) + Z D( )W2‘l lplﬁ:I }
h=1

B=1

NP(4)
Wi
_QEt {6 2 1[G(z) rut+2 Y DOWS, lp,,,]} (108)

p=1

OW i1 .
+gT E qj 8; + 75, j=12,..,n
=j

where ¢; are embedded in the matrices Ap.

o for perturbation variables

NP(i) 2i—1
23 {BWW 1[ > DOWE b+ GD Y (Wh—lAhwgtll)T]}

i=j+1 04is B=1 h=1

NP(j) 2j~1
+2tr [sz,l S 595+ > Wi 1Ahw’g;fllp(’)] wl_,
v=1 h=1

6W QO
=-2 Z tr 2= 1[ Z Dp W21 lplﬂ'l"G( )Wu21 1] (109)

i=j+1
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ey |
—2 tr [2W2j_1 Z S(ﬁ’_r)ph + Wu,Zi«-IDg)] ng_1

=1
NP(i) n .
6W2,-_1 J =1,2,...n
— . K. + T[ —_——+ W . a. , 3 3 )
; PiyB jpy T g i§1 Bpip 2j—108 B=1,2,.. m

These Lagrange equations form a set of non-linear differential equations of second
order with respect to the joint and the perturbation variables. In order to transform
this set of equations to a standard state space representation, a global flexible ma-
nipulator set of generalized coordinates defined in Section 3 is used.

Z(t) = [ql(t)i qz(t), ) qn(t))pll(t)y <3 P1,NP(1),
T (110)
pZI(t): '--,pZ,NP(Z)) "‘)pﬂ,l(t)l '--:pn,NP(n)]

Also, a state space vector, that comprises the set of global manipulator general-
ized coordinates and their derivatives, is arranged in the following manner

z(t) ]
o)

Using this notation, the set of Lagrange’s equations of motion (108) and (109) can be
written as follows

Q) = [ (111)

Mz=f(z,2)+r7 (112)
where
T:[ThTZ)""Tﬂ]T (113)

is the vector of external torques applied in joints, augmented by additional zeros that
correspond to generalized coordinates p;gz.

The M matrix is the generalized inertia matrix whose elements are calculated
from the left-hand sides of eqns. (108) and (109). For example,

M, =2 tr{QAIG(l)A’{QT} +2 tr{QAlAZA;.,G(?)AgAZA{QT} (114)

The generalized inertia matrix M is symmetric. Its coefficients are extracted
from the expressions describing the partial derivatives of the kinetic energy of the
system. The details regarding the matrix coefficients M, for the specific case of a

two-link, two-finite-element-per-link flexible manipulator, are presented in (Beres and
Sasiadek, 1991).

To reduce the size of the problem, the static condensation, as described by
Guyan (1964), or the generalized dynamic reduction techniques can be applied. A sim-
ilar technique could be used to eliminate the perturbation variables that were zero to
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satisfy the boundary conditions. The reduced generalized inertia matrix, for a real
manipulator structure is positive definite, thus is non-singular. Therefore, eqn. (112)
can be expressed as

2= M7 f(z,2)+7] (115)

where M ™! denotes the inversion of the generalized inertia matrix. This inversion
can be calculated numerically only. Here f denotes the vector of the right-hand sides
of the system of differential equations. It is a function of the vectors of generalized
coordinates and generalized velocities. It does not contain second derivatives of the
generalized coordinates, i.e. the generalized accelerations. The details regarding the
f vector element for the specific case of a two-link, two-finite-element-per-link flexible
manipulator, are presented in the report by Beres and Sasiadek (1991).

Finally, eqn. (115) may be formulated as follows

Q= £(Q)+ £2(7) (116)

This equation form is ready for numerical integration.

To get numerical results, the presented algorithm must be programmed for nu-
merical calculations.

10. Computer Program

To implement the computation algorithm presented in previous sections a computer
program was designed. As the programming environment the commercial software
MATLAB was used. The MSC/pal2 software was applied to generate the stiffness
matrix K.

The program integrates the set of differential equations that describe the dynam-
ics of a two-link manipulator presented in this paper. This set consists of fourteen
highly non-linear differential equations of second order that were transformed, using
the state space method, into a set of twenty eight differential equations of the first
order. Given geometrical dimensions of links, material data, cross sections of link
shapes and the input torques, the program calculates the responses of generalized
variables in time.

The Runge-Kutta formulae of the fourth and fifth order were used for numeri-
cal integration of these differential equations. A particular implementation of these
formulae — the Fehlberg method — allowed application of an automatic step size of
integration.

The preliminary results of computations are presented in the next section.



Finite element dynamic model of multilink flexible manipulators 255

11. Calculation Results

The results of calculations are presented in Figs. 4-7. The following input data were
used:

length of each link I=100cm

link material aluminum

link cross section circular

diameter lcm

linear density of link material 0.2132kg/m

time range 0-0.5s

torque in the first joint ' 1I0Nm t<0.25s
—10Nm ¢ > 0.25s

torque in the second joint 4Nm 1t<0.25s

—4Nm ¢ >0.25s

The calculation time was set in the range of 0-0.5s. To all the generalized
coordinates, except for g¢;, zero initial conditions were applied. As an initial condition
for the first joint variable ¢; the value of —7/2 rad was used.

Figure 4 presents the time response of the first generalized coordinate. It shows
the angular position of the first joint, after a step function disturbance induced at
time equal to zero. The input signal — torque — rises at zero, remains steady up
to time equal to 0.25s and then falls down to a negatlve value, remains steady and
returns to zero at time equal to 0.5s. The curve is not symmetric with respect to
the point ¢ = 0.25s, because the total moment of inertia of the system changes with
time. This is due to a change of the geometrical configuration of the manipulator.

Figure 5 illustrates the time response of the second generalized coordinate, that
is the angular position of the second joint, after it was disturbed by the input torque
applied at this joint. Analogically, this input signal raises at zero and changes its sign
at time equal to 0.25s. It should be noted that the shape of the curve is influenced
by the inertia of both links. These two variables represent the large motion of the
manipulator links.

Figure 6 shows the time responses of the generalized coordinates p1,8 and p; 14
that represent the deflection of the middle and the last finite element node in the
first link. These coordinates represent the small perturbation motion of the link with
respect to the imaginary rigid link. The two main vibration frequencies that were
excited by input torques are visible in the form of different curve shapes.

Figure 7 presents the time responses of the generalized coordinates p1,12 and
p1,18 that represent the rotation of the middle and the last finite element node in
the first link. The smaller values represent the middle node rotation, while the larger
values correspond to the last node rotation. Again, the two main frequencies are
visible on both curves.
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Fig. 4. Time response of the first joint coordinate, g¢;.
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Fig. 5. Time response of the second joint coordinate, g2.
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12. Conclusions

In this paper the Lagrange finite element approach was used to formulate the dynamic
model of an n-link flexible manipulator. The derived differential equations of motion
take into account a coupling between the rigid body motion and elastic deformations
of links. Specific formulae were presented for the two-link manipulator. Two finite
elements in each link were used. The presented differential equations were derived in
a consistent manner, which allows a further generalization of the model. In particular,
this model can be used for an arbitrary number of links, arbitrary number of finite
elements in the link, arbitrary cross section of each link, as well as arbitrary mass
and stiffness distributions along the link. On the basis of the presented algorithm, a
computer program was created and simulation results were obtained.

The main advantage of the method presented in this paper is the model general-
ity. The application of the finite element methodology to calculate the manipulator
dynamics gives an opportunity to take into account various complicated shapes of
the manipulator link. Also, in addition to bending and shear deformations, various
modes of link deflection can be considered, including small bending rotation inertia
terms, axial deformation terms and a torsion about a longitudinal axis of a link.

The main drawback of this model is its computational burden that affects the
computing time. This may be improved by considering all possible simplifications,
as e.g. recursive schemes, special multiplication subroutines, appropriate numerical
matrix inversion and integration methods. Some of recursive relations were already
used in the algorithm presented in this paper. Also, the rapid development. of the
computer technology allows using more complex models of the flexible manipulators,
that could be run fast enough for real time control applications.

An appropriate computer program has been developed. As the programming
environment the commercial software MATLAB was used. To generate the stiffness
matrix K, another commercial program — MSC/pal2 — was applied.

The results obtained during the initial simulation confirm that the model could
be considered for investigations of n-link flexible manipulator dynamics. Further
work in this area should concentrate on the improvement of the model efficiency.
New algorithms that would reduce computation time will be of special consideration.
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