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NORMAL FORMS OF KINEMATIC SINGULARITIES
OF 3R ROBOT MANIPULATORS

KrzyszToF TCHON*

Using the singularity theory approach we study kinematic singularities of 3R
robot manipulators satisfying certain geometric conditions. A classification of
singular configurations is set forth and three mathematical models (normal
forms) of the kinematics around singular configurations are derived.

1. Introduction

Singular configurations of robot manipulators are commonly defined as these posi-
tions of the manipulator’s joints at which the end-effector is not capable of moving
in certain directions, i.e. the manipulator loses one or more degrees of freedom. The
presence of singular configurations (kinematic singularities) is responsible for making
ill-conditioned the otherwise effective algorithms of trajectory planning or tracking
control of robot manipulators (Nakamura, 1991; Spong and Vidyasagar, 1989; Tchon,
1993). On the other hand, the existence of kinematic singularities is an intrinsic geo-
metric property of robot manipulators, (Gottlieb, 1986), that cannot be annihilated
by any skilful mechanical design.

Within the last decade there has been a growing interest among roboticians
directed towards achieving a better understanding of the manipulator’s behaviour
in a vicinity of singular configurations, motivated both by kinematic and control
problems in robotics. We refer the reader to (Tchon, 1991) and especially to (Kieffer,
1994) for an up-to-date and systematic introduction into this subject as well as for
an extensive bibliography.

When looking at the problem of kinematic singularities from the mathematical
point of view, it becomes quite natural to approach the problem using the tools of
singularity theory. Several publications have recently appeared, situated within or
close to this approach (Kieffer, 1992; 1994; 1995; Tchon, 1991; Tchon and Urban,
1992; Pai and Leu, 1992). The main advantage of the singularity theory approach is
that it can offer mathematically strict local models of manipulator’s kinematics, valid
in some neighbourhood of singular configurations (Tchon, 1991). These models are
called normal forms of kinematics. Their basic idea is to simplify the kinematic map
as far as possible while retaining at the same time all qualitative properties of the
kinematics. More specifically, if the map

y = k(z)
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represents the kinematics in some coordinates in the internal and external manifolds
(so z € R™ and y € R®), then a normal form of k around a configuration g is
obtained by changing coordinates z around z; and y around k(zo),

x> p(z), Yy Y(y)

in such a way that the map
ko=vokoyp!

be as simple as possible. In general, transforming the given kinematics to a nice
normal form is a difficult problem. Under the assumption of structural stability of
kinematics a list of so-called candidate normal forms has been derived in (Tchon,
1991). A justification of the candidate normal forms in the case of planar kinemat-
ics has been provided in (Tchon and Urban, 1992). However, since manipulator’s
kinematics are rather specific maps enjoying apparent factorization and symmetry
properties, it should not at all be expected that every kinematics will be structurally
stable. In this aspect the results of (Tchon, 1991) need to be complemented. A pre-
liminary step in this direction has already been made in (Tchon, 1992; 1993), where
a structurally unstable normal form of the double pendulum with equal link lengths
is derived, and a study of spatial kinematics initiated. In this paper, due to both
the improved mathematical analysis as well as intensified use of symbolic computa-
tions we have managed to construct a fairly complete collection of normal forms for
spatial 3R kinematics with parallel axes of joints 2 and 3, whose Jacobian matrix
at singular configurations drops rank exactly by 1. Such singular configurations are
usually referred to as ordinary. Our main result (Theorem 1) describes the normal
forms in detail. There are three normal forms, qualitatively different. The first of
them (F1) appears to be structurally stable (i.e. insensitive to any, sufficiently small,
perturbations of the kinematics), the second form (F2) can be called geometrically
stable (i.e. within the class of kinematics with preassumed geometry (F2), although
not structurally stable, is insensitive with regard to small variations of manipulator’s
geometric parameters), the third form (F3) is geometrically unstable.

This paper is composed in the following way. Its core section is Section 2. In this
section we present the kinematics to be examined, define and classify kinematic singu-
larities, introduce a preliminary normal form and, after some mathematical analysis
of this form accompanied by considerable amount of symbolic computations, we state
and prove the main result. This result is discussed in Section 3 concluding the paper.
Special attention in Section 3 is paid to the presentation of bifurcation diagram of
the geometrically stable form (F2).

2. Problem Statement and Main Result

We shall consider a general 3 d.o.f. robot manipulator with unlimited revolute joints.
By assigning in the standard way coordinate frames to the base of the manipulator, to
its joints and to the end-effector, we are able to characterize the manipulator’s kine-
matics by the following Denavit-Hartenberg data (Paul, 1981; Spong and Vidyasagar,
1989):
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joint angle | d | s | «@
T di | s1 | o
9 dz 82 a9
T3 d3 |53 | a3

Hereabove d,s,a denote, respectively, offsets along the z-axis and z-axis, and the
axis misalignments. Due to the assumption that the joints are unlimited the joint
angles z1,r2,z3 take values in the unit circle S!, so internal configurations of the
manipulator live in the torus 72 (the internal manifold),

€S xSt xS =T (1)

The kinematics of the manipulator can be reproduced from the Denavit-Hartenberg
data above in the straightforward way. In order to do so we first need to introduce
the matrices

Ai(z;) = Rot(z, z;) Trans(z, d;) Trans(z, s;) Rot(z, a;) (2)

for :=1,2,3, where Rot and Trans stand for elementary rotations and translations
with respect to the axes indicated. Having computed A;(z;) we define the kinemat-
ics as a map taking its values in the special Euclidean group SE(3) (the external
manifold):

R(z) T(z)

k(z) = A1(z1)Az(z2)As(z3) = 0 1

(3)

In expression (3) R(z) denotes the rotation matrix determining the orientation of the
end-effector with respect to the base coordinate frame, similarly T'(z) denotes the
position of the end-effector. Both the entries of R(x) and components of T'(z) depend
analytically on z. In what follows we shall examine only the position kinematics T'(x)
of the manipulator. Furthermore, to make the analysis tractable we shall assume that
the second axis misalignment

gy = 0, . (4)
i.e. that the axes of joints 2 and 3 are parallel. Under assumption (4) the kinematics

T(z) = (T1(x), T2(z), T3(z)) can be defined explicitly in the following way:

Ti(x) = s1 cosx + 82 cos z1 cos T2 + (da + d3) sin g sin 2,
—53 €Os (1 sin &1 sin &3 + 53 cos £3(cos £1 cos £z — cos ay sin &y sin z3)

—sg sin z3(cos z1 sin &3 + cos a1 sin z1 cos z3)

Ty(x) = sy sinz1 + sysinzy cos 2 — (d2 + ds) sin g cos 3
+57 €Os (@ €OS 1 sin &3 + 83 cos £3(sin z1 cos T3 + cos @ cos 1 sin T3) (5)

—s3 sin z3(sin £ sin z3 — cos @y €os x1 cos T2)
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Ts(z) = dy + (d2 + d3) cos a1 + s2sin g sinz,

+53 sin a; (sin 23 cos £3 + cos 2 sin z3)

Now, if we compute the Jacobi matrix for T'(z)

J)= L@ [an(z)]

| Oz;

F (6)

the singular configurations of (5) will be described by the condition
det J(z) = —szs3sinay (sl + sg cos z3 + s3 cos(z2 + :1:3)) sinzg =0 (7)

Clearly, any non-trivial spatial manipulator whose kinematics are defined by (5)
should necessarily satisfy

sg #0, s3 #0, sinay #0

hence the set of singular configurations S consists of two components S3, Sy defined
as follows

Sy :{xeTslz;;:O,:br}
So = {:c €T3 | s, +s2cosz3+ 53 cos(zz + z3) = 0} )
S=5US5,

It is an immediate consequence of the definition that S; is a two-dimensional analytic
submanifold of 73. In the case of Sy it follows that Sy is non-empty provided that

s1] < [s2| + s3] (9)
while Sy is a two-dimensional analytic submanifold of 73, if additionally
51:1:82:|:83¢0 (10)

In order to provide more insight into the two components of the set of singular con-
figurations we shall look more closely at the particular case of a manipulator whose
Jjoint axes 1 and 2 are perpendicular, with zero offsets d;, d3. For such a manipulator
the singular configurations defined by (8) have been represented graphically in Fig. 1.

On the basis of a geometric interpretation of configurations shown in Fig. 1 the
following terminology concerned with singular configurations in S;, S, and S; NS,
will be adopted throughout this paper. First, if z € S; and z3 = 0, then z will be
called a fully stretched out (FSO) ¢onfiguration. If £ € S; and z3 = %, then z
will be referred to as a fully folded down (FFD) configuration. Second, for z € Sy we
shall use the name an almost overhead (AO) configuration, as along with ds tending
to 0 the end-effector approaches a position on the z-axis of the base coordinate
frame (we should keep d; # 0 as otherwise the manipulator in Fig. 1 is no longer
spatial). Eventually, a configuration z € S; N'S; with z3 = 0 will be termed
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AOFSO z

........................ N

AOC

FSO \

Fig. 1. An illustration of FSO, AO and AOFSO configurations.

an almost overhead fully stretched out (AOFSO) configuration, while if z3 = 4x
the configuration = will be called an almost overhead fully folded down (AOFFD)
configuration. Observe that AO configurations exist provided that

[s1] < |s2| + |sa]

Furthermore, to admit an AOFSO configuration the kinematics should additionally
satisfy

Is1] < |s2 + s3] (1)
whereas AOFFD configurations are possible whenever
|s1] < |s2 — s3] (12)

The purpose of this paper is to find out local normal forms of the kinematics (5)
around singular configurations of all aforementioned types. In order to do so, let us
define in 73 an open subset

U={z €Tz +23# +r/2 and Ty(z) #0} (13)

and restrict to singular configurations belonging to S N U. Indeed, all such configu-
rations are ordinary, i.e. at any z € SNU

rank J(z) = 2
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because the matrix

Blﬁ(x) Bll(m)

6$1 6x3
M(z) = (14)
87%($) alh(x)
631 Bxa
has a determinant
det M(z) = —sz sin g cos(zz + 23)T2(z) = —Ta(z) 6€Z(I) (15)
3

non-vanishing at SN U just by definition of U.

Since, by assumption, s3 # 0, sinay # 0, around any point Z = (%1, Z2,%3) € U,
the following map

€= ¢(2) = (p1(2), p2(2), @(x) )

16
61 =Ti(z)-Ti(%), & =z2—32, & =Ts(2)—Ta(2) (9
is a local diffcomorphism of a neighbourhood of # onto a neighbourhood of
0 € IR3, that will be used to accomplish the first step of construction of the nor-
mal form. The diffeomorphism (16) is well defined only within U, if # is not in U,
another diffeomorphism, based on a suitable non-singular 2 x 2 submatrix of J(z),
should be chosen instead of (16). Such a diffeomorphism exists as far as the singular
configurations are ordinary. In the sequel we shall restrict only to z € U though.

On application of (16) at some fixed £ € UNS followed by standard shifts in the
first and in the third coordinate of the external manifold, we transform kinematics (5)
to a preliminary normal form

(&, K(©), ) (17)
where the function K(£) is analytic in some neighbourhood of 0 € IR® and satisfies
Ko p(z) = Ty(z), Ko p(2) = K(0) = Ty(2) (18)

for z in some neighbourhood of z. Further simplifications of the form (17) will
depend on the behaviour of K(£), more specifically on properties of partial derivatives
of K(£) at the singular configuration £ = p(Z) = 0. Thus to proceed we need to
compute some partial derivatives of the function K(€) which is not known explicitly.
The computations will be carried out on the basis of formula (18). By differentiating
both sides of (18) with respect to z;, ¢ = 1,2, 3, and by making suitable substitutions
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from (16) we obtain the following system of linear equations for unknown derivatives
0K 0K O0K

B&,’ B&;’ O&s
0K o ¢(z) 0T (x) + 0K o p(z) Opa(z) + 0K o p(z) 0T3(x) _ 0Te(x)
661 8x1 6&2 3(6‘1 663 61‘1 - 6111
0K o p(z) 0Ty (z) + 0K o p(x )8902(.%) 0K o p(z) 8T3(z) _ 0Tz () (19)
651 61:2 362 61'2 (963 3.1!!2 a.’L'z
0K o p(z) 0Ti(z) + 0K o p(z) Opa(x) 4 0K o p(x) 0T3(x) _ 0Tu(z)
851 61!3 662 6:1:3 653 6133 - 62:3
Taking into account the property that
Op2 _0p2 _ O O¢2_,
(9:(31 - Bxg - a:l:l - (9:(:2
and having deduced from (5)
oT; oT; oT: .
i =Ty, a—wf =T, ——5%:(52 = sgsin a; cos(zg + z3) (20)

we conclude using (13) that for any z € U system (19) is solvable. Its solution can
be written down as follows:

X _aKogo__ __1?1‘2___ T1
0T e T 8z, Ty
_0Kop (0T3\7'(0Ty 6T1>
xoo = 552 = () (ax s
8Ty oty ATy 0T,
_ TIE+T2;9:L‘—3 _ Tla . T26:L‘3 (21)
8T3 - detM
To—
61:3
_O0Koyp 8T2 o1 3T3 detJ _ detJ
Kot = TEz— Oz, X1ooa "X°°la T T 0Tz ~ detM

95—
81!3

where J denotes the Jacobi matrix (6), M — submatrix (14), and for simplicity of
notation the argument z has been omitted. The formula for Xg19 yields immediately
that at any singular configuration z € U

Xom(i‘) = -a-—Iais(zo—) =0 (22)
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as expected since  was singular. Also, it is worth noticing that the property of T
and T, mentioned in (20) results from the apparent invariance of the square distance
T2 + T# with respect to rotations around the z-axis of the base coordinate frame.

Having concluded (22) we want to compute further derivatives of K(£). By a
simple induction formulae (21) can be reliably generalized to arbitrary derivatives
leading for any

K o ®
Xaragas = ErarTIrral la| = a1 + az + a3 (23)

to the following equations:

_10X
XO!1+10120'3 = _T2 1"‘%&
T3~ (06X aT
X011012a3+1 = ﬁ (%‘;2‘13_ - X011+10!20!36 1) (24)
0X oty - 0T3
Xa1a2+1aa . ___g;a;;q - Xal+1a,a3‘é:—v‘2‘ - Xalaga;ﬁ-l’g;;

It turns out that (24) produces (21) under the substitution

Xooo =T

From (24) we deduce in particular that at any singular configuration Z € U

8 0Ts(2) 8
Non(#) = FKO)  Ba det J(z )+ a:;z Pn — det J(Z) )
7> Ty( )6T3(a:) (3T3(z)
7,(2) (T )

After computing derivatives of determinant (7) we discover that for 2 € U NS, NSy

Xo20(Z) = 0. (26)

Next, with a little assistance of symbolic computations it can be established that for
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a singular configuration z € U \ (S1NS2), Xo20(Z) takes one of the following forms:

i) £€S5; and Z3=0 :
Xozo(Z) = _s353(s2 + 53)(51 + (52 + 53) cOs ) sin® oy

61‘3
i) £€S; and Zz3 =7 :
Xozo(2) = 5253(s2 — $3)(s1 + (82 — $3) COs Z3) sin? o

Ty(&) (651(5)) 2

s2s3sin® Z3sin® ay

Ty(2) (6T3(:E)>2

81?3

(27)

iii) ZESy : '
Xo20(Z) =

From (27) it follows that if, respectively, s3 + s3 # 0 or sz — s3 # 0, then for
zeU \ (Sl N Sz)

Xo20(Z) #0 (28)

Now let us concentrate on singular configurations Z € U N.S; N S;. We have
already established that for such configurations

XOIO(E) =0 and Xogo(i‘) =0 (29)

By symbolic computations based on expressions (24) we obtain that

_.  &K(0)
X030(:B) = _6—5:23— =0 (30)
and
641{(0) 38%(52 + 83)4
Xos0 = = 1
S B RE) e
where + sign refers to Z3 = 0, — sign to 3 = £7.

Eventually, we should consider two very specific geometries of the manipulator
assuming either an FSO or FFD configuration. More specifically, we let z € (S; \
S2) N U, and either £3 = +n along with s3 —s3 =0 or Z =0 and s34+ s3 = 0.
Observe that, due to the fact that geometrically the translation along the z-axis by
s3 followed by the zero rotation around the 2-axis is equivalent to the translation by
—s3 followed by the rotation by =+, it sufficies to analyse in detail only the former
case. Thus, assuming that Z3 = +7 and s; = s3, we obtain from (27) the case (ii)

Xogo(i‘) =0 (32)
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In order to compute higher order derivatives of K(£) we first deduce from (5)

BT, T, BT T

%3 = om 98- om
OTy(Z) 0Ts(z) _ 0°Ti(3) _ 9°Ts(x) _ 0
0z, 0z Oz ~  0z2
so, in conclusion, for every k > 1
k - k =
0*Th(z) _ 0°Ts(x) —0 (33)

ko 3
Oz3 Oz

Due to (33) an inductive reasoning applied to (24) allows us to prove that for any
k>1

k

8 0
Xok+10(Z) = B;;Xoko(f) = 'a—zTXow(f) (34)
3

or, equivalently, that

_ _OTs()\ 7/ OkdetJ(z) o~ . .
Xousaa(s) = (Ta®) 22 - S LX) 69
for certain functions «;. Therefore, in order to compute an arbitrary derivative
Xoro(Z), it is necessary first to find derivatives of determinant (7) with respect to z.
But, clearly,

Fr det J(z) = s2s3sin o (32 sinzy + sgsin(zz + xa)) sin z3
2

2
aa—zf det J(z) = sps3sin (52 cos z3 + s3 cos(zz + xa)) sin z3 (36)
3

o3 0
a—xg det J(I) = —'6-72 det J(:c)

Calculated at Z (Z3 = £m, s; = s3) all the derivatives vanish:

ok _

Consequently, since Xo10(Z) = 0, we derive from (35) that for every k >'1

O*K(0)

Xo],o(:l_:) = 6£§ =0 (38)
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Having established that all partial derivatives of K(¢) with respect to £z vanish at
0 we want to look at other derivatives. By (21) we obtain the following relationships

OK(0) _ sicosZy +(d2+ds)sinagsiny

Xi00(Z) =

361 Tg(:z‘)
. 8K(0 s3( (d2 + d3) sin a cos oy cos T + 51 5in T3
Xo01(Z) = 85( ) - ( ) ) (39)
® Ty(z)
O3
*K (0 )
Xo11(Z) = —85-5(6—3) = 5155 sin oy

The data (26)—(39) are sufficient for performing the final reduction of kinematics (17)
to a normal form. To this aim we shall apply some basic results from the singularity
theory (Golubitsky and Guillemin, 1973; Martinet, 1982).

Theorem 1. Consider the position kinematics (5), and let T denote a singular
configuration that belongs to the set U defined by (13). Then, in some neighbourhood
of z, the kinematics can be transformed by local coordinate changes in the internal
and ezternal manifolds to one from among the following normal forms.

o if T is either an FSO configuration of the kinematics whose geomelric param-
eters satisfy sy +s3 # 0 or an FFD configuration of the kinematics satisfying
sy —s3 # 0 or any AO configuration, then the normal form is quadratic

(21,23, 23) )

o if 51 #0 and T is either an AOFSO configuration, or an AOFFD configuration
then the normal form is

(zl, zg + a(z1, 1:3).1:% + b(z1, z3)z2, :ca) (F2)

for certain functions a, b.

o if 51 # 0 and T is either an FSO configuration of the kinematics whose ge-
ometric parameters satisfy s3 + s3 = 0 or an FFD configuration such that
s9 — 83 = 0, then the normal form is

(zl, 1{21;3 + z1¢(z), .’L‘3) (F3)

for a certain function c.
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Proof. Item 1: From (22) and (i) or (ii) of (27) it follows that

OK(O) _o .4 OK(©)

33 oez 7"

Therefore, the preliminary normal form (17) can be transformed further to a Morin
canonical form (Golubitsky and Guillemin, 1973; Martinet, 1982)

(21,23, 23)

Item 2: Since s; # 0, we deduce from the existence conditions (11), (12) of AOFSO
and AOFFD configurations that, respectively,

|32 + Sal >0
The above inequality allows us to conclude from (29), (30) and (31) that

OK(0) 92K _ 9°K(0) _

. 0'K(0)
T T B T =0, while

o8 7"

Now we can apply to the form (17) the universal unfolding theorem that yields a
“pre-Morin” normal form (Martinet, 1982)

(11, z5 + a(z1,z3)zs + b(z1, z3) 72, 1‘3)

O*K(0)

Item 3: By (38) all derivatives ot vanish. Consequently, since K(£) is analytic
2
around 0 € IR3, its Taylor expansion at 0 will not contain any monomial depending

only on 3. This means that K(£) assumes the form

K(¢) = K(0) + &1a(€) +£3B(8)

for certain analytic functions «,(. From (39) we infer that in most cases «(0)
and A(0) are non-zero and, more importantly, that s; # 0 implies

2K(0) _ 0B(0)
08,063 06, #0

The last observation allows us to introduce a local diffeomorphism

e(€) = (&1,8(6) - B0), &)

which, acompanied by a suitable shift in the second external coordinate, trans-
forms (17) to

(61, 62¢(6) + B(0)és + Eas &)
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Finally, by changing external coordinates in accordance with the formula

(v1,92,y3) — (yl,yz + B(0)ys, ys)

we remove the term 3(0){s and arrive at the normal form

(wl, zyz3 + z16(2), ws)
By construction the unknown function c¢(z) is analytic. |

Remark 1. The normal form (F3) proposed in item 3 of Theorem 1 can be re-
garded as a generalization of the normal form of the so-called cyclic double pendulum
introduced in (Tchon, 1992).

Remark 2. Assumptions made in Theorem 1 exclude AOFSO or AOFFD config-
urations of kinematics whose offset equals s; = 0. Let Z = (Z1,%2,Z3) be such a
configuration. Thus we have Z3 = 0,7 and (sz & s3) cosZ; = 0. Clearly, the last
equality requires that Z = £7/2 or sy + s3 = 0. In the former case we have z ¢ U,
hence we cannot use the preliminary normal form (17). In the latter case, according
to (10), the component S; of S is no longer an analytic submanifold of T3.

3. Conclusions

We have proposed a fairly complete description of kinematic behaviour of 3R manipu-
lators with parallel axes of joints 2 and 3, whose singular configurations are ordinary.
Three normal forms (F1), (F2), (F3) have been introduced. The form (F1) is struc-
turally stable and has already been present on the list of candidate normal forms of
the robot kinematics derived in (Tchon, 1991). The other two normal forms (F2),
(F3) are not structurally stable; in fact, they depend on some unknown functions.
However, from the robotic point of view the two unstable normal forms differ sub-
stantially with regard to their sensitivity to variations of geometric parameters of the
kinematics. Namely, if the parameters change (although in a way preserving az = 0),
the form (F2) will survive, while the form (F3) will not. This constatation makes
sense while speaking of geometric stability of (F2) and geometric instability of (F3).
It is reasonable to expect that from the viewpoint of the design of robot manipulators
geometrically unstable kinematics have little practical significance.

The structurally stable form (F1) belongs to quadratic or Morse normal forms
of kinematics and is well understood (Tchon, 1991). This being so, and in view of
what we have said above about the form (F3), in conclusion of this paper we wish to
examine in more detail the geometrically stable form (F2), paying special attention
to its bifurcation diagram. Let us recall that by the bifurcation diagram of a normal
form k(z) of kinematics we mean the set-valued map

a— Xo(k) =k (a) (40)



404 K. Tchon

where o travels through the external manifold of the kinematics. In the case of (F2)
we set

k(z) = (371, 3 + a(z1, z3)73 + b(x1, 23)22, 16‘3) (41)

Since the functions a, b do not depend on =z, the bifurcation diagram of k& is in a
sense “embedded” into the bifurcation diagram of the normal form j4 introduced in
(Tchoni, 1991). Both bifurcation diagrams coincide, if functions a, b are independent.
This normal form can be represented as

74(z) = (21,25 + 2323 + 2122, 23) (42)

For a fixed a = (a1, a2, a3) € IR? the bifurcation diagram of j4(z) takes the (set-)
value

(i4) )= {(-’61,1‘2, £3) | 21 = 1, T3 = a3, T3+asTi+oy Ty = az}(43)
so the shape of the bifurcation diagram is in turn determined by an object that is well

known in catastrophe theory, namely by the catastrophe manifold of the swallow’s
tail catastrophe (Poston and Stewart, 1978)

M4:{(x,a,b,c)E]R4|x4+ax2+bx+c=0} (44)

Several sections of the manifold M, have been plotted in Figs. 2-5 below.

Fig. 2. Catastrophe manifold M,; sections parameterized by (a,b).
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-2

-2

1

Fig. 4. Catastrophe manifold Mj; a section at a = —1.
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Fig. 5. Catastrophe manifold M,; a section at a = —2.

In robotic terms these plots tell us a.o. that around AOFSO or AOFFD config-
urations we can expect zero, two or four solutions to the inverse kinematic problem.
However, since the form k(z) is somewhat more restrictive than j4(z) (parameters
a,b in (44) can be adjusted completely freely, whereas in (41) only through unknown
functions a(zy,23), b(x1, z3)), the “true” bifurcation diagram of (41) is in general a
subdiagram of the diagram derived for (43).
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