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SMOOTH FEEDBACK POSTURE STABILIZATION
OF A CLASS OF MOBILE ROBOTS

Guy CAMPION*, GEorcEs BASTIN*, RoBerT E. MAHONY**

The problem of smooth state feedback posture stabilization of the posture
kinematic models of a class of restricted mobility robots is addressed. Three
techniques are presented: the first two methods (output linearization and
Lyapunov design) ensure the posture stabilization with internal stability of the
system while the third one (time-varying smooth state feedback) ensures the
stabilization of the full state.

1. Introduction

Wheeled mobile robots (WMR) constitute a typical example of mechanical systems
with non integrable velocity constraints. A general formalism for such WMR 1is pre-
sented in (Campion et al) where it is shown that, from a kinematic point of view,
all WMR can be described by five “posture kinematic models” whose generic struc-
tures depend on the number of steering wheels. For restricted mobility robots this

posture kinematic model is controllable but not stabilizable by smooth time invariant
feedback.

In this paper we restrict ourselves to a class of restricted mobility robots char-
acterized by the fact that the number of degrees of freedom is equal to three (as it is
the case for most commercial mobile robots). For such robots the state-space vector
of the posture kinematic model involves the posture coordinates, characterizing the
position of the robot on the plane of motion, but also internal variables, namely the
orientation angles of the steering wheels. From a user’s point of view, we are only
interested in the control of the robot posture, and not in the control of the internal
variables, provided the system is internally stable. Our purpose is to describe several
smooth feedback control laws ensuring the posture stabilization. The existence of such
control laws is not in contradiction with the fact that the posture kinematic model is
not stabilizable by a time invariant smooth state feedback : we do not stabilize the full
state vector but only a part of it (the posture coordinates). We present in Sections 2
and 3 static time invariant smooth state feedback laws ensuring the stabilization of
the posture, with internal stability of the closed loop system. On the other hand,
it has been shown (see Coron, 1992) that controllable driftless systems can always
be stabilized using a time- varying smooth state feedback control. In Section 4 we
present a systematic procedure introduced in (Pomet, 1992) allowing to stabilize the
posture kinematic models of all WMR, using time varying smooth state feedback.
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2. Posture Kinematic Models of Wheeled Mobile Robots

We consider ideal wheeled mobile robots (WMR) made up of a rigid frame equipped
with undeformable wheels and moving on a horizontal plane. The posture of the
robot, i.e. its position on the plane, is characterized by a vector £ of three generalized
coordinates (see Fig. 1)

E=1| vy (1)

where z,y denote the Cartesian coordinates of a reference material point of the
frame, and @ is the robot orientation. Obviously, additional generalized coordinates
are necessary to describe the full robot configuration: orientation angles for orientable
wheels and rotation angles for all the wheels.

X

Fig. 1. Posture definition.

It has been shown (see e.g. Campion et al.) that, if we are only interested in
the kinematic behaviour of the robot posture, it is sufficient to consider the so-called
posture kinematic model, which takes the following state-space form

£€=250,8)u
B=v

)10

where u represents velocity control inputs, 8 is an internal state associated to the
orientation of the steering wheels (more precisely, 8 can be defined as the orientation

2)

or
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angles of the wheels that can be steered independently), v represents the inputs
associated to the orientation of these independent steering wheels.

The various terms in this model satisfy the following dimensionality requirements:

1. dim(u) 2§, is the number of degrees of mobility, i.e. the number of degrees of
freedom of the posture that can be directly manipulated without reorientation
of the steering wheels. Intuitively it corresponds to the number of degrees of
freedom the robot could have instantaneously, from its current configuration,
without steering any of its wheels, i.e. with frozen §. Obviously 6,, < 3.

2. dim(p) = dim(v) -é_és, the number of degrees of steeribility, i.e. the number of
wheels that can be steered independently. The non-slipping condition imposes
that 6g < 2.

3. bm = bm + s is the number of degrees of maneuvrability, i.e. the number of
degrees of freedom including the orientation angles of the steering wheels.

4. S(9,P) is a 3 x 6, kinematic full rank matrix

According to these definitions it is shown in (Campion et al.) that the kinematic
posture models of ideal WMR can be classified into five categories, depending on the
values of the indices 4, and ég.

The first class is characterized by 6, = 3, és = 0. Such robots are said to
be omnidirectional. The model reduces to £ = S(6)u where S(f) is a square non-
singular matrix, which makes the posture control from the inputs u trivial.

The other four classes correspond to the following pairs of values for (6, 8s):
(2,1), (1,2), (2,0), (1,1). Such robots are referred to as restricted mobility robots. For
such robots S(f, ) is no more a square matrix, making the posture control problem
more difficult. The generic form of the corresponding posture kinematic models is
given in (Campion et al.).

Several structural properties of the posture kinematic models have been pointed
out:

P1. The generic posture kinematic models are irreducible and strongly accessible.
This property results directly from the fact that the involutive closure of the

S,6) 0

distribution generated by the columns of the matrix ( 0 7 ) involved

in (3) is of full rank.

P2. The posture kinematic model of restricted mobility robots with é,, < 2 is not
stabilizable by a continuous static time-invariant smooth state feedback. This
property results from the necessary condition of Brockett (1983).

P3. The posture kinematic model is stabilizable by a continuous time-varying static
state feedback. This property is a special case of a general stabilizability result
for driftless systems (Coron, 1992). In Section 4 we shall use the systematic
design procedure proposed by Pomet (Pomet, 1992) to construct such time-
varying control laws,
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In this paper we address the problem of finding a smooth state feedback control
law to drive automatically the robot, from an arbitrary initial posture £(0) # 0 to a
final desired posture (without loss of generality) as the origin of the posture space

lim £(¢) =0

t—o0
under the following conditions:
0 and B(t) are bounded
o lim B(t) =0

For omnidirectional robots the solution to this problem is trivial. For restricted
mobility robots (i.e. if 6, < 2) the situation is less favourable. We know, from P3,
that there exist time-varying smooth feedback posture stabilizing control laws, but
we are also interested to achieve the solution using time-invariant smooth feedback
controls. Clearly, from Property P2, if §5 = 0, such a control does not exist, because,
in this case, the state vector reduces to the posture vector £. For robots with §g > 1
and 6pr = 3, it can be hoped however to achieve posture stabilization, using a time-
invariant smooth state feedback, because in this case the posture vector £ is only a
part of the full state vector (¢, 5).

Therefore we restrict ourselves to a subclass of restricted mobility robots char-
acterized by &3 = 3, i.e. to robots with the pair (6, 8s) equal either to (2,1) or to
(1,2). Notice that most commercial robots on the market belong to the latter class
(robots with at least two steering wheels).

A typical example of a (2,1) robot is a robot equipped with one steering wheel
and two castor wheels (see Fig. 2). The generic posture kinematic model takes the
following form

£ = RT(0)Z(B)u

b= (4)

where R() is the rotation matrix

cosf@ sinfd 0
R()=| —sinf cosf 0

and

—sing 0 "
2(8) = cos 0 |, u:( 1) (5)
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Fig. 2. Example of Type (2,1) robot.

or, explicitly,
& = —sin(f + Buy
y = cos(8 + B)ux
§ = uy
B=v | ©)

A typical example of a (1,2) robot is a robot equipped with two steering wheels
(whose orientations are denoted f; and f;), and a castor wheel (see Fig. 3). The
generic posture kinematic model takes the following form

£ = BT (0)(81, o)u - (7)
5'1 =nun (8)
,3'2 =2 . (9)
where
—2L sin B sin B
(b1, B2) = | Lsin(By + B2) (10)
sin(f2 — 1)

2L is the distance between the centres of the two steering wheels. More explicitly,

z = 01(0,51,P2)u

v = 02(6, B1, Ba)u

8 = o3(B1, B2)u (11)
1=

/82:U2
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Fig. 3. Example of Type (1,2) robot.

where
01(6, b1, B2) = ~L (sin fr sin(6 + B) + sin By sin(0 + By)) (12)
o2(0, 1, B2) = L(sin B1 cos(f + B2) + sin By cos(f + ,31)) (13)
o3(B1, B2) = sin(B2 — B1) (14)

We present three solutions to achieve the posture stabilization by smooth static
state feedback with internal stability:

e output linearizing feedback (Section 3),
¢ Lyapunov design (Section 4),

e time-varying smooth feedback (Section 5).

3. Output Linearising Feedback Control

As shown in (d’Andréa-Novel et al.) dynamic feedback control allows to fully linearize
the system, but the corresponding control becomes singular when the input u; (for
the (2,1) robot), or u (for the (1,2) robot) is equal to zero, i.e. when the longitudinal
velocity of the robot vanishes. This singularity prevents the use of dynamic feedback
linearizing control for posture stabilization purpose.

Recently a procedure has been proposed in (Mahony et al., 1995) allowing con-
struction of a smooth static output linearizing feedback control which can nevertheless
solve our posture control problem.
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We first detail this control algorithm for the Type (2,1) robot whose posture
kinematic model is given by (4).

Control algorithm

There are two steps in the algorithm.
Step 1: Choose u; and u; in order to assign stable linear dynamics for two compo-
nents of the posture vector, namely y and 6. More precisely, the choice

—ay
- = —af
Uy cos(@ ) and us a (15)

leads to the following dynamics

z = aytan(f + B)

y=—ay
6= —ab (16)
=

This control exists as long as cos(f + 3) # 0.

Step 2: Choose v in order to assign the following dynamics to the third component
of the posture vector, i.e. to z

£ 420 +b%z with b>a>0 (17)
This is achieved by the following choice of v:

v=ab — (a— 2b)sin(f + B) cos(d + B) — 41:1—25 cos?(0 + ) (18)

This control v exists as long as y # 0.

This means that, provided y # 0 and cos(6 + B) # 0, the smooth feedback control
defined by (26) and (18) assigns the following closed loop behaviour

i+ 224062z =0 (19)

y+ay=0 (20)

6 + af=0 (21)
2

B = af + (a — 2b)sin(6 + B) cos(8 + B) — 4%% cos2(f + B) (22)

To simplify the calculations we take ¢ =1 and b = 2. This implies that the posture
vector trajectory is given by

2(t) = [2(0) + (22(0) + &(0))z] e (23)

y(t) = y(0)e™* (24)
o(t) = 6(0)e™ (25)
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The following theorem proves of the convergence of the posture as well as the internal
stability of the closed loop.

Theorem 1. Under the following assumptions:

y(0) #0

>+ gm < 6(0) + B(0) < Z 4+ D, e cos(6(0) + B(0)) # 0

the feedback control defined by (15)-(18) ensures that:

1. y(t) #0 and cos(0(t) + B(t)) #0 Vit
2. &(t) converges to zero according to (25)

3. B(t) converges to (¢+ 1)7.

Proof.

1. We first proove by contradiction that the closed loop avoids the singularities
y(t) =0 and cos(d + B) = 0. Suppose that there exists t; such that either
y(t1) = 0 or cos(f(t1)+ B(t1)) = 0, and that the singularities are avoided V¢ < %,
ie. Vt < t; the system evolves according to (22) and (25). Assume first that
y(t1) = 0. Then, by continuity, Ve > 0, there exists t5 < ¢; such that y(t2) = ¢.
Choose ¢ = y(to)e~ (< y(to)e™*2), and the contradiction follows immediately
from the fact that y(t2) = y(to)e~*2. Assume now that cos(6(¢1) + B(t1)) = 0.
Without loss of generality we can assume that this singularity corresponds to
tan(B(t1) + 0(t1)) = +oo. This means that

VM > 0,3t < t1: tan(0(t) + B(t)) > M, ¥t > t,

Define £ = max 2(0) + (22(0) + z(0))t et
1<ty y(0) ’
%(tan(ﬂ + B)) < —3tg(6 + B) + 4k. Choose M > %k, and define f5 such that

Then from (22), for t < t

tan(0(t2) + B(t2)) = M. Then Vi(t; <t < t1), %(tan(ﬁ + B)) < 0 which contra-
dicts the fact that tan(f(¢1) + B(t1)) = +oo.
2. This results immediately from (25) because the closed loop avoids the singularities.
3. It results from (22) and (25) that for all £
z(0) + (22(0) + z(0))t ot
y(0)

For t — oo, there are three stationary points for (8 + §) : % + g7, (¢ + 1)m and

0+8= %sin2(0+,3) — 4cos’(6 + B)

il + (¢ + 1)m. From part 1 we can conclude that the only stable equilibrium is

(0 + B) = (¢ + 1)x. Since 6 converges to zero, we conclude that B converges to
(¢+ 1)m.
|
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If y(0) is equal to zero, then we use the symmetric algorithm, linearizing in the
first step = and ¢, and assigning in the second step the dynamics of y.

The control takes the following form:

T

YT @ +A)

Uy = —f
v=~0—3cos(d + B)sin(f + B) + 4%sin2(9 + B)

This control exists provided that « # 0 and sin(8 + 3) # 0.

Here again, provided that the initial conditions are non-singular (i.e. z(0) # 0 and
sin(6(0) + B(0)) # 0) the closed loop is internally stable and the posture converges
to zero.

The only initial conditions at which neither of the above control laws is valid
are (z(0) = 0 and cos(#(0) + B(0) = 0) and (y(0) = 0 and sin(6(0) + B(0) = 0).
These two cases correspond to the situations where the reference point of the robot
is located on either axis, with the steering wheel perpendicular to this axis. It is not
a real problem: if you start at one of these initial conditions, you have just to modify
the wheel orientation before applying one of the two above control laws!

For the Type (1,2) robot, the same procedure is applicable.

Step 1: Choose u in order to assign stable linear dynamics to one of the three posture
coordinates, say 6:

[/] ,
u:—:}@:—@ (26)

03

This control exists provided o3#0, ie Po—p1#gm (27)

Step 2: Choose v; and vy in order to assign the following dynamics to the remaining
two posture coordinates, ¢ and y:

T+4z+4+4zx=0
v+4y+4y=0

The inputs v; and wve have to satisfy the following conditions:

g0 G0 Doy Dos 4y —35%%0
08, Yop "%, 98, vy o _U_g o3 (28)
5002 003 Ooy  dog w ) 0\ —ay—30%
%08, %08, 208, 0B o3

This control exists provided § # 0, and that the matrix involved in (28) is non-
singular. This last condition is satisfied if (f1,02) # (0,0) which is a particular
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case of condition (27). It is then possible to show, similarly to Theorem 1, that,
provided the initial conditions are not singular, the closed loop system will avoid the
singularities. This ensures the convergence of the posture to the origin, as well as the
internal stability of the closed loop.

It must be pointed out that, strictly speaking, this is not a globally smooth feedback
control: the feedback law is not smooth in the whole state space but only in regions
separated by singularity surfaces. But the analysis shows that, starting in one of these
regions, you remain inside this region and you never switch from one control law to
another.

4. Lyapunov Design

In this Section we construct globally smooth static state feedback control laws, sta-
bilizing the posture and ensuring the internal stability of the closed loop system.

We cons{der only Type (2,1) robots. With the following coordinate transformation:
z1 = zcos(f + ) + ysin(f + B) (29)
zg = —zsin(f + B) + ycos(d + B)

the system equations can be rewritten as follows:

2..’1 0 z9 z9

2 1 z z e

22 -z —z1

. = 30
6 0 1 0 2 (30)
. v

Jo} 0 0 1

The coordinates z; and z; are the components of the position vector OP in a
frame attached to the steering wheel. Stabilizing the posture is therefore equivalent
to stabilizing (21, 22, 6).

Theorem 2. The feedback control law

U = —k1Z2
Uz = -—k‘gg
v = k321 + k29

with ki,ky > 0 and ks # 0 ensures that
a) z1,22,0 are bounded,
b) the vector (z1,22,0) converges to the origin,
¢) 22 + 2% is non-increasing,
d) B is bounded and tl_l{gﬂ(ﬂ =0.
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Proof. Define the candidate Lyapunov function as follows
1
V(21,22,0) = —2-(zf+z§+92) (31)
Then, for the closed loop we have
V =ki22 —ky62 <0 (32)

This ensures that 21,2, and 6 are bounded and that the system converges to
the invariant set defined by z; = 0 and 6 = 0. In this invariant, since k3 # 0,z is
also equal to zero. This implies a) and b).

On the other hand

(42D =t <0

This implies that (z{ + z3), and therefore (z2 + y?), is not increasing (part c). The
result d) follows immediately. |

5. Time-Varying Smooth Static Feedback

The existence of time-varying smooth static feedback laws stabilizing reachable sys-
tems has been proved in (Coron, 1992). Such stabilizing control laws have been used
first in (Samson, 1990a; 1990b) for a class of WMR, and then propagated widely in
the literature with various design techniques (see e.g. Murray and Sastry, 1993).

We present here the constructive procedure of (Pomet, 1992) which is systematic
and applicable to the posture models of all WMR.. The method can be summarized
as follows.

Consider a driftless system

§=)_ filgui with q€IR® (33)
i=1 '
0
. . 0
Assume that the system is strongly accessible and that fi(g) = 0
1

Construct the following Lyapunov function

1 2 1
Vit = [@ +eostlel+. .+ )] +5(d2 4 +al)

Then the following feedback control

) v
un(q,t) =sint(g? + ...+ ¢2_;) — %—(q,t)

ov .
ui(g,t) = ~a—qf,~(q,t) i=1,...,n—1
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ensures that
a) V(q,t) is non-increasing along the closed loop trajectories,
b) the closed loop system is uniformly asymptotically stable.

The application of this procedure to our mobile robots is straightforward and ensures
that the state vector (¢,3) converges to zero.

Type (2,1) robot

The column of the input matrix associated with the input v is equal to . We

= O O

then define
V(t,z,y,0,8) = -1-( 24 42492 2L 2 2 g
YTy Ys ,,8)-—2ﬂ+(1} +y +9)COSt +2(.’L' +y +9)
The feedback control is given by

v
w(t,2,9,0,6) = Go-sin(0 +6) = 5 cos(0+ )

14 2cost(B+ (z2 +y +62)cost)]

[
x [z sin(f 4+ 3) — y cos(f + ﬁ)]

us(t 2,9,6,0) = —%—‘; = —0[L + 2cost(f + (z? + y* + 6?) cost)]
U(t’may)a)ﬂ) = Sint(:l,‘z + y2 + 62) — %‘,@i

(22 + y® + 0%)(sint — cost) — B

Type (1,2) robot

In the input matrix, the two columns associated with the inputs v; and vz have the
required form and can therefore be selected to play the role of the vector field f; in
the procedure. Select e.g. the column associated with v;.

The corresponding Lyapunov function reduces to

1 2
V(t>zay:91ﬂ1)ﬁ2) = 5 [,3]? + (-’132 + yz + 02 +ﬂ%)COSt (34)

1
+5(* + o+ 07+ )
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and the feedback control is given by
B ( ov ov ov )

6$01+ 02+ 5703

u(t,a:,y,ﬁ,,@l,ﬂz) = —6; ag
= —(1+4 2cost)(zoy + yoz + bo3) (35)
x [ﬁ% + (2 +y* +6° +ﬂ§)cost]
v
0p

= sint(a:2 +yP+ 6%+ ﬂ%) (36)

vl(t’may:61ﬂl3ﬁ2) = Sint(Iz + y2 + 02 + ﬂ%)

~ 26 [ + (7 + 47 + 0 + 53) cost)]

oV
va(t, z,y,0,01,82) = —% = —[fs [1 + 2costﬂ12
+ 2(2? 4+ y* 4 6% 4 B2) cos? t] (37

where ¢1,02 and o3 are defined in (12), (13), (14).

It must be noticed that these control laws ensure the stabilization of the full state
and not only of the posture.

6. Conclusion

Most commercial mobile robots have three degrees of freedom. For such robots, we
have described in this paper three different methods for the feedback control of the
posture with internal stability when the objective is to automatically drive the robot
from an arbitrary initial posture to a given target posture.’

We have shown in particular how this posture control problem can be solved by
a static time invariant smooth state feedback.
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