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REDUNDANCY RESOLUTION OF MANIPULATOR
BY GLOBAL OPTIMIZATION

MirostAw GALICKI*

Global optimization in the redundancy resolution, involving direct dynamic
equations of a manipulator, is presented. It is carried out by using the nec-
essary and sufficient conditions for a minimum of integral-type criteria with a
free upper limit of integration. Boundary conditions resulting from the manipu-
lator task to be performed are taken into consideration. General transversality
conditions corresponding to the boundary ones are derived. As a result, a closed
system of boundary dependencies, fully specifying differential equations which
result from the necessary conditions for a minimum, to find an extremal joint
trajectory, is obtained. In order to verify the above extremal trajectory for opti-
mality, (local) sufficient conditions are employed. A computer example involving
a planar manipulator of three revolute kinematic pairs is presented.

1. Introduction

The abilities of redundant manipulators have caused an increasing interest to employ
them in performing complicated tasks in complex workspaces which may include a
lot of obstacles. The redundant degrees of freedom make it possible to realize some
chosen objectives, e.g. collision or singularity avoidance tasks. Most research reports
in this field deal with instantaneous (i.e. at any given time moment) redundancy res-
olutions, obtained by instantaneous minimization of some objective functions which
result in a pseudo-inverse matrix of the manipulator Jacobi matrix. Whitney (1969)
minimized the kinetic energy of the manipulator. Liegeois (1977) used some vector
from the null space of the Jacobi matrix to avoid joint limits. Yoshikawa (1985) and
Klein (1989) considered the minimization of the manipulability measure in singular-
ity avoidance problem. The null space vector was used by Maciejewski and Klein
(1985) in the determination of the collision-free manipulator trajectory. The redun-
dancy resolution through a torque and the acceleration minimization were carried out
by Hollerbach and Suh (1987a; 1987b), and Kazerounian and Nedungadi (1987), re-
spectively. Khatib (1983), as well as Vukobratovic and Kircanski (1984), applied the
generalized inverse method (resolved at the acceleration level) to dynamic equations
of the manipulator.

Although the instantaneous redundancy resolution is attractive because of a pos-
sibility of real-time computations, it does not generally guarantee global optimality
of performing manipulator tasks. It seems difficult to determine e.g. a collision-free
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trajectory in the workspace including a lot of obstacles if instantaneous redundancy
resolution is used. For complicated tasks in complex spaces, global optimization
methods should ensure the solutions of the problems stated above. A few papers
have recently been published on the global optimization. Uchijama et al. (1985) used
parameterization of the joint trajectory by polynomials and optimized the manipu-
lability measure. Nakamura and Hanafusa (1987) proposed a solution based on the
Pontryagin maximum principle for the optimization of a general performance index.
Hollerbach and Suh (1987a; 1987b) presented a solution to the global torque opti-
mization by using the calculus of variations. The global optimization of joint rates
and kinetic energy was carried out by Kazerounian and Wang in (1988). Using the
classical Euler- Lagrange dynamics, Martin et al. (1989) presented path planning
techniques involving integral cost criteria.

This study presents global optimization of the redundancy resolution using any
integral criteria involving robot dynamic equations for the situation when the end-
effector path, represented as a curve (in the robot workspace) parameterized e.g. by its
length (a kinematic manipulator task), is given. In this case, redundancy resolution
with a free final time of performing the above task is obtained. This problem was
considered neither in instantaneous redundancy resolution nor in the works concerning
the global redundancy resolution cited above, although it is important in practical
applications. The minimization procedures obtained in (Bobrow et al., 1985; Shin and
McKay, 1985) are applicable only for non-redundant robots or for redundant robots if
all the joint displacements have been given as specified functions of the manipulator
path parameterization. This is not the case considered in the present paper. In
contrast, the approach presented in this paper utilizes the necessary conditions for
a minimum of functionals for constrained problems of the calculus of variations to
obtain extremal joint trajectories. Boundary conditions of various types (resulting
from the tasks to be performed) imposed on the ends of trajectories are taken into
consideration. In order to specify fully the differential equations obtained from the
necessary conditions for extrema of functionals, general transversality conditions (in
minimal amount) corresponding to the boundary ones have been derived. Hence, the
determination of an extremal trajectory, which is expected to be the optimal one, is
reduced to solving a two-point boundary-value problem.

The trajectory thus obtained is then verified for (local) optimality based on the
sufficient conditions given in the paper. The paper is organized as follows. Section 2
formulates the problem. In Section 3 Euler-Poisson equations are used in order to solve
it, comments are made on both the calculus of variations and Pontryagin’s maximum
principle and their use in the problem under consideration. Section 4 deals with the
boundary and transversality conditions. The sufficient conditions for optimality are
given in Section 5. A numerical example involving a manipulator of three revolute
kinematic pairs, which perform different kinematic tasks, is presented in Section 6.

2. Formulation of the Problem

Let us consider a spatially redundant manipulator whose kinematic model may be
expressed in the following general form

z = f(q) (1)
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where f :IR™ — IR™, f(g) is a vector mapping consisting of m scalar non-linear
functions of the vector ¢, g is the n-dimensional vector of generalized coordinates
(joint variables) which represents a point in the joint space of the robot, z is the
m-dimensional vector being an element of the robot workspace, n is the number of
manipulator kinematic pairs, and m is the dimension of the workspace. Due to the
manipulator redundancy the condition m < n holds. We also consider a kinematic
task to be realized by the robot in the following parametric form (often encountered
in practice)

f(9) —¢(s) =0 (2)

where ¢ : IR' — IR™, ¢(s) is a given vector mapping consisting of m algebraic
functions of the parameter s, which presents a path to be traced by the end-effector,
s € [0, Smax], and Smax 1s the maximum value of the parameter s representing e.g.
the length of the path.

The problem is to find a manipulator trajectory (in the joint space) being a vector
function of time ¢, i.e. ¢ = ¢(t) and s = s(t), which satisfies eqn. (2).

When a motion of the manipulator in the workspace is forced, other constraints
are usually induced, which result e.g. from limitations imposed on the controls, or
obstacle avoidance (inequality constraints). They will be taken into account later.

3. Application of the Euler-Poisson Equation

Due to the redundancy of the manipulator, a global performance criterion is intro-
duced to determine the joint trajectory corresponding to the kinematic task defined
by eqn. (2). It may be generally expressed in the following way

T
I= /0 (g, u) dt 3)

where ¢ : IR* x IR* — IR}, ¢(q,u) is a given cost function with continuous derivatives
of a proper order with respect to its variables ¢ and u, u is the n-dimensional vector
of controls (torques/forces), u = M(q)q+ F(q,q) is the dynamic model of the robot,
M(q) is the n x n dimensional, non-singular, positive definite, inertia matrix, E(q, q)
1s the n-dimensional vector of Coriolis and centrifugal forces, ¢ € [0,77], T' is a free
final moment of performing the task.

The problem of optimal control with free end time results from introducing the
performance index (3) and taking into account eqn. (2). The Pontryagin maximum
principle (Pontryagin et al. 1962) may be used to find its solution. However, there
are a few reasons behind inefliciency of this principle in solving the above task. First,
a direct application of this principle is troublesome enough for the case considered.
The optimal control may not exist although the optimal joint trajectory may. This
1s due to the fact that the optimal control may not exist in a strong topology (al-
though it may exist in a weak topology) whereas the optimal joint trajectory may
(Filippov, 1959). If this is the case, that trajectory (if possible, obtained in another
way) should be supplied as a reference for the on-line control. In fact, the Pontrya-
gin maximum principle can handle effectively the case of constant lower and upper
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limits on controls. This is a rather restrictive condition in practice. Additionally, the
determination of the optimal control becomes difficult if singular arcs occur (Sontag
and Sussmann, 1986). The verification of sufficient conditions for optimality is trou-
blesome in practice. Considering a particular form of the robot dynamic model, the
problem of the optimal control may be transformed into a problem of the calculus of
variations. Thus, the determination of the optimal control is replaced by the deter-
mination of the optimal joint trajectory. On account of the robot dynamic model,
the performance index (3) may generally be written as follows

T
I+ / kg, d,7) dt (4)

where k = ¢(q, M(q)qg+F(q,¢)). In order to handle the cases where there are inequal-
ity constraints resulting, for example, from the limitations on controls (as in the case
of Pontryagin’s maximum principle), the theory of one-sided variations should be em-
ployed (Claf, 1970). However, it is rather difficult to apply it in practice. Additionally,
an optimal trajectory thus obtained may not be smooth (this complicates the on-line
control). Instead, an approximate implementation of inequality constraints may be al-
lowed for the above purpose. The approach is to use e.g. the interior penalty function
method (Fiacco and McCormick, 1968). This implies that the inequality constraints
are satisfied but the performance index (4) increases somewhat since the penalty
functions may force the solution away from the inequality constraint boundaries. The
penalty function approach requires that the constraint set have a non-empty interior.
This is a rather reasonable assumption from the practical point of view.

Summarizing, dependences (2) and (4) form a constrained optimization problem
of the calculus of variations with unknown functions of time ¢ and s. The necessary
condition for a minimum of functional (4) is given by the Euler-Poisson equations of
the form below (Gelfand and Fomin, 1979)

6K _d 0K | & 0K _

8¢ dt 9¢ = dt? 95

0K

2 =0

ds
where K = k + (f(q) — ¢(s), A), A is the m-dimensional vector function of the La-

grange multipliers, (-,-) denotes the scalar product of vectors, which may be written
in a more suitable form, as follows

0
(5)

Wig=a-JTA
(6)
{ps,A) =0
d
where J = -g—f- is the m x n dimensional Jacobi matrix, ¢, = d_t’
q

_ K

W=
85"
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dt 8¢ g dt

W d K 0k d (821{. 0? ) d (t?;qf;f)
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When employing task constraint (2) the Lagrange multiplier A should be explicitly
expressed as a function of time t.

Assuming that the matrix W is non-singular along the extremal trajectory, it
follows that

=W a—-JT) ™)
Differentation of eqn. (2) four times with respect to time results in
Jg—pss+b=0 (8)

where
ood /. dy.. .
szq“‘szss+E<J‘I+‘d—t(Jq_%s(s)z)—éﬂssss)

Next, the right-hand side of eqn. (7) is used in eqn. (8). The assumption of the full
rank of the Jacobi matrix J results in the Lagrange function A dependent on time ¢

MO = (TWT) T (TW a5 4 0) ©)

Substituting (9) into (7) and (6) gives

I, T s (q) Wla+ T IW=la + Jib
= (10)

0 (e, (JW'IJT)_1¢,> <¢;, (JW‘lJT)_l(JW“1a+b)>

where I, is the n xn dimensional identity matrix, 0 is the 1 xn dimensional null
matrix, J§ = W-1JT(JW-1JT)=!. Equations (9) and (10) are mathematically
equivalent to eqns. (2) and (4) under stated assumptions. The extremal trajectory,
which is expected to be the optimal one, is then specified by solving the differen-
tial eqn. (10). This equation is a fourth order differential one with the unknown
final time of integration. In order to specify it fully, in general 4(n + 1) + 1 scalar
consistent dependences relating boundary conditions should be given. Functional I
considered in a class of extremal trajectories satisfying the Euler-Poisson eqn. (10)
is reduced, in general, to a function I(qgo, so, ¢y, 50,97, 5T, 47,57, T) of parameters
90, 50, o, 50, 4T, ST, 47, s and T, respectively, where go = ¢(0), so = s(0), 9 =
2(0), 30 = 5(0), 4 = a(T), s = s(T), iz = q(T), and 7 = &(T). Although this
function is not (usually) explicitly given, its differential is. It is expressed by the
following equation (Gelfand and Fomin, 1979)
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+ (- £ % ) + (O air)) (1)

t=T
() ()

where dqo, dqp, d¢y, dgp, dT are arbitrarily given variations at the ends of the
trajectories ¢q(t) and ¢(t), respectively. In the general case, the above variations are
subject to constraints enforced by the boundary conditions, which result from the
character of the task to be performed. This problem is considered in the next section.

t=0

4. Boundary and Transversality Conditions

A lot of robotic applications deal with split and/or mixed boundary conditions (at
the moments ¢t = 0 and t = T') on the variables ¢ and s. The present study is
limited to considering these (most frequently used in practice) conditions although
the approach presented here may also be used to more general forms of boundary
conditions together with derivatives at the beginning and the end of the joint tra-
jectory. The dynamic case of the performance index (4) makes it possible to enforce
the boundary conditions on the joint positions and the end-effector velocities. If the
above velocities are not specified, then, in general, they are subject to the natural
constraints (which result from differentiation of (2) with respect to time) below

(i), =

(12)
(Jd - (p’é)t:T =0

Not decreasing the character of the considerations, the following (general enough)
boundary conditions (consistent with the kinematic task (2) and the constraint equa-
tions (12)) are assumed in the sequel

f(g0) — #(0)

So
9o
50
f(ar) — ¢(smax)

ST — Smax

qr

ST
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The purpose is to obtain other 2(n — m) + 1 scalar boundary dependences, which
together with the boundary conditions (13) will fully specify eqn. (10). The use
of the differential of the functional I provides these extra dependences. As it was
mentioned earlier, functional I considered in a class of the extremal joint trajectories
satisfying the Euler-Poisson eqn. (10) is reduced, on account of the fixed quantities
50, 50, 4g» ST, s7 and ¢y in the boundary relations (13), to a function I(go, ¢r,T)
of the variables qo, ¢r and T.

According to the law of searching for a conditional extremum of the function
I(go, 97, T) with constraints (13), constant vectors A9 and Az of dimension m exist
such that the following equality holds

d(I(qo, ar, T) + (£(g0) — #(0), Ao) + { f(ar) — ¥(Smax), /\T>) =0 (14)

On account of (11), a result of the free final time T in eqn. (14) is the equation below

(K - (3, %—g»tﬂ =0 (15)

and, correspondingly, arbitrary variations dgo, dgr in (14) and d¢y = dgp =0 from
(13) result in the following transversality conditions

(oo
9 & 3
0K d 0K
or _ S 9% Ty =0
(aq @ o T T)tzT

Next, the vectors A9 and Ar should be eliminated from (16). Multiplying the com-
ponents of (16) by Ji=¢ and J;=r, respectively, results in explicit formulae for the
vectors Ag and Ap

0K d 0K

=— 17— - — —
o= (0 (G- 5 %)

0K d 0K

— Ty-1 _
== (0 (G- 5 5)

Substituting the above quantities into (16), the transversality conditions at the initial
and the final moment of executing manipulator task (2) form the following system of
2n scalar equations

oK d 6K
_T# = —
(”" )%~ @ a'q')),zo 0

0K d 0K
_T# — =
(“" ) @ a'q')lﬂ 0

+ JT/\O) =0
t=0

(16)

17
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where J# = JT(JJT) is the pseudo-inverse matrix of J. Considering the first equa-
tion of (18), Nakamura and Hanafusa (1987) have also obtained in their transversal-

ity conditions the standard orthogonal projection onto the null space of J; = 0
multiplied by the adjoint vector (0), whereas this projection is multiplied by
(aK _4 32) in (18)

dq dt dg/t=0 '

Summarizing, eqns. (13), (15) and (18) provide 4(n+ 1)+ 1+ 2m scalar depen-
dent boundary and transversality conditions to find from eqn. (10) an extremal joint
trajectory. Due to the dependence of these conditions it is difficult to use directly
fast numerical procedures to solve the system of non-linear eqns. (13), (15) and (18).

On the other hand, in order to specify uniquely the differential eqn. (10),
4(n + 1) + 1 boundary dependences are required. When J;—¢ and Ji=7 in (18)
are of full rank m, the matrices (I, — J#J)i=0 and (I, — J#J)i=r are of rank
n — m. Hence, n — m linearly independent rows for each of these matrices exist,
which result in 2(n — m) scalar independent transversality conditions. As a conse-
quence, the use of eqns. (18) requires the matrices constituted by choosing n — m
rows of (I, —J#J)t=o and n—m rows of (I, —J# J)i=r to be of rank n—m. If this
is not the case, another set of rows should be chosen (the assumption of the full rank
of the matrices J;—¢ and J;-r makes it possible to choose such rows). The purpose
of further considerations is to eliminate the pseudo-inverse matrices from 2n scalar
dependent eqns. (18) and to rewrite the transversality conditions (18) in a simpler
form of 2(n—m) independent relations. The assumption rankJ;=o = m = rankJ;=p
makes it possible to select from each of matrices J;—g, Ji=r m linearly independent
columns, which are, without loss of generality, the first columns of Ji;=o and Ji=r,
respectively, and to constitute non-singular matrices (J%);=o, (J®)i=r of dimen-
sion mxm (otherwise another set of independent columns should be chosen). The
* other columns of J;—g, Ji=r constitute matrices (J¥);=o, (J¥)i=r of dimension
m x (n — m), respectively. Following the derivation method presented in (Galicki,
1992), general transversality conditions are obtained below

([(ommom) - en] (5 - 350)) =0

([ 1) G- 32)

where I,_, is the (n — m)x (n — m) dimensional identity matrix. The above ex-
pressions present the transversality conditions obtained at the initial and the final
moment of executing the kinematic task (2), which the extremal joint trajectory has
to satisfy. Similary, as for the case of the transversality conditions given by (18),
where the (n — m)xn dimensional matrices constituted from (I, — J#J)i=0 and
(I, — J#J)i=r should be of rank n — m, the use of eqns. (19) requires the matri-
ces (JB)i=o and (J®),=r to be of rank m. Nevertheless, dependences (19) do not
require the pseudo-inverse matrix calculations and seem to be simpler for numerical
computations than relations (18). Taking into account egns. (13), (15), and (19), a

(19)
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system of 2(n + 1) independent boundary and transversality conditions at the initial
moment is obtained

( £(g0) - #(0)

So

(o) e (-5 [0
%

\ 50 /

whereas, at the final moment, there are 2(n + 1) + 1 such dependences

/ flar) — ¢(smax)
ST — Smax
) 0K 0
<[((‘]R) JF)T B ["'_’”} (E{q— B % %>>t:T =0 (21)
qT
ST )
(-G 55).

Summarizing, an extremal joint trajectory results from solving the two-point
boundary-value problem, specified by the differential eqn. (10) and 4(n + 1) + 1
boundary and transversality conditions (20), (21).

Due to the integration of the differential eqn. (10) from the initial moment to
the final one, the quantities g7, sz and their time derivatives occuring in (20), (21)
depend on 4(n+1)+1 coordinates of the vector a = (qo, S0, ¢g, 50, 40, 50, 40y 50, 1),
Le. g7 = Q(a)’ St = S(Q), QT = Q(Q): sT = é(a)) 'q'T = .q.(a)) st = g(a)) ;jT = q(a)
and §p = §(c). Hence, the left-hand sides of eqns. (20), (21) are, in fact, functions
of @ and may be written in a general form as e(a), where (e()); denotes the left-
hand side of the i-th scalar equation of systems (20), (21), ¢ = 1,...,4(n + 1) + 1.
Finally, the determination of an extremal joint trajectory is reduced to finding a root
(or roots) of 4(n + 1) + 1 non-linear equations below

e(a) =0 (22)

with the same number of unknowns being the coordinates of vector « (note that for
the case under consideration some of the components of « are given a priort, and as
a consequence the number of unknowns to be found and their corresponding scalar
relations of system (22) is less than 4(n+ 1)+ 1). A numerical procedure is proposed
in (Galicki, 1992) to solve the above system in order to find its roots which determine
uniquely the extremal joint trajectories. They should be then verified for optimality.
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5. Locally Sufficient Conditions

To check the extremal trajectory obtained above for a minimum, sufficient conditions
are needed. They may be provided by means of second variation of functional (4) and
by the task constraint (2). The method of its derivation (omitted herein) is based on
a similar technique as for the case of the first variation (11). The first variation is
differentiatied for the second time. The second variation is then obtained by taking
into account the quadratic terms of the differentiatied variation with respect to the
variations of the above extremal trajectory and its ends. As a consequence, the
quadratic functional of (4), obtained at this trajectory, is given as follows

427 = (%_<6K .>_%,_<d oK .. >)t=TdT2

5 a—q, q 95 S T 3—;1.> q,
0K 0K d 0K .
+2 (<_6_q_’ dq:r> + *(?_.s_dsT’+<?1-t. ‘5‘{, d‘IT>)t=T dr (23)

T
+ / w(éq, és,bq,6q)dt
0
where

w= (<%2qi2{5q,5q> + <%6q,6q> + <%2qi§5q,5q> N %552

+ <2%6q,6q> + <2§;§;54, i) + <2%5q, 5§>)

bq, 6s, 6q and b6q are variations of the extremal trajectories ¢(¢), s(tf) and their
derivatives, in their neighbourhoods, respectively. It seems reasonable in practice to
consider sufficient conditions in a class of extremal joint trajectories with fixed end
moments, which were obtained in the previous sections of this paper from the neces-
sary conditions for a minimum. This assumption does not decrease the character of
considerations and makes further calculations easier. If this is the case, the quadratic
functional (23) can be simplified, as follows

T
dZI:/O w(éq, 6s,6q,6q) dt (24)

The sufficient condition for a (local) minimum is that the quadratic functional (24) is
strongly positive definite for the extremal trajectory under consideration (Gelfand and
Fomin, 1979). To check the above trajectory for a minimum, an accessory problem
related to the prior one should be solved (Claf, 1970). For the case considered here, it
is defined as follows: minimize the quadratic functional (24) subject to the following

constraints
MOREAO) (f;’) = (25)
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where the quantities J(t) = (g—:;) )
9=g

the extremal trajectory (q(t) s(t)), ¢t € [0,T], and

de
, ps(t) = (-&;)Es(t) are computed along

J(0)8q0
659
64q
650

J(T)bqr

6 ST

=0 (26)

bqr

bst
where 6qo9 = 6¢(0), 6so = 6s(0), 8y = 6¢(0), és0 = 65(0), bqr = 6¢(T), bsy =

8s(T), 6¢p = 6¢(T) and és7 = 65(T). Explicit formulae for finding the unknown
functions (ég,6s) are based on the Euler-Poisson equations of the form below

6Q d 60 d2 6Q _
3(6q) & 8(83) | at? 8(sq)
5Q
a(6s)

(27)
0

where Q =w + (g, J(t)8q — ¢s(t)és), p is the m-dimensional vector of the Lagrange
multipliers, with the boundary constraints (27) and the transversality conditions,
which can be derived (similarly as in Section 4) using the first differential of functional
{(24) equal to zero, given below

i = (840 s + (o0 asin) .

6Q d 6Q 60 .
- (<6(6q') - 55y 400 + <W‘q‘)’d(5q°)>> =0

t=0

t=T

where d(éqo), d(égr) are arbitrarily given variations at the ends of the trajectory
(6q,8s). The extremal trajectories (6¢(t), 6s(t)), where t € [0, T], being the solutions
of the above problem are called accessory extremal trajectories. They may be found
(numerically) using the methods given by Galicki (1992).

The quadratic functional (24) is strongly and positive definite at the extremal
trajectory (g(t) s(t)), where t € [0,T], when the following conditions are satisfied
(i.e. local, sufficient conditions):

2

{¢
— is positive definite for each t € [0,T],

» quadratic matrix
dq
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e interval [0,7] does not include any moment of time, which is conjugate to ¢ = 0.
A moment ¢’ € (0,77 is said to be conjugate to the moment ¢ = 0 iff an accessory
extremal trajectory exists, such that it equals zero at ¢ = 0, ¢t = ¢t/ and is not
identical to zero between the moments 0 and #'.

Thus, an extremal trajectory (g(t) s(t)), where t € [0, 7], minimizes (locally)
functional (4) when the null trajectory (6¢(t) 6s(t)) = (00) is the only solution for
the accessory problem. In order to verify (numerically) the trajectory (g(t) s(¢)) for
a minimum, a number of initial guesses for finding accessory trajectory (8q(t),8s(t))
should be made. If each solution thus obtained is the null accessory trajectory, then
it may be concluded that the extremal trajectory (g(¢) s(t)) is the optimal one. If
this is not the case, this trajectory is not the optimal one.

6. Numerical Example

A planar manipulator of three revolute kinematic pairs is considered. The link length
are as follows: I} = 3, I = 2.5 and I3 = 2. The kinematic task is to trace a circle,
described analytically in the form

o) = ( 2.25 cos(s) + 2.5 )

2.25sin(s)

where s € [0, smax = 6.28], by the end-effector (Fig. 1) so as to minimize the functional

I= /OT (14 cldd)) et (29)

where ¢ is a positive coefficient, which equals ¢ = 0.03.

X2 A
225 _| .
T
) // ~
/ \\
/ 25 \
| } »
ql
@ 12 q
/ .
"\, )/
\\—-/ﬁ/ -

Fig. 1. A periodic task to be realized by the manipulator.
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A kinematic model of the above manipulator is expressed, as follows

3
Zlici
=1

3
zlisi
i=1

where ¢; = cos(¢* +¢> + -+ ¢), si =sin(¢g! +¢* +...+¢"), i=1,---,3. The
boundary and the transversality periodic condition to find optimal joint trajectory
(¢(t) s(t)) assumes for the case under consideration the following form (note that
functional (29) does not depend on g)

R’>z=f(q) =

f(g0) — #(0) \

e(a) = <(((JR)_1JF)T - 1)t=0 ’ q°> =0 (30)
(@) = gt — qo

s(a) = St — Smax

\ 1-05e(4(e) = 7. d(e) = (9)r)

where o = (o, 50,4p, 50, ), (J®)t=0 is the 2x2 dimensional matrix constituted
from the first two columns of the Jacobi matrix (%5)1‘—0’ which are assumed to be
linearly independent, (J¥);=o is the 2 x 1 dimensional matrix obtained by excluding
(J®)i=0 from (%)t:o' The initial guess «g for solving system (30) equals g =
(-0.1,0.1, 0.1, 0.0, 0.1, —=0.1, —0.1, 0.2, 0.1). Employing numerical method to find a
solution to system (30), the following root is found:

a = (-1.09, 1.48, 0.61, 0.0, 5.63, 0.60, —0.89, 12.37, 0.84)

The corresponding extremal trajectory as a function of time is presented in Fig. 2.

Next, this extremal joint trajectory is verified for a minimum using the sufficient
conditions given in Section 5. In this case, the accessory Euler-Poisson equations
(here reduced to the Euler-Lagrange equations) assume the following form

) 62K> .
2 (— Sq+ JT(t)p —4cbg =0
o 9=q(t)

?K
2 <a?)s=s(t) 65— (p,p5(8)) = 0
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Fig. 2. Extremal trajectories v. time for a.
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with the accessory boundary and transversality conditions

Ji=06q0

550

e(a) = <(((JR)‘1JF)T _ 1)t=0,aq'0> (31)

bgr = 6q() — g0
dst = bs(a) )

where o = (840, 850,649, 850), 6gg = 6¢(0), 50 = 65(0). In the computer example six
values of the initial guess ag are taken for computations. They are presented below.

No. | ag = (QO, 50,90, éo)

(10, -1, 5, 0.0, -6, -2, 4, 5)
(8,-5,3,0.0,7,-4,5,-2)
(-5,-4,7,0.0,9,-2, 7, -5)

(-10, 5, 5, 0.0, -10, 5, 5, -10)

(5, -10, -10, 0.0, -10, 5, -10, -10)
(-9, 2,-3,00,7,-2,-1, 1)

S Ol i W N

Each of them results in the null accessory trajectory. Hence, it is concluded that the
extremal trajectory presented in Fig. 2 is the optimal one.

7. Conclusions

Global redundancy resolution, based on minimization of any integral criteria (using
the calculus of variations) is given. Boundary conditions imposed and transversality
ones derived fully specify the Euler-Poisson differential equations, which result from
the necessary conditions for extrema of functionals, and thus reduce the amount of
numerical computations needed to find the optimal solution. This solution may be
found using shooting methods (given e.g. in (Muszynski and Myszkis, 1984)) which
involve, in general, guessing the initial configuration, initial directions of accelera-
tion and jerk of the extremal trajectory, final time, and refining the guess until the
transversality and the boundary conditions are satisfied with accuracy.
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