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KINEMATICS OF PATH TRACKING AT SINGULARITIES
OF THE PLANAR 2R MANIPULATOR

JoN KIEFFER*

A method for determining the differential kinematics of path tracking at singular
configurations of the planar 2R manipulator is presented. The method is based
on Taylor series analysis of the displacement equations to determine low-order
parametric curves that satisfy those equations. Results show that singularities
can take the form of isolated points, turning points, nodes, and cusps and that
the form of the singularity depends on the degree of contact between the path
and the workspace boundary. The resulting expansions provide complete low-
order information on admissible rates of path traversal and on all families of
joint trajectories that track the path at the singularity.

1. Introduction

A mechanical manipulator can be thought of as a mapping ¢ = f(f) from joint
positions § € R™ onto a spatial end-effector position £ € R"”. To control the end
effector one must solve the so-called inverse kinematics problem. Loosely speaking this
problem is to determine joint motions that provide the desired end-effector motion.
One part of this problem is to solve =z = f(#) for roots 4, given z. Another part
of this problem is to determine differentials in 6 as a function of differentials in z.
Except at kinematic singularities, this second problem is relatively straightforward to
solve. For example, given z, &, %, and a solution 8 = f~1(z) to the first problem,
joint velocities and accelerations can be determined as follows.

6= fg_la': ; (1
6= 7[5 — fo) ()

Kinematic singularities are defined as configurations 6 where the Jacobian fy(0) is
singular. At these configurations the rate solutions above do not work. Sometimes
this occurs when no solution exists. In other cases a solution or multiple solutions
exist.

Kinematic singularities are of interest for a number of reasons. Primarily for the
nuisance they present to robot control, but also due to their fundamental relation to
workspace boundaries, closed-form inverse kinematic solutions, and the possibility of
using them to gain mechanical advantage. A fairly comprehensive review of related
literature is given in (Kieffer, 1994).
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One strand of this research has been to develop mathematical methods for deter-
mining local differential models of the manipulator kinematics in the neighbourhood
of singularities. The motivations for this research are to understand singularities
better, to classify them, and to offer alternatives to equations such as (1) and (2)
which are not valid at singularities. Tchon (1991) and Tchon and Urban (1992) have
applied the methods of singularity theory to determine normal forms of manipulator
singularities. Kieffer (1992, 1994) has taken a different approach based on Taylor
series analysis of the manipulator’s path-constrained kinematics. This approach can
be summarized as follows.

1. Consider that an end-effector path z(X), rather than trajectory z(t) is given.
2. Assume that 8 and A are functions of a new scalar parameter s.

3. Analyse a Taylor series expansion of the constraint equations z(A(s)) = f(8(s)) at

the singularity to determine the first terms in the Taylor series expansions of 6(s),
and A(s).

4. Use the resulting expansions to determine admissible end-effector rates and the
corresponding joint rates

In (Kieffer, 1992; 1994) this approach was applied to general six-degree-of-
freedom serial manipulators. Results showed that the locus of kinematic solutions can
take the form of three types of curve singularities: isolated points, turning points, and
simple nodes. In addition, general algorithms were developed to determine smooth
local models (Taylor expansions) for each case. But these results were not exhaustive.
They extended only to those singularities that can be unambiguously defined by the
first three terms in a Taylor series expansion of the constraint equations.

In this paper we apply this method to the much simpler equations associated with
the planar 2R manipulator to derive an exhaustive classification of path following
singularities for any smooth path passing through a point on the outer workspace
boundary. In addition, we determine smooth local models for each case that provide
low-order joint rate relations as well. The results show that the topology of local
models can be determined from the degree of contact between the end-point path and
the workspace boundary. Section 2 presents the problem formulation. Sections 3 and 4
develop the analytic solutions for local curve expansions. Section 5 shows how these
expansions can be used to determine rate solutions at the singularity. Conclusions
are drawn in Section 6.

2. Problem Formulation

Figure 1 depicts the robotic path tracking problem that we wish to address. We
assume that a smooth endpoint path x()) is given that includes a point P on the
outer workspace boundary that forces the manipulator into an outstretched singular
configuration. The problem is to determine the locus of joint positions (61,62) that
keep the end point on the path in the neighbourhood of P, as well as the differential
rates of change of 6; and f,. The end point path z(A) may intersect the workspace
boundary at P or have any degree of tangency with it.
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Fig. 1. 2R manipulator with path z()) forcing it into a singular configuration.

To simplify explanations we choose not to consider folded singularities associated
with the inner workspace boundary even though the approach can be applied to
them with only minor differences. Likewise we will not consider the special folded
singularity that occurs when the robot has equal link lengths L; = Ly and its end
point coincides with the workspace void which has shrunk to a point. If the method
is applied to this case it will reveal a self motion circuit similar to the self motion
circuit of the PUMA wrist singularity described in (Kieffer, 1994). Interested readers
are also referred to (Tchori, 1992) for a thorough analysis of the folded singularity of
the planar 2R manipulator with equal link lengths.

It is advantageous to represent the end-point path in polar coordinates. Without
loss of generality let z(A) = [r()), ¢(A)], with A = 0 corresponding to point P. Let
us represent these functions by their Taylor series expansions about A = 0.

(k)
r) = (Ly+ Lo) + ZAF +O0F) (k> 1) (3)
$(0) = ¢ + A+ 02 @)
5 v . dEr ,
Here r(¥) denotes r(\)’s first non-zero derivative, IE # 0. We also require the

parameterization to be regular, i.e. (7')2 + (ré’)? > 0.

This form of representation is chosen because it makes the path’s contact with
the workspace boundary explicit: e.g. £ = 1 implies 1-point contact (intersection),
k = 2 implies 2-point contact (simple tangency), etc. We will show that k determines
the form of the singularity.

The following constraint equations relate the end point coordinates (r,¢) to
the joint coordinates (f:,62). Equation (5) can be derived using the law of cosines.
Equation (6) follows from trigonometry.

rP= L2+ L2+ 2L Lycos0, ‘ (5)

rsin(¢ — 0;) = Ly sin b, (6)
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Recalling that » and ¢ are parametric functions of the path parameter A, our
problem is to solve eqns. (5) and (6) for local relations between A, 6;, and 6, in
the neighbourhood of the singular solution, (),6;,8,) = (0, $(®),0). Because eqn. (5)
does not involve 61, we can solve this problem in two steps: first analyse eqn. (5)
to determine local relations between A and 6,, then analyse eqn. (6) to locally de-
termine ;. This decoupling of the problem into two parts is another advantage of
representing the end point position in polar coordinates.

3. Determination of A(s) and 8,(s)

Substitution of the path constraint r = r()) into eqn. (5) provides the following
kinematic constraint.

r?(A\) =L} — L2 — 2L, Lycos6, = 0 (7)
Taylor series expansion of (7) about (A,63) = (0,0) provides:

(k)

r

2(Ly + Lz)—k!—,\" + L1 L2602 + ONFH) + 0(83) = 0 (8)
To determine the locus of solutions (X, 62) to (8) in the neighbourhood of (0,0) we
now assume that A and 6, are functions of a new parameter s. Without loss of
generality we represent these functions by the following Taylor series expansions.

A(s) = as? + O(s1) 9
03(s) = Bs? + O(s**) (10)

Here « and B are unknown real scalars, whereas p and ¢ are unknown positive
integer constants. Parameters o, 3, p, and g characterize A(s), and 63(s) locally.
Substitution of (9) and (10) into (8) provides the following equation.

(k)
2(Ly + Lz)fk-,-a"spk + L1 L2B%s% + O(sPF+1) + O(s24t1) = 0 (11)
A solution of this equation determines the first terms in the Taylor expansions of
(A(8),02(s)) that satisfies (8) near the singularity. By solution we mean a set of
values (a, 8,p,q) that ensure eqn. (11) is satisfied for all small s. Such solutions
must satisfy the following two equations.

ok =2 (12)

2(Ly + Ly)rt®)

?=MoF, M=-" o 13

=M, Ly Lok! (13)
We are not interested in determining all solutions (a, 8, p, ¢): only those which

lead to a unique curve in (), 62)-space. Four cases arise (isolated point, node, turning

point, cusp) depending on the values of & and M as shown in Tab. 1 and illustrated

graphically in Tab. 2. When k is even and M < 0, eqn. (13) admits no real solutions
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Tab. 1. (a, 8, p, q) solutions and singularity type.

M<0 M>o0
p=1  qg=k/2
k even | isolated point | a =1 B=+vM

node

p=2 g=k
kodd | o =sign(M) B =+/|M]|
turning point (k = 1) or cusp (k > 1)

for B3, thus the singular solution (A, #2) = (0,0) must be isolated. This case is not
illustrated in Tab. 2.

When £ is even and M > 0, we can choose p = a =1 and then solve eqns. (12)
and (13) for ¢ = k/2 and B = ++/M, respectively. The two solutions for 8 provide
different curves in (), f2)-space that intersect (with or without tangency) at (), ;) =
(0,0) to form a node. The degree of tangency between the node branches is equal
to k/2 — 1 as illustrated in rows 2, 4, and 6 of Tab. 2. Equations (12) and (13)
also yield solutions for other choices of p and «, but these choices only lead to other
parameterizations of the same curves.

When & is odd we can choose p = 2 and o = sign(M) then solve eqns. (12)
and (13) for ¢ = k and B = %,/|M|, respectively. In this case, the two solutions
for B provide the same curve in (A, f3)-space. Similarly, all other choices of p and «
lead to different parameterizations of this curve. As shown in row 1 of Tab. 2, the
curve has a turning point at (A,62) = (0,0) if ¥ = 1, otherwise it has a cusp as
shown in rows 3 and 5.

The resulting expressions for A(s) and (s) are summarized in columns 2 and 4
of Tab. 3.

4. Determination of 64(s)

In the neighbourhood of the singularity, eqn. (6) can be solved for ¢; as follows.

(14)

Lysind
f; = ¢ — arcsin (&)

A local expansion of 6;(s) can be determined based on a Taylor series expansion
of (14) about the singularity. Considering that r = r(\(s)), ¢ = ¢(A(s)), and
62 = 62(s) we obtain the following expansion of (14) about s = 0.

b:(s) = ¢+[¢'/\'—%9;]s

1 l 1L " L !/
+ [WA" +56" (V) - 57292 + 72292’”'} s+ 0(s%)  (15)



300 J. Kieffer
Tab. 2. Path tracking singularities of the planar 2R manipulator.
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Tab. 3. Summary of Taylor expansions at the singularity.

k A(s) 61(s) 62(s)

1 sign(M)s® + 0(s®) | ¢V — L\/IM][s + O(s) VIM|s + 0(s?)

2 s+ 0(s) ¢ 4 (¢ £ LvM]s + O(s®) | £vMs + O(s?)

3,5.. | sign(M)s® +0(s%) | ¢ + ¢Wsign(M)s? + O(s°) \/I_J\Tsk + O(s* 1Y)

4,6.. | s+0(s?) ¢ + M5 + 0(s?) +v/Ms% + O(s541)
Note: if M <0 and k is even, then no expansion exists (solution is isolated),
M= At L)® Ly

LiLok! L+ Ly

Tab. 4. First non-zero derivatives with respect to time ($ = free scalar).

k z(t) 6:(t) 62(t)
1 & = 20'sign(M)s* | 61 = —L\/|M]s b2 = /|M]5
2 T=1'3 6, =[¢M F LvVM)s | 6, = +VMs
3,5.. | & =22 sign(M)s* | 61 = 2¢(Vsign(M)s* | d*6,/dt* = k!\/|M|s*
46. | i=2's b, = ¢M; 5129, [dt*)? = £ k1M 5%

Note: same as for Tab. 3.

Evaluating the derivatives of A(s) and f(s) at s = 0 using the expressions shown
in columns 2 and 4 of Tab. 3 we obtain the expressions for #;(s) shown in column 3
of Tab. 3.

5. Admissable End-Effector Rates and Joint Rate Solutions

The low-order expansions given in Tab. 3 can be used to determine the first non-zero
derivatives of z(t) and 6(t) evaluated at the singularity. Evaluating the derivatives
of z(t) = z(A(s(t))) and #(t) = 0(s(t)) at s = 0 based on the expressions given in
Tab. 3 we obtain the results summarized in Tab. 4. Table 4 provides expressions for
first non-zero derivatives of z(t) and 6(t) as functions of a free parameter s.

A given rate of end-effector motion is admissable if and only if the appropriate
equation in column 2 of Tab. 4 can be solved for a real value of § and any lower-order
derivative of z(t) is zero. If a solution for $ exists, then it can be plugged into the
expressions shown in columns 3 and 4 to determine the first non-zero derivatives of
61(t) and 65(t) at the singularity.
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6. Conclusions

A method for determining differential kinematics of path tracking has been applied
to the outstretched singular configuration of the planar 2R manipulator. Results
show that isolated points, turning points, nodes, and cusps can arise in the locus of
kinematic solutions depending on the end point’s path’s degree of contact k£ with the
workspace boundary (Tab. 2). Explicit formulae have been derived (Tab. 3) for the
first non-zero terms of the Taylor series expansions of joint displacement curves in the
neighbourhood of the singularity, as well as for their first non-zero derivatives with
respect to time (Tab. 4).

Physical insight into the different types of singularities can be enhanced by study-
ing the drawings of the manipulator shown in Tab. 2. Paths that have odd degrees
of contact k& with the workspace boundary do not lie entirely inside the workspace.
Therefore the locus of solutions must turn with respect to path parameter A to form
either a turning point (k¥ = 1), or a cusp (k = 3,5,...) when the singularity is
encountered.

When the end point’s path has an even degree of contact k& with the workspace
boundary, the path in the neighbourhood of P will lie either entirely outside the
workspace (M < 0) or entirely inside the workspace (M > 1). In the former case
(not shown in Tab. 2) the singular solution is isolated. In the latter case the end-
effector can reach all positions on the path, except point P, in two different joint
configurations (elbow-up and elbow-down). At point P the two branches coincide,
forming a node in the locus of joint solutions that map onto the path. This node gives
rise to two distinct and smooth joint curves that give rise to two distinct families of
joint rate solutions. It is interesting to note that these two curves contact each other
with degree k/2. A switch from one curve to the other at the singularity implies a
discontinuity in derivatives of order k/2.

Column 2 of Tab. 4 clearly defines the family of all end point rates that can be
physically realized at the singularity. Odd contact k implies that the end point must
stop at the singularity, but arbitrary accelerations away from the workspace boundary
are allowed. Even & and M < 0 imply that the end point can pass the singularity
with arbitrary velocity.

This case study of the planar 2R manipulator suggests that path tracking singu-
larities for more general manipulators will also be closely related to the geometry of
contact between the end effector path and the workspace boundary. For singularities
that occur inside the workspace it may be the path’s contact with an interior surface
(the image of neighbouring singular configurations) that is important.
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