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ROBOT DYNAMICS MODELS IN TERMS OF
GENERALIZED AND QUASI-COORDINATES:
A COMPARISON'

KrzyszTor KOZLOWSKI*

Lagrangian robot dynamics derived by making use of the generalized and quasi-
coordinates is discussed. A comparison between two sets of equations is pre-
sented, which is motivated by recently developed (Jain and Rodriguez, 1994)
diagonalized equations of motion for multibody open kinematic chains with

N degrees of freedom. These equations are derived by making use of new

joint velocity variables v;, which can be viewed as time derivatives of the La-

grangian ‘quasi-coordinates, similar to those in classical mechanics. Several re-
marks, which simplify the derivation of the new set of equations are presented.
Next, physical interpretation of both sets of equations is widely discussed. A
detailed computational complexity analysis of the standard and diagonalized
Lagrangian robot dynamics algorithms is presented in the paper. The results

have been compared with those existing in the literature on robotics.

Nomenclature

Individual Body Quantities

e N number of joints and, at the same time, number of degrees of freedom,

e Oy origin of the coordinate frame attached to the k-th link, which is located on

the negative side of the k-th joint, namely inboard the k-th joint,

p(k) € R? vector from Oy to the k-th link’s centre of mass,
o l(k,k —1) € R® vector from Oi_; to O,

0 e iy
o l(k,k—1)eR>3, I(k,k~1)= | Uy 0 Iy | where lig, Iy, ls; are
by by O

components of vector I(k,k — 1),

o I3 3 x3 identity matrix,
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é(k,k—1) € IR6*® composite body transformation operator from O;_; to Ok,
Iy Ik, k—-1
bk k1) = [ o D )],
m(k) mass of the k-th link,
I(k) € IR3*3 inertia tensor of the k-th link with respect to Og,
M (k) € IR6*6 spatial inertia matrix of the k-th link expressed in the coordinate O,
M(k) = [ I(k)  m(k)5(k) ] |
—m(k)p(k) m(k)Is

V (k) = col[w(k),v(k)] € R® spatial velocity of the k-th body frame O, where
w(k) and v(k) are the angular and linear velocities of O, col denotes a column
vector,

a(k)=col [w(k), ¥(k)]EIR® spatial acceleration vector of the k-th body frame Oy,
where w(k) and 9(k) are local time derivatives of w(k) and v(k),

H*(k)0(k) relative spatial velocity across the k-th joint, where H*(k) =
h(k)

0 € IR® is the joint map matrix for the k-th joint with 0 as 3x 1 zero

matrix and h(k) axis of rotation for the k-th joint, and H*(k) = [ h(Ok) ] for a

translational joint,

f(k) = col[N(k), F(k)] € IR® spatial force of interaction across the k-th joint,
where N(k) and F(k) are the moment and force components, respectively,

b(k) € IR® spatial bias forces vector (for both types of joints),
w(k) x I(k)w(k) + m(k)p(k) x (w(k) x v(k)) — N(ke) — p(k) x F(ke)
m(E)p(E) x o(k) + m(E)w(k) x (w(k) x p(E)) - F(ke)

where F(ke) and N(ke) stand for the external force and moment acting at the
centre of mass of the k-th link,

b(k) =

a(k) € IR® spatial bias accelerations vector; a(k) = .
v(k) x h(k)8(k)

w(k) x h(k)(k) ] o

0

rotational joint, and a(k) = [ )
w(k)xh(k)b(k)

] for a translational joint,

P(k) € IR®*6 articulated inertia of the manipulator outboard (toward the tip) of
the k-th joint,

D(k) € IR! inertia along the k-th joint axis of the bodies formed by the links
outboard of this joint; notice that all of the joints outboard of the k-th joint are
unlocked in defining the inertia D(k),
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G(k) € IR® gain computed from the articulated inertia P(k),

U(k + 1,k) € IR®*® operator which transforms articulated quantities
Uk +1,k)=®k+1,k)[I—-G(k)H(k)],

e r(k) € R®*® composite body inertia matrix seen from the k-th coordinate frame,
o A(k) € R®*® spatial direction cosine matrix between the k-th coordinate frame
k+1
R0
k+1

0. TR
the direction cosine matrix between the frames assigned according to the modified
Denavit-Hartenberg notation,

and the (k + 1)-th coordinate frame, A(k) = , where FT1R is

o A~1(k) € IR®*S spatial direction cosine matrix between the (k -+ 1)-th coordinate
frame and the k-th coordinate frame, '

e [A,B] = AB — BA commutator defined for two square matrices.

Spatial block diagonal quantities used in “stacked” notation

e 0 = col[0(1),...,0(N)] vector of generalized positions. Similarly one can define
the following vectors; 7 = col[r(1),...,7(N)], V =col[V(1),..., V(N)],

f:chUL”wﬂNﬂ,a:cdhﬂanqNﬂ,9:chUL””ﬂNﬂ,

a=mmmmmw»b:mmmWMMLé:mpmijm
where 7 is the vector of generalized forces,
e H = diag[H (k)] € R*"*N diagonal matrix of the joint map,

e M = diag[M (k)] € R®N*®N diagonal matrix of the spatial inertia matrix of all
the links; similarly one can define P € RSV*®N and G € R®V*N matrices,

o &= (I-CE3)" € R®V*N causal (lower triangular) matrix defined as

0 0 0 .. 0 0
®2,1) 0 0 ... 0 0
£ = 0  ®@3,2) 0 ... 0 0
|0 0 0 ... N,N-1) 0 |
[T 0 0
®(2,1) I 0

| ®(N,1) ®(N,2) ... I
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with ®(i,7) = ®(¢,i —1)---®(j + 1,5) for i > j, £ is the rigid shift operator
and I is the 6 x6 identity matrix. Similarly, we can define ¥ and £g matrices
with ¥(s, ) as entries as a lower block triangular operator and the corresponding
shift operator which transfer the articulated quantities.

1. Introduction

In this paper, the Lagrangian robot dynamics derived by making use of the generalized
and quasi-coordinates is discussed. The standard equations of motion for a manip-
ulator with N degrees of freedom can be found in many textbooks, see e.g. (Craig,
1986). They can also be recast as a result of the Kalman filtering and smoothing
algorithms when considering the manipulator as a sequence of links, where an indi-
vidual link is a discrete step in space. This approach was developed by Rodriguez
(1987) where spatial operator techniques (Rodriguez and Kreutz, 1988) were used to
develop the equations of motion.

For the purpose of control the mass matrix of the manipulator should be diago-
nal. The diagonalization of the equations of motion is the heart of the Hamiltonian
mechanics. Koditschek (1985) and Bedrossian (1992) have noted that if the iner-
tia matrix M(f) of an N-link manipulator can be factored as L*(6)L(0), where
L(6) is integrable, i.e. the Jacobian of a function Q(6), then Q@ and P = L(6)8
define a canonical transformation relative to which the robot dynamics equations
are particularly simple. Spong (1992) found the necessary and sufficient conditions
for the existence of such factorization. The solution to this problem is known from
the Riemannian geometry. The mass matrix of the manipulator defines a Riemannian
metric on the configuration manifold of an N-link robot. Koditschek (1985) has noted
that the function Q(8), if exists, is an isometry between the Riemannian manifold and
Euclidean manifold. The necessary and the sufficient condition for the local existence
of the isometry @(#) is that the Riemannian manifold defined by the manipulator
matrix M(6) must be locally flat. This condition can be checked by making use of
the Riemann symbols of the first and second kind (Levi-Civita, 1950). It happens
that this condition is restrictive and rarely satisfied in practice (Spong, 1992).

Jain and Rodriguez (1994) proposed a diagonalization in velocity space. This
new diagonalization uses a concept of quasi-coordinates which result from the factor-
ization of the mass matrix developed by Rodriguez and Kreutz (1988). A new set of
velocities v, are not time derivatives of any vector of configuration variables.

In this paper, we review the equations obtained by Jain and Rodriguez (1994)
and give some insight into derivation and physical interpretation of these equations.
We examine time differentiation of different quantities such as scalars, spatial vectors
and spatial matrices. We show that spatial matrices can be treated as tensors (Wit-
tenburg, 1977) and time differentiation of tensors can be implemented. We discuss
time differentiation in both local and global coordinate frames and explain why some
of the derivatives are the same. The diagonalized equations of motion involve articu-
lated body quantities (Rodriguez and Kreutz, 1988) and standard spatial quantities
such as bias forces and accelerations vectors. The interpretiation of these quantities
in both standard and diagonalized equations of motion are widely discussed in the
paper. It is pointed out that there exists some relevance between these two sets of
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equations. It is also shown how to write both sets of equations in the component
form, without knowing their derivation.

In the paper, two examples are considered: one for the standard equations and
the other for the diagonalized equations of motion. Each component of these equations
is clearly interpreted from a physical point of view.

Apart from that, we investigate the computational complexity of the presented
algorithms. Results of this analysis are compared to those existing in the robotics lit-
erature on robotics (Brandl et al., 1986; Featherstone, 1987; Khosla, 1986; Kozlowski
1992; 1993; Walker and Orin, 1982). It is shown that the diagonalized equations of
motion have the complexity. comparable to those presented by Walker and Orin (1982)
for N = 6. They are not as fast as those analysed by Brandl et al. (1986). This
is mainly due to the time differentiation of the articulated body inertia matrix and
rather costly calculations of C(8,v), which accounts for all quadratic terms v;v;. We
optimize these calculations taking into account a partlcular structure of the matrices
involved in the calculations.

The paper is organized as follows. In Section 2 time derivatives of different quan-
tities are discussed. The next section is devoted to the standard equations of motion.
A simple example is considered. Interpretation of each term of these equations is
discussed. Diagonalized equations of motion (both normalized and unnormalized)
are presented in Section 4. In Section 5, an example of the diagonalized equations
of motion is presented and very detailed interpretation is developed. Computational
complexity of the related algorithms is the main topic of the next section. Finally,
concluding remarks end the paper.

2. Time Derivatives of Different Quantities

Time derivatives of various quantities such as scalars, vectors, matrices, and block
diagonal matrices, play a very important role in deriving equations of motion. Time
differentiation can be calculated in any coordinate frame. One can perform time
differentiation in local coordinate frame in which a particular quantity is observed,
and also at the base (inertial) coordinate frame. It is obvious that the results are
different due to the movement of the local frame. Through the paper we deal with
spatial velocities, vectors, and matrices. Therefore, a spatial vector has six elements,
the first three of which are “responsible” for rotational movement and three others
are “responsible” for translational movement.

Consider an arbitrary spatial vector z € IR6*!, which is a column vector having
dk

E.’C
denotes the time derivative of the vector «, where the time differentiation is performed
in the k-th coordinate system in which the vector z is defined. The integer k¥ can
be any number between 1 and N. For a particular situation where £ = N + 1 (the
links are numbered from the tip of the manipulator towards its base) we denote time

TR d
six components. A local time derivative is denoted by an operator —, and

differentiation operator by Dt’ which is equivalent to the inertial time differentiation.
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The inertial and local time derivatives are expressed by the following formula:

Dz d*z
Dt dt

where (k) is defined by

k) 0 ]

+Q(k)z (D

0 &) @)

Qk) = [

In eqn. (2) w(k) denotes the angular velocity of the k-th coordinate frame with re-

spect to the inertial (base) coordinate frame; @(k) stands for a 3 x 3 skew symmetric

matrix, compare Nomenclature, which represents an equivalent matrix operation for

the cross product operation. In order to prove eqn. (1) notice that it is a superposi-

tion of two time deriva.tikves of an arbitrary vector ¢ in two different bases to which a
d®c

D
simple formula —ﬁtg = ——a—i-+&(k)c can be applied; compare with (Wittenburg, 1977).

As another example of eqn. (1) one can consider time differentiation of the vector
z defined in the k-th coordinate frame with respect to the next coordinate frame,
namely k + 1. This operation results in the following expression:

d¥tly  dFg
o =@ Tk 3)

where Qs(k) = H(k)d(k) and H(k) is a 6 x 6 matrix

=« | R(k) 0
H(k)_{ 0 E(k)] (4)

Recall that h(k) denotes an axis of rotation or translation for the k-th joint (compare
Nomenclature), which is normally the z-axis of the local k-th coordinate frame.
Notice that for the manipulator with only rotational joints, the angular velocity w(k)
of the k-th coordinate frame with respect to the inertial frame has the following form
(in coordinate-free notation)

N
w(k) =Y h(D)8(3) (5)
i=k

Therefore, the k-th frame rotates with respect to the (k4 1)-th frame with angular
velocity h(k)8(k). This explains egns. (3) and (4).

Consider now an arbitrary spatial 6 x 6 matrix X, e.g. the inertia matrix of the
k-th link. Then local (with respect to the k-th coordinate frame) and inertial time
derivatives are related by

DX dtX LD

o= S QR - XO(k) = -+ [2(k), x| (6)
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where (k) is defined by eqn. (2) and we have used a notion of a commutator of two
matrices (Arnold, 1978). In particular, differentiation of X with respect to the next
coordinate frame results in

¥ tlx  dkX

=S+ [k, x| (7)
In order to prove eqn. (6) consider an arbitrary spatial matrix X which has dimen-
sions 6 x 6, namely consists of four block matrices each being 3 x 3. Suppose that X
is expressed in the k-th coordinate frame. Then in order to express this matrix in
(k + 1)-th coordinate frame, it is necessary to perform the operation A(k)XA~1(k),
where A(k) is the spatial direction cosine matrix (compare Nomenclature) between
two successive coordinate frames k£ and k + 1. From this it is easy to conclude that
each block matrix is multiplied on the left and right hand sides by the ’;HR and
’,§+1R matrices (we denote elements of matrix ’,g'HR by rij, i, = 1,2,3). Now,
denoting elements of the block matrix by b1, 4,0 = 1,2,3 for m = 1,2,3,4, the
transformed elements b}:}l can be written in the following form:

3 3
=3 b, k1=1,2,3, and m=1,2,3,4 (8)

i=1j=1

From the last equation it is clear that b;; are the elements of the metric tensor of the
second erder (Levi-Civita, 1950). Concluding it is easy to notice that eqn. (6) denotes
time differentiation of tensor quantities in two different coordinate frames, local and
inertial, which are Cartesian coordinates (not curvilinear coordinates as considered
in general by Levi-Civita (1950)).

As an example, consider a spatial inertia matrix M (k). Its local time deriva-
tive (with respect to the k-th coordinate frame) is zero because the components of
the matrix M (k) are constant when calculated with respect to the k-th coordinate
frame. Inertial time derivative has the following form (compare the structure of the
matrix M (k) as having tensor quantities):

DM (k)
Dt

= [Q(k), M(k)]

Now, consider a block diagonal matrix M which consists of matrices M (k) as the
entries on the diagonal. Applying the rule given by eqn. (6) it is easy to notice that

(index k in local time derivative has been omitted)
DM dM
—5{'——(1'{‘+[Q,M]—[Q,M] 9

where 2 is the block diagonal matrix with €2(k) as entries on the diagonal. In
general, for any block diagonal matrix B consisting of spatial matrices one can write

DB dB
o= E-i—[Q,B] (10)
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. dB . C
In the last expression, — denotes the local time derivative of each entry of the
matrix calculated with respect to the local coordinate frame attached to the k-th
body.

When a block diagonal matrix contains the spatial vectors as entries, the following
rule, which is a generalization of eqn. (1), applies:

DG dG

e SRR o

D T + QG (11)
where G is an arbitrary block diagonal matrix with spatial vectors as entries on the
diagonal. Here G 1is the block Kalman gain operator (Rodriguez and Kreutz, 1988).

Based on the above considerations, the most important time derivative which
we are going to calculate is the time derivative of the articulated body inertia P(k),
which can be expressed in terms of P(k—1) and M(k) as follows (Rodriguez, 1987):

P(k) = ®(k,k — 1)7(k — 1)P(k — 1)7*(k — 1)®*(k, k — 1) + M (k) (12)

Notice that the last equation is written in coordinate-free notation, namely matrices
A(k—1) and A~'(k—1) are not present. Recall also that 7(k—1) = I-G(k—1)H(k—1).
To calculate the time derivative of eqn. (12) in the k-th coordinate frame, first notice
that M (k) and ®(k,k — 1) are constant, as expressed in the k-th coordinate frame,
and therefore their derivatives are zero. Another observatlorkr vs{e have to make here is
that [f(k= 1) P(k—-1)7*(k—1)=7(k—1)P(k 7™(k —1)] = 0. Note
also that ¥(k,k —1) = ®(k,k — 1)7(k — 1). Now, taklng tlme derivatives of both
sides of eqn. (12) with respect to time in the k-th coordinate one can get

dk d}c -1
——P(k) U(k,k—1) m

[P(Ic — 1]k k- 1)
+U(k, k — 1)Qs(k — 1)P(k — 1)0*(k, k — 1) (13)
—U(k, k- 1)P(k— 1)Qs(k — 1)U*(k, k — 1)

In the last equation we have used 7(k—1)Qs(k—1) = Qs(k —1). From eqn. (13) it is
clear that the time derivative of P(k) is expressed as the time derivative of P(k—1)
calculated in (k — 1)-th coordinate system. Notice also that the second and third
terms result from applying eqn. (7).

Here we make two comments which will be very useful is subsequent sections.
Notice that the result given by eqn. (13) would be the same if we substituted 7(k —
DPk-1D)7*(k—1)=7(k—1)P(k—1) = P(k—1)7*(k—1) in eqn. (12) and calculated
its time derivative. Remember that in calculating the articulated body inertia the
above substitution can be applied (Rodriguez, 1987). It cannot be implemented
in calculating the time derivative. This has a straightforward consequence in the
computational load of eqn. (13), which is more intensive in comparison with eqn. (12)
and cannot be easily simplified. Suppose now that the right-hand side of eqn. (12) is
expressed in the k-th coordinate system. Then we have to include in eqn. (12) the
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spatial orientation matrix between the (k¥ — 1)-th and k-th coordinate frames. The
best way to do it is to “stick” the matrix A(k — 1) to the link operator ®(k,k — 1).
Then one can get

4k

E(D(k’ k—1)Ak - 1)=&k, k— 1)A(k — 1)Qs(k — 1) (14)
Consequently, using eqn. (7) to calculate the time derivative of 7(k—1)P(k—1)7*(k—1)
in the (k — 1)-th coordinate frame we do not have to calculate the expression which
contains the Q5(k —1) operator since it is present in eqn. (14). Obviously, the results
are the same. “Sticking” the cosine matrix A(k —1) to the link operator ®(k,k — 1)
is also useful for any equation in the operator form at the manipulator level.

Now we write the closed-form solution of eqn. (13). Integrating eqn. (13) from
0

i=0 to : = k— 1 with the initial condition j—tP(O) = 0 one can get

dk k-1
FP® = wk,)([0s0), PO) ) ¥ (k,) (15)

i=1

From eqn. (15) and from the structure of the articulated body transformations ¥
and £y we can write the closed-form solution

Sp=P=sa(P+0sPl)Es (16)
P = diag [\if ([95, P])\i:*] (17)

where ¥ = ¥ — I. From eqn. (17) it is clear that [Qs, P] is a driving term for
calculating the local time derivative.

Suppose now that we want to calculate the time derivative of P(k) with respect
to the next coordinate frame (inwardly). Then eqns. (16) and (17) have to be rewritten
as follows:

P = &4 (P +0s, P))€g + [0, P (18)
and

P = diag [\If ([Qg, P]) \Il] (19)
Introducing a new notation,

=P +[Q,P) (20)
eqn. (18) can be written as

A= Eg\EL + [, P (21)
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Consequently, the upper summation index in eqn. (15) is equal to k. The local and
global time derivatives of the spatial operators are summarized in Table 1.

In the next two sections we show how to implement the results collected in Tab. 1. The
results summarized in Tab. 1 were originally presented by Jain and Rodriguez (1994).
In this paper, we derived them independently by making use of the considerations
presented at the beginning of this section.

Tab. 1. Local and inertial time derivatives.

Operator Local derivative Inertial derivative
1 &s Ep = 505 £ + [Q, Ea)
2| ®=(I-E)! P = B0 P &+ o([Q, £5))®
3 H H=0 —HQ
4 M M=0 [Q, M)
5| D=HPH* D= HPH* HPH*
6 G G = #PH*D"! G+ QG
7| 7= -GH) 7=-GH T+ [Q,7]
8 Ey = EpT Ey = Ey(~PH*D™1H + Q57) Sy +[Q, £y

2.1. Local and Global Time Derivatives of the Mass Factor

One of the advantages of using the operators in the equations of motion is that they are
very concise and easy to interpret. For example, the mass matrix of the manipulator
can be written in the following form (Rodriguez and Kreutz, 1988):

M= HOMP* H* (22)

M is positive definite and any factorization of it can be implemented. Rodriguez and
Kreutz (1988) showed that the following factorization, which has strong relation to
the filtering and smoothing Kalman algorithms, is true:

M = (I+H®K)D(I + HOK)* (23)

(I+ HO®K) ! = (I — HYK) (24)
and

M =(I - HYK)*D™Y(I - HYK) (25)

where K = £5G. From eqn. (23) it is clear that there exists the following factoriza-
tion:

M = m(6)m* (6) (26)

where m(8) = (I + H®K)D3.
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The system kinetic energy K (4, 0) = %9*}\40 results in

N
: 1
K(9,8) = —9* (I + H®K)D(I + H®K)* =3 Z 2(k) (27)
where v = [v(1),...,vN]* is a new set of variables related to the joint-angle rates
(Jain and Rodriguez, 1994) by:
v=Di(I+HOK)*} (28)

Jain and Rodriguez (1994) showed that the local and inertial time derivatives of
the mass factor m are the same and are given by

= Ho[Q;0P + %(I +7)P|H* D4 (29)

This result can be easily verified by making use of the time derivatives of both columns
from Tab. 1. Here we focus our attention on interpretation of this fact. m(f) is the
factor of the manipulator inertia matrix and has dimensions N x N. Each element
of this matrix is a scalar which depends on the generalized position vector §. Time
diferentiation of the matrix m(f) means time differentiation of each component of this
matrix, which gives the same result, regardless of the coordinate frame in which it is
performed. On the contrary, when we have block diagonal matrix, then each entry of
the matrix is a matrix itself and when differentiated, the rule of tensor differentiation
has to be applied (compare the previous section). For this reason, local and inertial
time derivatives are not the same. ‘

Notice also that the mass factor derivative m, expressed in terms of A, can be
written as follows:

m=H® [Q.;(i)P + %(I + %),'\} H*D~7 (30)
If we multiply m by v, we get

: , 1 1 :

my = H® [Qﬁcm HP+ 3 (12, P1) + 5 (iew, ,\])] 1 (31)

Following the arguments described above, the components of the vector v in local
and inertial frames are the same.

Jain and Rodriguez (1994) showed that § M40, where My denotes the derivative
of M with respect to the vector of generalized positions, has the following form:

6My6 = 2H® [96(1+ SKH)P -V x M|V (32)

where V x can be viewied as a generalization of the traditional cross product in three
dimensions to 6N dimensions. The vector V x is defined as the linear transformation

S[V] = diag[V(1),..., V(N)], where

V(k) = [‘5(0'“) :E';)) } (33)
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is the 6x6 matrix formed by the k-th link spatial velocity vector V(k) =
col[w(k), v(k)]. Interpretation of the terms involving V x will be discussed later.

2.2. Local and Global Time Differentiation of the Generalized
Velocity Vector

In this subsection we present another application of the results contained in Tab. 1
which deals with time differentiation of a new velocity vector €.

In an alternative formulation of the diagonalized equations of motion Jain and
Rodriguez (1994) considered the following velocity vector:

¢=D"%y=(I+HPK)"G (34)

We calculate the local time derivative of the above expression. As we already know,
both local and inertial time derivatives are the same (recall that £ is a vector con-
sisting of N elements). Therefore, we get

d D d o N
6= 6= Ul + HOKT 6 + (I + HOK)d (35)

Having in mind that (I + H®K) = I + H®E:G = HOG, we get

£E=

£ = D'HP7V + D'HP®*QV + G*®* H*§ (36)

Eqn. (36) describes the time derivative of the new velocity vector &, which is written
in the operator form at the manipulator level. Obviously, one can write this equation
at the link level, which is omitted here.

3. Standard Equations of Motion

Standard equations of motions for a manipulator with N degrees of freedom can be
written as (Craig, 1986)

= M(0)0 + C(8,6) (87)

where 0, 9, and § are vectors of joint positions, velocities, and accelerations, respec-
tively, 7 is a vector of joint torques, M(f) is the mass matrix of the manipulator,
and C(6,6) is the matrix which consists of the centrifugal and Coriolis terms.

Equations of motion can be written in an alternative form as (Jain and Rodriguez,
1994)

MO+ HOM®* a+ HOb =T (38)

where M = H®M®*H* (for the definitions of the matrices see Nomenclature). In
eqns. (37) and (38) friction torques have been neglected. Notice that eqn. (38) is
written in a matrix (operator) form at the manipulator level.

In order to illustrate the above equations in the component form, we con-
sider a manipulator with three degrees of freedom. Taking into account that
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M = HOMP*H* and expanding eqn. (38) we can write the following expression
for the actuating torque at the second joint, e.g. (links are numbered from the tip of
the manipulator to its base)

7(2) = H(2)®(2, 1) A M) H*(1)#(1) + H(2)r(2)H*(2)6(2)
+H(2)r(2)A~1(2)@*(3,2)H* (3)6(3) + H(2)®(2, 1) A(1)M(1)A~1(1)n(1) 59)
+H(2)r(2)A"H(2)n(2) + H(2)r(2)A1(2)*(3,2) A~ 1(3)n(3)

FH(2)8(2,1)A(1)b(1) + H(2)b(2)

where r(2) is the composite body inertia matrix at the second coordinate frame (for
composite body inertia compare (Rodriguez and Kreutz, 1988)).

In the above equation we have included the direction cosine matrices A(k) and
A(k)~! (6 by 6) wherever necessary. Each term in eqn. (39) has a physical inter-
pretation and can be written by hand without knowing the matrix form given by
eqn. (38).

As an example take the component
H(2)®(2,1)A(L)M(1)A™(1)n(1)

which appears in eqn. (39). The quantity n(1), being the spatial bias acceleration, is
expressed on the positive side of the first joint (cf. Kozlowski, 1992). Therefore, vec-
tor A=(1)n(1) is expressed on the negative side of the first joint. The next vector,
M(1)A~1(1)n(1) is expressed on the negative side of the first joint due to the fact that
M(1) is the inertia tensor on the negative side of the first joint. Left-hand side multi-
plication by the matrix A(1) allows us to express the vector A(1)M(1)A~1(1)n(1) on
the positive side of the first joint. Left-hand side multiplication by the matrix ®(2, 1)
allows us to transform this vector to the second coordinate frame. Finally, this vector
is projected on the axis of rotation of the second link in order to calculate its contri-
bution to the second generalized force 7(2). In a similar manner, each term which
appears in the equations of motion (for any torque) can be interpreted.

Notice that each equation has three components which result from the mass
matrix components multiplied by corresponding accelerations. The simplest are the
diagonal elements of the mass matrix which are the components of the composite
body inertia matrix. In order to calculate their contribution to the individual joints
we have to project them on both sides of H(k) and its transpose H*(k). In each
equation of motion there appears one diagonal element from the mass matrix of the
manipulator. The other elements which are associated with the accelerations (notice
that all of them appear in each equation for generalized force) are multiplied by the
corresponding transpose of the joint axis projection vector and then transformed until
the axis of rotation in which the forces are calculated is reached. Compare this rule
with the definition of the matrix M and eqn. (38).

The spatial bias accelerations are transformed according to the same rule as the
joint accelerations, but instead of vector H*(k)8(k), A~1(k)n(k) is used.
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Finally, we have to discuss the contributions of the spatial bias forces which
appear at each level of calculation. Notice that the k-th generalized force includes
the contribution from the vectors b(k) to b(1). Each of these vectors has to be
transformed until a corresponding axis of rotation, in which the force is calculated, is
reached.

This mechanism is simple and allows one to write down the equations of motion
in the component form. This is one of the advantages of the component formulation
of the equations of motion for the manipulator with N degrees of freedom.

4. Diagonalized Langrangian Equations of Motion

In Section 2 we have introduced the new set of variables v related to the joint-angle
generalized velocities § given by eqn. (28). Notice that the new set of variables is
expressed in terms of the articulated quantities such as D and P, and the spatial
operator for all the links ®. From this expression it is clear that by performing inte-
gration operation on both sides of eqn. (28) we do not obtain generalized positions 4.
The componets of the vector v are referred to as time derivatives of quasi-coordinates
(Gutowski 1971). The new set of velocities constitutes the system kinetic energy
given by eqn. (27). Due to the factorization given by eqn. (26) differentiability of
m ensures that the vector v = m (0)0 is also differentiable. Invertibility of m(f)
(compare eqn. (25)) ensures that time derivatives § of the configuration variables can
be recovered from v. Under these conditions v is a valid choice as a new general-
ized velocity vector. It was proved (Jain and Rodriguez, 1994) that the equations of
motion can be written in the following form:

v+ CO,v)=¢ (40)

with
i 1 » .
C(6,v) =1(riw - 36" Msb),  e=1(O)r (41)

where 1(6) = m~(6) and M, denotes its derivative with respect to the vector of
generalized coordinates. The set of equations given by eqn. (40) is known as the set
of normalized equations of motion.

Recall that M is the positive definite matrix for which factorization given by
eqn. (26) exists and therefore I(d) exists. Equation (41) defines a new expression
for the component C(f,v), which depends on the generalized positions and the new
velocity vector. The term C(6,v) depends quadratically on the velocities v;. Notice
also that there are some similarities between the expressions for C(8,v) and C(4, 0)
In both expressions the term 10*M99 appears, but in eqn. (41) it is multiplied
by m~1(6). Jain and Rodrlguez (1994) proved that the term C(6,v) is calculated
according to the following formula:

c@,v) = %D"%H\Il ([sw, 3 = QsP — PQs + 2V x M) U H*D 5y (42)
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An algorithm to compute C(6,v) recursively is described below and is based on (Jain
and Rodriguez, 1994).

A(0) =0
for k=1,...,N
X(k) = Qs(k) P (k)
Ak) = Uk, k — DAk — D)T*(k, k — 1) + X (k) + X*(k)

y(k) = Uk, k — )y(k — 1) + |2V (k) x M(k) — X (k) + X* (k) |V (k)
+U(k, k — 1)A(k = DV (k — 1) = A(R)¥*(k + 1, k)V(k + 1)

C(k) = 5D~ H(k)y(k)

end loop.

In Section 2 we have introduced another set of velocities defined by eqn. (34).
By making use of these velocities the kinetic energy can be written as

K(€,) = 5" D(O)E (43)
Consequently, the equations of motion in the new coordinates (8,¢) are

DE+C(6,6) = & (44)
where k = D7e =[I — HUK]r and

C(6,6) = HE [AH*E — Q6P — V x M)V] (45)

An alternative set of equations given by eqns. (44) and (45) is known as the unnor-
malized diagonal equations. Here we make two comments. First notice that a term
(V x M)V which appears in eqns. (42) and (45) represents the spatial bias forces
vector b which is defined in Nomenclature. Since a gravity term can be included
in the vector b (Kozlowski, 1993), both normalized and unnormalized equations can
work in the gravity field. This extends the result originally described by Jain and
Rodriguez (1994). Also notice that an alternative formulation for the matrix C(6,¢)
can be written as

dD-3

C(6,€) = D¥C(8,v) — D——v (46)

1
Note that —Ddl()i—tzu = %HPH*D-% = LHPH*¢ = LH)AH*¢, which means that

¢ is present on the right-hand side of eqn. (46). It is clear from eqn. (46) that in this
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formulation matrix C(f,v) is present and a new term %H/'\H*E is introduced which
results only as the diagonal elements (the matrix C(8,v) is skew-symmetric).

The elements of the matrix C(6,€) can be calculated in the following recurrence
(Jain and Rodriguez, 1994):

A(0)=0
for k=1,...,N
X(k) = Qs(k)P(k)
Ak) = 9(k, k— DAk, k — 1)U (k, k — 1) + X (k) + X*(k)

y(k) = W(k, k= Ly(k — 1) + MR)H" (k)é (k)
+[V(k) x M(K) = X (k)| V (k)

C(k) = H(k)y(k)

end loop.

Here we make another comment. Substituting eqn. (36) in terms of the deriva-
tive with respect to the next coordinate frame and eqn. (41) into eqn. (44) we get,
after tedious algebraic calculations, eqn. (38). In a similar fashion, starting from the
normalized equations of motion given by eqn. (40) one can prove by performing time
differentiation of v and by rearranging terms that we get the standard equations of
motion given by eqn. (38).

In the next section we focus our attention on a physical interpretation of each
term of eqn. (42) and eqn. (45) at the component level.

5. Example of the Diagonalized Equations of Motion

In this section we emphasize a physical interpretation of each term of the matrix
C(6,v) at the component level in a similar fashion as in Section 3.

It has been observed that the matrix C(6,v) is orthogonél to the new velocity
vector v. Therefore, we have

V*C(0,v) = %v* (1€0, 3] - Aeg — Q5P - PQs)V =0 (47)

From the last expression it is clear that the matrix in the middle is skew-symmetric.
Notice that the matrix C(f,v) has on both sides of the squared brackets elements
D~*HV and ¥*H* D~ 7; therefore, we rewrite the matrix C(6,v) in the component
form assuming that it is not multiplied by the velocity vector v.

We do not consider the term (V x M)V, because it represents the spatial bias
forces vector b from the standard formulation transformed by the articulated quan-
tities. Taking into account the assumptions described above, we have observed that
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a part of the matrix C(,v) (without velocity vector v) can be considerably simpli-
fied due to cancellation of terms when written in the component form. After some
algebraic manipulation the elements cx; can be written in the following form:

i—1
cki = D73(k) | > H(k)U(k, m)P(m)s(m)¥* (i, m) H*(i) | D~%(i)(48)

m=1

and Ck; — —Cik-

For the unnormalized equations of motion the off-diagonal elements are given by
eqn. (48) and for the diagonal elements the upper summation index is i (compare
with eqn. (45) in which, as before, the spatial bias forces vector has been omitted).
For a better understanding of how to construct the matrix C(6,£) consider the last
row of this matrix and the corresponding Fig. 1 for N = 5.

Q (DH(1)D WV =0
// Q0¥ 2.) KD v2)
- Q(2H @B )ve)=0
H(3) | | N
(D¥ 3,) HGB)D (3) v(3)
_ 2

Q¥ 3)HED'B) vo)
QBHED GVE) =0

o) ¥ @) H@ODW) vie)
o0 ¥ HH@DW) v
@) ¥ @) HODW) v@4)
QuH @B V@ =0

516( NG, H:(S)D"(S) v(5)
Q@) ¥ BDHE)D(S) v(s)

H(5) @) ¥ 5,3) HE)D (5) v(5)
level of QE * m
calculations Q@Y 5HH D (5) v(S)

QSHTSID(S) v(5)=0

Fig. 1. Elements of the last row of the matrix composed of the elements cxi (eqn. 48).
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Recall that the operator expression for the velocity V' in terms of the articulated
quantities has the following form:

V() = Z U*(k,i)H* (k)D™ % (k)v (k) (49)

On the right-side of Fig. 1 all the components of the velocities V(i) for ¢ =1,2,...,5
are shown, multiplied by the operators Qs(i). The new velocities v(k) or £(k),
which can be considered as velocities of each joint, are first projected on the oper-
ator H*(k) and then transformed by the matrix W*(k,i). The elements D=7 (k)
can be considered as scaling factors at each joint. Taking into account the expres-
sion given by eqn. (49) one can conclude that the last row of the particular matrix
C(8,€) shows how the elements of the velocity in terms of the articulated quantities
are “distributed” through the links. Notice that —Qs(k)V (k) = V(k)Q}(k), which
corresponds to the spatial bias acceleration for the k-th joint expressed in terms of
the articulated quantities. Next, these bias accelerations are multiplied by the artic-
ulated mass matrix P(k) and transformed by the sequence of the matrices D~ THV.
To understand this, take the standard equations of motion given by eqn. (38) and
observe the term H®M ®*a, which transforms the bias spatial accelerations by the
sequence of the matrices HPM P*. From a detailed analysis one can conclude that
the spatial bias accelerations for the diagonalized equations of motion are transformed
in a similar manner as in the standard equations of motion. The only difference is
that in the diagonalized equations of motion the articulated spatial bias accelerations
are transformed by the sequence of operators HW¥ instead of being transformed by
the sequence of operators H®. This result is not surprising and shows a similarity
between the standard formulation and the new diagonalized equations of motion.

From eqn. (42) it is clear that the spatial bias forces are transformed by the
sequence of operators D-3H ¥, which resembles the transformation of the vector &
by the sequence of operators H® in the standard equations of motion.

6. Computational Complexity of the Related Algorithms

In this section we consider the scalar operations (multiplications, additions, subtrac-
tions and divisions, FLOPS but not per second) required to implement the algorithms
presented in the previous sections. The calculation of the number of arithmetic op-
erations is based on several assumptions. We assume that the link-to-link coordinate
orientation transformation is the modified Denavit-Hartenberg orientation matrix.
Generally, in calculations of the FLOPS we have considered two situations. In the
first one, we have assumed that in the transition matrix, ®(k, k—1), the skew symmet-
ric part is full and the orientation cosine matrix is assigned to be arbitrary (according
to the modified Denavit—-Hartenberg notation). In the other case, it is assumed that
the movement in the transition matrix ®(k,k — 1) is only in one direction, along
z-axis, and the direction cosine matrix has been restricted to the twist angle «o;: 0°,
90°, and —90°.

We have implemented the concept of customizing the dynamic equations to re-
duce the computational requirements (Khosla, 1986). According to this convention,
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the non-zero elements of a vector or matrix are denoted by subscript variables, and
the zero and unity elements by 0 and 1, respectively. We propagate the non-zero
elements as variables and the zero elements as zeros. The customization procedure
guarantees that every two mathematically equivalent expressions are denoted by the
same variable name. Using the customization procedure results in longer but faster
computer programs. The direction cosine matrix can be split up into two planar ro-
tation matrices (Brandl et al., 1986). If we realize that every matrix has an invariant
part with respect to planar rotations, we shall see that we significantly reduce the
number of operations.

A detailed analysis of the inverse dynamic problem presented in Section 3 has
been reported by Kozlowski (1993). Here we only recall the main results. An N
degrees-of-freedom general purpose manipulator with rotational joints only (which
is the worst case) requires 142N — 161 multiplications and 109N — 135 addi-
tions/subtractions (N > 2). The computational requirements of the general purpose
implementation incorporates the savings obtained by zero elements of the orientation
matrices, A(k), and the sparse H (k) vector, the zero initial conditions with regard
to the force and torque acting at the mass centre of each link, and the gravitational
acceleration of the manipulator base.

Most of the existing manipulators have adjacent axes which are either parallel
or perpendicular (the second assumption discussed above). Thus, for an N degrees-
of-freedom manipulator the computational load is 104N — 117 multiplications and
87N — 102 additions/subtraction (N > 2). Here we make one comment; the cal-
culation of the two-point boundary-value problem, which essentially is solved by the
Kalman filtering and smoothing algorithms, seems to be slightly slower due to the fact
that we recognize spatial quantities on both sides of each joint. The fastest algorithm
presented by Khosla (1986) does not solve the two-point boundary-value problem and
therefore is slighty faster.

Now we extend the analysis of the computational complexity to the diagonalized
equations of motion presented in Section 4. The analysis is under the same conditions
as presented at the begining of the section. Both normalized and unnormalized equa-
tions are considered. This kind of analysis has not been reported in the literature on
robotics.

First, we write recursions which transform the generalized velocities to a new set
of velocities v. These are summarized in the following algorithms:

v= D3I+ HOK]*d §=rv=[I-HYK|D v

initial condition V(N +1)=0 initial condition V(N +1)=0

for k=N,...,1 for k=N,...,1

VE(k) = *(k+ 1,E)V(k+1) V() =@*(k+1,k)V(k+1)

v(k) = D3 (k) [é(k) + G*(k)A-l(k)V+(k)] 8(k)= D% (k)v(k)—G* (k) A~ (k)V* (k)
V(k) = A7 (k)V* (k) + H* (k)6(k) V(k)= A=Y (k)V*(k) + H*(k)6(k)

end loop end loop
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The generalized forces 7 and the new forces ¢ can be computed from each other as
follows:

e=lr=D"3I - HYK]r r=me =[I + H®K]D3e

initial condition 2%(0)=0 initial condition 2+(0) =0 |

for k=1,...,N for k=1,...,N

2(k) = @k, k — 1)z+ (k — 1) 2(k) = ®(k, k — 1)z+(k — 1)

e(k) = D3(R)[r(k) = H(k)(k)])  7(8)] = DE(R)e(k) + H(k)=(k)

2+ (k) = A(k)[(k) + G(k)DH(k)e(k)]  2*(k) = A(k) [2(k) + G(k)D%(k)e(k)]
end loop end loop.

In the above equations the transformation matrix A(k) and its inverse A(k)~?
are incorporated whenever it is necessary. First two algorithms are calculated out-
wardly, namely from the base of the manipulator to its tip, whereas the other two are
calculated inwardly, in the opposite direction. This is consistent with transformation
of the velocities and forces through the links of the manipulator. In Section 4 it
has been shown how to calculate rows of the matrix C(#,v) in a recursive form. It
involves the recursion for the time derivative of the articulated spatial matrix A(k),
compare eqn. (21). The recursion is similar to that for the Riccati equation. Compu-
tational complexity is similar to those equations for the articulated spatial inertia; it
requires slighty more computations. This is due to the fact that the time derivative
of the inertia update cannot be simplified (compare Section 2). In the expression
for the vector y(k) there are also terms which are sequences of matrices multiplied
by the spatial vector. In such a situation we suggest to multiply the vector by the
adjacent matrix, which results in another vector, multiplied in the sequel by the next
matrix. Even if the matrices are the same, they can be stored and called whenever
the multiplication is performed, although this leads to more calculations.

With the above assumptions, the resulting numbers of operations for the nor-
malized and unnormalized equations of motion are presented in Tab. 2 (N > 2).

In Tab. 2 a row with the label “subtotal” indicates the number of operations
which are common for both normalized and unnormalized equations of motion. Both
algorithms are of complexity O(N). The left-hand side of each column (indicated
by 1) gives the number of operations for the general-purpose manipulator and the
right-hand column (indicated by 2) numbers are for the manipulators which have
axes either paraller or perpendicular and have displacement along the direction of
the z-axis in the matrix ®(k,k — 1). In the first case the total number of arithmetic
operations (FLOPS) is 1135N — 910 and for the other case 782N — 740. In Tab. 2
we do not include the calculation required to evaluate the sines and cosines. The
above results have been obtained starting from the recurrence form for calculating
the elements of the matrix C(6,v) or C(6,€). The component form of these matrices
(discussed in Section 5) is less efficient due to the fact that each element of the
corresponding matrix is calculated separately. In constructing Tab. 2 we have taken
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Tab. 2. Number of arithmetic operations for an N-link manipulator required
by the normalized and unnormalized equations of motion. ,

Recursions Multiplications/divisions Additions/subtractions
1 [ 2 1 | 2
P 101N — 108 | 51N —58 | 94N —105 | 53N — 64
G 5N —1 5N —1 0 ' 0
vt BN — 12 2N —4 6N — 12 2N — 4
1% 16N — 29 8N — 16 9N — 17 5N -9
z 6N — 12 2N —4 6N — 12 2N — 4
¥ 44N -1 12N —1 19N —1 5N —1
b 59N — 43 55N — 53 40N — 27 38N — 35
X 18N — 12 18N — 12 0 0
P 159N — 6 95N — 6 171N -6 113N — 6
Subtotal 414N — 224 | 248N — 155 | 354N — 180 | 218N — 123
é TN - 10 TN — 11 6N — 10 6N —11
€ N N N-1 N-1
2t 23N —4 14N -3 15N — 8 10N — 7
v 158N — 223 | 134N — 211 | 162N — 249 | 140N — 217
c(8,v) 2N -1 2N —1 0 0
v 0 0 N N
191N — 238 | 158N —226 | 185N — 268 | 158N — 236
Normalized 605N — 462 | 406N — 381 | 530N — 448 | 376N — 359
equations of motion
9 5N -8 5N —9 5N —8 5N —9
& 0 0 N-1 N-1
2t 21N — 4 43N -3 13N -8 9N —~ 7
v 59N — 83 47N - 11 61N — 89 50N — 78
C(8,¢) 0 0 0 0
é N N N N
| | 86N -95 | 66N —83 | 81N —106 | 66N —95 |
Unnormalized 500N — 319 | 314N — 238 | 426N — 286 | 284N — 218
equations of motion

into account the initial conditions for the various recursions in order to minimize
the number of FLOPS. These conditions are concerned both with the base of the
manipulator and its tip. In many recursions it was possible to take into account the
next link adjacent to the initial link, which leads to N > 2 as a condition for Tab. 2.

It is also of interest to compare the above numbers of operations for other forward
dynamics algorithms. These results are summarized in Tab. 3. From Tab. 3 it is clear
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that the most efficient algorithms are those derived from the Kalman filtering and
smoothing (Kozlowski, 1993) and one introduced by Brandl et al. (1986). In order
to compare the results we have calculated FLOPS for the case N =6 and N = 12.
For a general-purpose manipulator with six degrees of freedom and for the normalized
equations of motion we have 5900 FLOPS. This result is better in comparison with
two of the methods presented by Walker and Orin (1982), namely the first and the
fourth one, which result in 5920 FLOPS and 5967 FLOPS, respectively. One can
conclude that the diagonalized equations of motions are comparable to the methods
presented by Walker and Orin (1982).

Tab. 3. Number of operations for different forward dynamics algorithms.

Method Computational complexity N

N=6 | N=12

Articulated body 579N — 526 2948 | 6422
(Featherstone, 1987)

1-st Walker and Orin (1982) IN®4+1301N? +197¢ N —33 | 5920 | 21701

2-nd Walker and Orin (1982) IN® +661N?+ 2613 N —33 | 4000 | 13253

3-rd Walker and Orin (1982) IN® +211N? 43583 N —113 | 2882 | 17857

4-th Walker and Orin (1982) 1321 N? + 207N — 31 5967 | 21537

Brandl et al. (1986) 470N — 420 2400 | 5220

Numerical solution of the dyn. egs. éNs + 20151\/2 + 341%—N — 395 | 2462 7227
(Kozlowski, 1992)

Kalman filtering and smoothing 477N — 503 2359 | 5221
(Kozlowski, 1993)

Normalized equations of motion 1135N - 910 5900 | 12710

Unnormalized equations of motion 926 N — 605 4951 | 10507

Finally we make one comment. In all the algorithms presented in Tab. 3 the
number of operations required to perform integration in the forward dynamics problem
has not been included.

7. Concluding Remarks

In this paper, we have reviewed the diagonalized equations of motion. We have
examined the differentiation operation of such quantities as scalars, spatial vector,
and matrices in different coordinate frames. It has been explained why local and
global time derivatives of certain matrices are the same. We have discussed the original
derivation given by Jain and Rodriguez (1994) and made several comments which give
better understanding of the diagonalized equations of motion. In particular, we have
discussed the time differentiation of different quantities at each stage of derivation.

Apart from that, we have investigated both the matrices C(#,v) and C(9,¢)
in the component form. An exact closed-form solution for each component has been
given with its physical interpretation. It allows the reader to write the equations
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both in normalized and unnormalized forms. All terms which appear in the final
equations of motion have been explained in both graphical and mathematical forms.
This provides more insight in the new equations of motion. The same analysis has
been done for the standard equations of motion. It has been shown that there exists
a relevance between both formulations. This relevance is through the spatial bias
acceleration vector and the spatial bias forces vector. These vectors transform in
the new formulation through the sequence of operators H¥, while in the standard
formulation through the sequence of operators H®. The operator ¥ is associated
with the articulated quantities, while the operator @ is associated with the composite
body quantities.

Two éxamples for the standard and diagonalized equations of motion have been
considered. These examples have been completely discussed and give better under-
standing and more insight into the new algorithms. Some numerical considerations
are discussed in (Kozlowski, 1994).

Computational complexity of the related algorithms analysis has been presented.
Both standard and new algorithms have been considered. This analysis is relatively
wide and relates the results to those existing in the literature on robotics. Much work
1s required for the analysis of the values D(k) and how to use them for the purpose
of control. A more comprehensive application of diagonalized models in robot control
will require further investigation. Identification of the values D(k) is another problem
which is also of interest and has not been solved so far. Some numerical considerations
on the diagonalized equations of motion and their sensitivity to the Riccati equation
(which does not change from one step to the next) would be very interesting. These
problems require more investigations and will be reported in subsequent papers.
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