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ON TRACKING CONTROL OF RIGID AND
FLEXIBLE JOINT ROBOTS

AnTonio LORIA*, RomEo ORTEGA*

The problem of (semi-global) trajectory tracking control of rigid and flexible
joints robots using computed torque based controllers is considered. The paper
contains two contributions; firstly, for rigid robots it is shown that velocity in
the control algorithm can be replaced by the filtered position, thus obviating
the explicit need for state observers. Secondly, it is shown that it is possible to
achieve trajectory tracking of flexible joint robots without calculating link jerk.
Removing the need for observers and the determination of link jerk reduces the
controller complexity and enhances its robustness with respect to parameter
uncertainty and unmodelled dynamics.

1. Introduction

Solutions to the tracking control problem of rigid robot manipulators have been known
for many years now (see e.g. (Ortega and Spong, 1989) and (Wen and Bayard, 1988)
and references therein). A drawback of these controllers is that they require the
measurement of joint velocities, which is often contaminated with noise. Since, in
practice, the values of the controller gains are limited by the noise level, the achievable
performance is usually below par. In order to avoid the noise measurement problem,
an ad-hoc solution is to numerically differentiate the position. Indeed, this solution
is frequently employed in robotic applications today. However, besides the fact that
there is no theoretical justification for such a solution, this reconstruction of velocity
may be inadequate for low and high speeds (Belanger, 1992).

An alternative approach that has been considered in the literature is to de-
sign an observer that makes use of position information to reconstruct the velocity
signal. Then, the controller is implemented replacing the velocity measurement by
its estimate. It is interesting to note that even though it is well known that cer-
tainty equivalence does not apply to non-linear systems®, the rationale behind this
approach is precisely that the estimate will converge to the true signal and this will
in turn entail stability of the closed loop. In (Nicosia and Tomei, 1990) a non-linear
observer, that reproduces the whole robot dynamics, is used in a PD plus gravity
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1 Specifically, an observer that asymptotically reconstructs the state of a non-linear system does
not guarantee that a given stabilizing state feedback law will remain stable when using the
estimated state instead of the true one.
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compensation scheme. The authors prove that the equilibrium is locally asymptot-
ically stable provided that the observer gain satisfies some lower bound determined
by the robot parameters and the trajectories error norms (see also Canudas et al.,
1990). In (Berghuis and Nijmeijer, 1992) it is shown that adding a term proportional
to the observation error to a PD plus gravity compensation controller allows us to
use a linear observer still preserving the local asymptotic stability for sufficiently high
gains. To the best of our knowledge, all existing solutions to the tracking control
problem without velocity measurement require the use of observers and the injection
of high gains to increase the basin of attraction.

Another factor that hampers the behaviour of robot controllers is the presence
of joint flexibilities caused by harmonic drives, shaft win dup, bearing deformation,
and compressibiliy of the fluid in hydraulic robots.

Several solutions to this problem have appeared in the litterature, for a good
review of the state of the art see (Brogliato et al, 1993). Among these, we can
distinguish two different types of schemes which are the computed torque and the
sliding mode control algotithm by Slotine and Li (1988); then, various variants stem
from them. A family of controllers derived from the computed torque scheme is given
in (Lanari and Wen, 1992; Lanari et al.,, 1993). Nevertheless, any of these existing
solutions, despite the theoretical interest they present, are quite complicated to be
implemented.

Based on a controller first described in (Wen and Bayard, 1988) for the rigid
case, we present in this paper two distinct results: firstly, we show that by simply
adding a filter of the n-th order (n being the number of degrees of freedom), in the
rigid case velocity measurements are no longer needed, thus obviating the necessity
for observers. Secondly, we show that by applying a similar control law to flexible
joints robots, the calculation of jerk can be removed. We prove in both cases that
for any set of initial conditions it is always possible to find a controller such that the
closed loop system tends exponentially to a unique equilibrium point.

For a good reference to this technique which is known as approximate differen-
tiation (or “dirty” derivatives) see (Kelly et al., 1994), where a global asymptotic
stability has been proven for the regulation problem.

The organization of this paper is as follows. In the next section we formulate our
problem, in Section 3 we give our main result, in Section 4 we develop the proof of
our main result, in Section 5 we conclude with some important remarks.

Notation: || - || — Euclidean norm; L% - space of n-dimensional square inte-
grable functions, L% - space of n-dimensional bounded functions. For further
details and definitions see (Desoer and Vidyasagar, 1975). We will also de-
fine D* = {M e R™*"|M;; =0Vi#j, M >0Vi=j}, A denotes the smallest

eigenvalue, whereas A denotes the maximum one.

2. Problem Formulation

Throughout this paper we will consider the simplified model of an n-link robot with
flexible joints proposed in (Spong, 1987), which assumes that the angular part of the
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kinetic energy of each rotor is due only to its own rotation?, and is given by

Di(gq1)d1 + C(q1,41)41 + 9(q1) = K(g2 — q1) )
J@a+K(gz2—q1)=u

where ¢; € IR™ and ¢; € IR" represent the link angles and motor angles, respectively,
D(g1) > 0 is the nxn inertia matrix for the rigid links, J € D* is the matrix of
actuator inertias reflected to the link side of the gears, C(q1,41)d1 represents the
Coriolis and centrifugal forces, the vector 9(q1) contains the gravitational terms,
and K € DT contains the joint stiffness coefficients. As suggested in (Spong and
Vidyasagar, 1989) C(q1,41) is defined via the Christoffel symbols of the first kind so
model (1) has the following properties:

P1. The matrix D(q;) is positive definite and the matrix N = D(ql) - 2C(q1,41)
is skew symmetric.

P2. Since the matrix C(z,y) is bounded in z and linear in y, for a vector z € IR™
we are able to write:

C(z,y)z = C(z,2)y
Clz,y) < kellyll, ke >0

In the case of negligible flexibility (K — oo) it is shown in (Spong, 1987) that
model (1) reduces to

D(q1)d1+ C(q1,41)d1 + 9(q1) = (2)

where D(q1) = Di(q1) + J.

. Once we have defined the rigid and flexible joint robot model we will use through-
out this paper, let us define the problems we deal with in the following sections.

Output Feedback Tracking Control of Rigid Joint Robots (OF/ RR)
For system (2) assume that only the link position is available for measurement.
Under these conditions, define an internally stable (smooth) control law (whose
gains may depend on the system initial conditions) that insures

Jim () = Jim (:(0) - g12(0)) = 0 3)

for all 14 € €%, [lga@®)l, ldra(@®)ll, llGra(t)]| < Ba

State Feedback Tracking Control of Flexible Joints Robots
(SF/FR) For system (1) assume that the full state is available for measure-
ment. Then, find an internally stable control law (whose gains may depend
on the system’s initial conditions) that, without the requirement of calculating

¢”), insures (3) for all g4 € C*, |lqra(®)ll, lira(®)ll, lldra(t)l] < Ba

2 See e.g. (Tomei, 1991b) for a model that relaxes this assumption.
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Remark 1. In modern terminology control laws which satisfy the conditions of the
above definition are referred to as semi-globally stable.

3. Main Result

Considering the model described in the previous section and properties P1 and P2 let
us enunciate the following proposition

Proposition 1. Consider model (2) in closed loop with the control law

u = D(q1)dia+ C(a1, qra)dra + 9(11) — Kpds — Kp9 (4)
J = diag {pl-){ipai } a1 (5)
where
A = diag{a;}, Kp, Kp € D* (6)
and3
A(D)

B = dia,g{b,-}, b > m (7)

and By a constant such that 0 < B, < 1. Then, for any (bounded) initial condition
zo = [12(0)T, 4, (0)T,9(0)T)T some sufficiently large (bounded) gains of controller (4),
(5) always ezist such that (3) holds with a domain of attraction including

{z e R :jz]| < 1} (8)
where limy(By—oco €1 = 00.
Proof. See Section 4.1.1.

Remark 2. Let us notice that (4) is controller (4.2) proposed in (Wen and Bayard,
1988) where we have simply replaced the measurement of velocity in the last term
by its approximate derivative (5). Furthermore, in the case of an invariant reference
G14(t) = 0, control law (4) reduces to (2) proposed in (Kelly et al., 1994) which has
been proven to be globally asymptotically stable.

Proposition 2. Consider model (1) in a closed loop with the control law

u = Jioa+ K(q24 — 014) — Kp2Gz — Kp292 (9)
J; = diag byp | o j=1,2 (10)
J = P+aij qJ: J]1=1,

3 There is an additional technical requirement that will always be satisfied in practice, namely
that |A(:) — A()| be uniformly bounded for 4, B, Kp, Kp.
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where we define

g2a=K™! [D(Q1)§1d +C(q1, q14)414 + 9(q1) — Kp1G1 — KD11§1] + q14

and
A; = diag{a;;}, Kpj, Kp; € Dt (11)
. XD .
B; = diag{b;}, b; > ,_3—21\.(—9))’ D := blockdiag[D; J] (12)

Then, for any (bounded) initial conditions zo = [§(0)T,¢(0)T,9(0)T]F where q =
[q],43)7 and 9 = [97,97]7 some sufficiently large (bounded) gains for controller (9)
always ezist such that (3) holds. Furthermore, a domain of atraction is defined by

{z e R®" : ||z < c2} (13)

where lim,\(B)_,oo Cy = 0.

Proof. See Section 4.1.5.

Remark 3. Let us notice that the calculation of u in (9) requires §ag4, however, in
contrast to all existing solutions to this problem, our controller does not require the
calculation of qga)‘ This stems from the use of ¢4 instead of §; in the second right-
hand term of g4, and the use of the filter. The second derivative of g24 still needs
link acceleration and velocity. Yet, only link velocity is considered to be available for
measurement and acceleration can be computed using the first equation of (1).

4. Proof of the Main Result
4.1. Proof of Proposition 1

The proof relies on the classical Lyapunov theory and is divided into four parts.
First, we define a suitable error equation for the closed loop system, whose (unique)
equilibrium is at the desired value. Then, we propose a Lyapunov function candidate.
Thereafter, we prove that under the conditions of the theorem the proposed function
1s a Lyapunov function, and establish the exponential stability of the equilibrium
invoking Lyapunov’s second method. Finally, we define the domain of attraction.

4.1.1. Error Equation
Using property P2 from Section 2 we write the error equation of (2), (4) and (5) as
Dy +(C+ Ca)ir + Kpfs + Kpd = 0

. - (14)
§ = —Ad + Bg,

where for simplicity we have omitted the arguments and Cy = C(q1,414). Let us
notice that a solution of (14) is z = [¢7, Q' 97T = [0 0 0]7. We will now
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construct a Lyapunov function for (14) which has an absolute minimum at the origin
and whose time derivative is negative definite in the whole domain.

4.1.2. Lyapunov Function Candidate

Consider the function
. ler o 1o . 1« s me =
V(&(t),t) = 50 D‘11+§‘1fKP‘I1+§19TKDB '9+e¢T Dg1 —edT Dg1(15)

We will now give sufficient conditions in order to guarantee positive definiteness
of V. To make the proof easy, we will partition V as V = Wi + Wy where

1 . T - 1 N . 1 ~ 1= o -~ it -

Wi = 36 Dir+ 78 Kpdi + 797 KpB™'9 + ¢df Dg — 9" Din (16)
1__- T . 1 ~ 1- - 13

Wy = s Dq: + ZQI{KP‘h + ZoTRDB ' (17)

Let us notice that eqn. (16) can be rewritten in the matrix form as

T
w, =1 (zl Kp 2151) q}
4 q1 2¢D ED q1
—————
. 4T P . oa (18)
e 1D 2D i1
419 —2¢D KpB' || 9
Py

From the definition of Kp, P is positive definite if

1 [A(Krp)
2 2,'\(5) . (19)

Similarly, from the definitions of Kp and B, P, is positive definite if

1 [AMKpB-1)
3 ——————2:\”(1)) > e (20)

while W, is trivially positive definite.

Furthermore, by virtue of (19) and (20) and the nature of D we can prove that
W, is strictly convex, hence radially unbounded by simply looking at the Hessian
matrix which satisfies

Kp 2eD 0
=| 2D D —2D | > nlag, vz € R3"
0 —2D KpB~!

2w,
oz?

where 7 > 0. In a similar way, from (6), and (7) W is trivially strictly convex.



On tracking control of rigid and flexible joint robots 335

4.1.3. Lyapunov Function Derivative and Exponential Stability

In this subsection we show that the time derivative of (15) along the trajectories
of (14) is locally negative definite in the whole state z = [¢7, ¢¥, 97]T so it is
exponentially stable. To this end, we first use properties P1 and P2 of Section 2 to
write

. o, _ = 2 = T RN ;-
V < —9TKpB~tA9 + §1Cad1 + €q1” D1 + €37 C(q1,31)51 — 6T Kp
~ ~ . . T . - o
—€eq] Kp¥ + +e0TAT DG, — egy BT DG — e97C(qr, 1)n (21)
+e9TKpgy + 9T Kpd

By virtue of same properties we can establish the following bounds:

ed Diy < (D)

T C(q, 1)1 < eke|lqull|dall?
—ei¥ Kpqy < —ed(Kp)|l@l)?
—efT Kpd < (&)@l
0T AT D < AAXD)IB1llIg
—efy BTDG, < —eA(B)AD)dl?
-edTC(q, )51 < eke|9]]]|d: )2

T Kpiy < eMEp)IOllIE
0T Kp?9 < eA(Kp)|1d|”

To this end, let us define some constants §; > 0, E?zl Bi=L7>0, nn+ry=1
and using the previous bounds write (21) in the form

Q1
Vo< € an ] 2M(Kp) -X(Kp) — MKDp) ‘[ Izl ]
=TI | Ae) -Xp)  BAKoBA) || 19
(23
e[ 191 ] BaoB ) —X(aAD) ] [ 13 ] -
2L0a0 ] 1 -XMAOMXD)  28XB)AD) | | llal
Y 22
- | [BXERD) = 5B + € [Bx(B)2(D) - X(D) - ke + o)

As

~TrA(Kp B~ 4) - eA(Kp)] |I3]?
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We derive now sufficient conditions for V' to be locally negative definite. First,
considering (6) and (7), the matrix Q; is positive definite if

271 M(Kp)M(KpB~1A4) > e

= = (23)
\(Kp) + \(Ep)]
In a similar way, Q2 > 0 if
A(B)MA)A(D)]?
Let us note that the positivity of constant A; imposes a lower bound on ¢, i.e.
k.Bg
—— < € 25
FABIND) (%)
while Xy > 0 if
1 _ .
55 [B2A(B)A(D) — MD)] > || (26)
Hence, condition (7) results. Finally, A3 is positive if
AMKpA)
2X(Kp B) (27)

Conditions (19), (20), (23), (24) and (27) are satisfied for e sufficiently small,
while (25) is satisfied for a B suficiently large. Thus, it is always posible to find
some controller gains depending on initial conditions and the desired trajectories to
insure that all the above-written inequalities hold. Therefore, (21) is locally negative
definite and the equilibrium is exponentially stable in the sense of Lyapunov.

Remark 4. Finally, let us note that in contrast to (Berghuis et al., 1992) the constant
¢ is not used in the controller but only for stability proof purposes. For an interesting
historical review of this technique see (Koditschek, 1989). Some other interesting

papers using cross terms in the Lyapunov function are (Kelly, 1993) and (Tomei,
1991a).

4.1.4. Domain of Attraction

In this section we define the domain of attraction and we prove that it can be enlarged
by increasing the controller gains. For this, we will first find some positive constants
a1, ag such that

arllz@)I < V(z(t),1) < azlle@I® (28)

Let us notice that from (19) and (20) we have

V> W 2 g[AERIGIE +AKBIBIE + XD
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so we define a; as
oy = %min{A(Kp), MNKpB-1), A(D)}

In a similar manner, an upper bound on (15) is
€ - 1- ~ 112 1 < =2
Vo< 15MD) + gAER) @l + | (e + 2)AD)| [l
11y (K n B-1 115112
+5[eX(D) + 2K BY)] |19
so we define
€< 1- 1. 1, - - -1
ay = maxy | zA(D)+ SA(Kp)|, |(e+ D), 5 [eA(D) + A(KpB™Y)]
From (26) and (28) we conclude that the domain of attraction contains the set

llzll < er = —2—]15- [ﬁZA(B)A(D) - ;\(D)] \/g

4.1.5. Semiglobal Stability

To establish semiglobal stability, we must prove that, with a suitable choice of the con-
troller gains, we can arbitrarily enlarge the domain of attraction. To this end, we pro-
pose toincrease A(B). Thus, the proof is completed checking that limy(p) 0 €1 = 00.

To this end, let us notice that

A(él)l'_n—’oo Q] = CaX_l(B), A(él)f_li(» Qg = C4

where c3, ¢4 are constants independent of B. Consequently,

lim e¢;= lim ¢ A(B) =00
AB)=eo | AB)moo /(B

where c3 is also independent of B and to get the last identity we have used the fact
that |A(B) — A(B)| is uniformly bounded.
4.2, Proof of Proposition 2
In a similar way as in the previous proof, the error equation of (1) and (9) is
DI+ (C+Ca)i+Kpi+Kpd=0

L - . (29)
d=—Ad + Bg
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where for simplicity we have omitted the arguments and § = @, &7,
J = [T, 91T, Kp = blockdiag{Kp1, Kpz}, A= blockdiag{A;, 4},
B = blockdiag{B;, By}, and
C(q1,41) O C(q1,414) O Kpy + K -K
C= , Ca= . Kp= ,
o 0 o 0 -K  Kpy+ K

Properties P1 and P2 hold for D, C, as well as for C4. It is obvious that Kp > 0
if Kpy > 0 and Kpy > 0. Let us notice that, as before, a solution of (29) is

& =[3", 6T, 97T = [0 0 0]T. Now, consider the Lyapunov candidate function

1.7
V(z(t),t) = 74 'Dq + 2q TKpg+ = 19TICDB 19 + T DG — 9T DG (30)

and note that (29) is similar to (14), as well as (30) is similar to (15). The main
difference between this equations is that Kp is no longer diagonal, yet, it is positive
definite so all the conditions (19), (20), (23), (24), (25) and (27) apply mutatis mutandi
to this case. Thus, the rest of the proof is based on similar arguments to those of the
previous section.

5. Concluding Remarks

An alternative solution to the tracking control problem for rigid joint robots without
velocity measurements has been given. The main contribution of our approach is to
show that by simply replacing the velocity by its approximate derivative in a computed
torque based scheme it is still possible to reach semiglobal exponential stability, thus
obviating the necessity for observers.

In the case when flexibility in the joints cannot be neglected, we have used a simi-
lar computed torque based controller and we have proven that semiglobal exponential
stability is still reachable by using the approximate derivatives. Its main feature is
that it does not require calculation of jerk.

On the one hand, the simplicity of this controller makes it attractive for industrial
aplications and on the other hand, from the theoretical point of view, even though
the rate of convergence depends on the initial conditions, it has been shown that it is
always possible to tune the filter gain in such a way that # — 0 exponentially.

Appendix
Simulation Results

In this section we present some simulation results. We used the two link robot
arm model of (Berghuis and Nijmeijer, 1992). Figure 1 shows the first link tra-
jectory as well as the reference. In this case we fixed the controller gains to
Kp =diag([5000 6000]) and Kp=diag([7000 8800]) and the filter parameters to
A =diag([1000 1000]) and B diag([lOOO 1000]). The reference followed in both
cases is q14 = [i-sin(107t) ; 3= sin(10mt)]. Figure 2 shows the response for the
case when flexibility is not neglected thus set to K =diag([10000 10000]). In this
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ouput link trajectory q1(t)

Fig. 1. Control law (4) without velocity measurement. Rigid Joints.

output link trajectory q1(t)

) I S S SR s SRS S SR

0 0.1 0.2 0.3 0.4 05 06 07 0.8 0.9 1

Fig. 2. Control law (8)—(10). Full state feedback. Flexible Joints.
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case we have set Kp; =diag([10000 10000]), Kp;=diag([7000 8800]) and we have
considered actuators inertias to be J =diag([0.10 0.10]).
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