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LYAPUNOV CONTROL IN ROBOTIC SYSTEMS:
TRACKING REGULAR AND CHAOTIC DYNAMICS

HeENK NIJMEIJER*, HARRY BERGHUIS**

Lyapunov-type controllers for trajectory tracking of rigid robot manipulators are
described. The so-called passivity-based controllers exploit the desired physical
energy of the robot system. A discussion about tracking control in the absence of
complete state information and model knowledge then leads to practical stabil-
ity. It is shown that these Lyapunov-type controllers can also be used in other
mechanical systems as e.g. the controlled Duffing equation. In that case the
controller can be used as a tool for creation or annihilation of chaotic dynamics.

1. Introduction

Over the last decade a lot of research has been done on designing sophisticated control
strategies for rigid robot manipulators, see e.g. (Berghuis, 1993; Ortega and Spong,
1989; Spong and Vidyasagar, 1989) and references therein. In particular, for the
tracking control problem of a rigid robot manipulator one may distinguish several
controller schemes. Perhaps the best known method is the so-called computed torque
controller (see Spong and Vidyasagar, 1989), which is essentially based upon feedback
linearization of the robot model (cf. Nijmeijer and van der Schaft, 1990). Despite its
mathematical elegance and simplicity the computed torque controller in robotics does
not incorporate the physical nature of the manipulator involved. Therefore, more re-
cently tracking controllers that are using the robot’s physical structure, have been
developed. These so-called passivity-based controllers are constructed by the idea of
reshaping the energy of the manipulator in such a way so as to fulfil the control
objective, see (Ortega and Spong, 1989; Takegaki and Arimoto, 1981) and others.
Essentially, this energy-shaping philosophy induces a Lyapunov-type of controller de-
sign and in particular the stable tracking performance of the system in closed-loop is
shown via an often tedious but in itself direct Lyapunov-function analysis. An inter-
esting feature of these passivity-based schemes is that they are all built with a linear
state feedback (Proportional-Derivative (PD)-feedback in the manipulator’s position)
which makes these schemes quite attractive in practice, see (Spong and Vidyasagar,
1989). In practical situations the inherent velocity-feedback — the derivative-feedback
of the manipulator’s position — may not be desirable because velocity-measurements
are impossible (or corrupted by noise). In that case the tracking controller needs to
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be fed with a velocity-estimate obtained from a velocity-observer. This methodol-
ogy has been developed using Lyapunov-type arguments in (Berghuis and Nijmeijer,
1993) and will be described in Section 2. Since in practice there will always be un-
certainty in the dynamic model for the robot manipulator, a further question studied
in Section 2 is how our analysis would extend to the case where model uncertainties
are incorporated. A solution to this problem without using any model knowledge is
given that yields practical stability of the closed-loop system, see also (Berghuis and
Nijmeijer, 1994).

Given the physical basis for the aformentioned tracking controller (and the track-
ing controller-observer combination) it should not be surprising that this sort of con-
troller is of use in many other physical systems. In this paper we focuss on the Duffing
equation

4 pot + prz + pazd = a cos(wt) (1)

The above equation was introduced in 1918 by Duffing to describe a certain non-
linear oscillator with a cubic stiffness term. We note that we concentrate here on (1)
but we could have treated the well-know driven van der Pol equation in a similar
way. The interest of (1) — or the driven van der Pol equation — is that for certain
parameter values of pg, p1, p2, @ and w the dynamics (1) is complex and may
include chaotic motion, see e.g. (Guckenheimer and Holmes, 1983). Equation (1) in
itself is not controlled, but we will study its controlled version, in that we add in
the right-hand side of (1) a control function u (which in principle can be physically
realized in the system). The reason to do so is that in this way we are able to study the
tracking control of the Duffing equation. We will show in Section 3 that the tracking
controller-observer design for the controlled equation (1) parallels the developments
of Section 2. Even more, like we have seen for the manipulator dynamics, also in this
case we obtain practical stability of the closed-loop system without model knowledge
(and thus, for instance, with unknown parameters po, p1,p2 and a). In particular,
the given tracking control strategies that are again of Lyapunov-type, enable us to
annihilate any complex or chaotic dynamics of (1) while tracking towards any desired
trajectory. The latter has recently been studied extensively by e.g. Chen and Dong
(1993a; 1993b) and Nijmeijer and Berghuis (1994).

It should be noted that the strong analogy between the tracking control schemes
in robot manipulators and the controlled Duffing equation is not very surprising from
a mathematical point of view since both systems are feedback equivalent to a second
order linear system (cf. Nijmeijer and van der Schaft, 1990). The surprising point
is that this also holds without using model knowledge. One consequence of what we
have done is that a robot system may track any trajectory of the Duffing eqn. (1)
and thus we may track periodic, complex and chaotic signals. In other words, the
Lyapunov-type controller methods used in the tracking control of robot manipulators
can also be employed as “a route towards chaos” and conversely as a methodology in
“controlling chaos”. Both subjects have received a lot of attention in the literature,
see e.g. the survey-paper by Chen and Dong (1993b) and references therein, Ott et al.
(1990) and Singer et al. (1991). It is certainly not the purpose of the present paper
to repeat much on the control creation of chaos. It is remarkable in our opinion that
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the physically motivated Lyapunov-type control schemes used in robotics are also of
relevance in the area of creation and annihilation of chaotic motion. In Section 4
we illustrate explicitly how chaotic motion tracking can be established by injecting a
chaotic trajectory of the Duffing equation as the desired robot trajectory. In fact, it
follows what kind of desired trajectory the overall system will follow (periodic, chaotic
....) depending on the initial condition of the Duffing equation. To illustrate our ideas
we give a few simulation examples where the Lyapunov-type controller-observer with
or without model knowledge is used to create a periodic, or chaotic motion for the
robot system. Of course, in the case when model knowledge is not used the creation
of periodic or chaotic motion is again up to any prescribed degree of accuracy.

We conclude this paper with some concluding remarks in Section 5.

2. Motion Control of Rigid Robots

Consider the dynamics of an n degrees-of-freedom (DOF) revolute joint rigid robot
system

M(q9)i+C(q,9)i+Glg) =7 (2)

where M(q) is the positive definite inertia matrix [nxn], C(q,q)q is the Coriolis
and centripetal torques [n x 1], G(q) is the gravitational torque [n x 1], and 7 is the
control input [n x 1]. The matrix C(g,¢) is defined via the Christoffel symbols (see
Ortega and Spong, 1989), which implies that M(q)—2C(q, q) is skew symmetric. For
the revolute joint system we have (e.g. Spong and Vidyasagar, 1989)

0< My, <|IM(9)l| <Mu Vg€ER® (3)
IC(g, 2)|| < Cumllz|] VYq,z € R" (4)
6@l < G Voew .

where in (3), (4), (5) and in the sequel the norm of a vector z is defined as
el = VT3 ©)

and the norm of a matrix A4 as
Al = 1/ Amax(AT 4) (7

with Apax(?) denoting the maximum eigenvalue. Moreover, similarly to (3), for any
symmetric positive definite matrix A(z) and for all z, A, and Ap denote the
minimum and maximum eigenvalue of A(z), respectively, if they exist.

To let system (2) follow an arbitrary smooth reference trajectory, various model-
based control methods have been developed. Among many references we mention
(Craig, 1988; Kelly and Salgado, 1994; Khosla and Kanade, 1988; Koditschek, 1989;
Ortega and Spong, 1989; Paden and Panja, 1988; Sadegh and Horowitz, 1990; Slotine
and Li, 1987; Wen and Bayard, 1988). One of the most useful controllers is given by
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the Desired Compensation Control Law (DCCL). This controller belongs to the class
of passivity-based controllers, and is described by (cf. Wen and Bayard, 1988)

7= M(qa)§a + C(qd, 9a)4a + G(q4) — Kaé — Kpe (8)

where ¢q(t) represents the desired motion, e = g — qq is the tracking error, and K
and K, are positive definite diagonal matrices [n x n]. The DCCL consists of two
parts: a linear state feedback part (also known as PD feedback) and a model-based
compensation part that is computed along the reference trajectory. This way of model
compensation is attractive for two reasons. Firstly, it permits off-line calculation of the
computationally expensive model-based components, and, consequently, it preserves
the simplicity of the PD controller. Secondly, the use of clean reference signals instead
of noise-corrupted sensor data in the model compensation allows us to enhance the
tracking accuracy, as can be concluded from several experimental studies, see e.g.
(Leahy and Whalen, 1991; Whitcomb et al., 1993; Berghuis, 1993).

Let us make the following assumption on the reference input.

Assumption 1. The desired trajectory signal is bounded, i.e.
Vi = sup||a(t)]] < o0 (9)
An = sup||ga(t)l] < oo (10)
In addition, we assume
Assumption 2. The controller gains K, and Ky in (8) are related as
K, = AK4 (11)
where A is a positive scalar.
In the sequel, we exploit the robot model properties (e.g. Kelly and Salgado, 1994).
1M (z)z — M(y)zl| < kmllz — yl|||2[] (12)
IC(2,v)w — C(y, 2)w|| < kellz — yll 2]l lwll + Carllo = 2l [lw]]  (13)
I1G(z) = GW)Il < kellz — yll - (19)
Then Proposition 1 can be proved (see also Kelly and Salgado, 1994).

Proposition 1. Consider the closed-loop system (2), (8) under Assumptions 1 and 2.
Define

21 = [, (A)"] (15)

and assume that ||z1(0)|| represents an upper bound on the initial error state z1(0).
Then under the condition

Kim > AMpy +2CuVy + 227 Yk , (16)
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where ky = kmApm + kc Vi + ke, the closed-loop system (2), (8) is asymptotically
stable uith guaranteed region of attraction

lSKd M CM

)

AM, Kim— MMy — 20 Ve — 2271k
B:{m1€R2"| IERIRS ™ [ dm M— MM 1]} (17)

Moreover, region (17) can be enlarged arbitrarily by increasing Kg; i.e. system (2),
(8) is semi-globally asymptotically stable.

Proof. The closed-loop dynamics (2), (8) are equal to
M()é +C(g, d)é + Kasy = AY() (18)
where
AY() = (M(ga)ia — M(@)ia) + (Claa, da)ia
~Clg, d)id) + (Glaa) - G(a))
s51= €4 de (20)
Using (3), (4), (5), (9), (10), (12), (13), (14) we obtain

(19)

IAY () < (kmAm + kcVip + ka)llell + Car Varllé|

(21)
= kalell + Cum Vi |l€]]
Let us consider the candidate Lyapunov function
1
Vi(e, é) = %s’{M(q)s1 + §eT(2/\Kd - X2M(q))e (22)
As shown in Appendix, Vj(e,é) satisfies
1 ) 1
5 Pmllz1ll* < Va(e,€) < 5 Pullzal” (23)
where P, = My, and Py = 671Ky .
The time-derivative of Vj(e,é) along (18) satisfies
Vi(e,é) = —¢T(Ka—AM(g))é — ()T Ka(De)
(24)

+( + Ae)TAY () + 67C(q, §)(Ne)

where Assumption 2 and the skew symmetry of M(q) — 2C(g,q) has been used.
Employing (21) and using the sum of perfect squares, an upper bound on V; (e, ¢) is
given by

. 1 .
Vi(e,¢) < -(K,,,,,, — \May = 2Cm Vag — 53" ks = CM||Ae[|) Bk

3
—(I{d,m —CumVum — -2—A"1k1)”/\e”2
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This implies
Vi(e, €) < —(Kam — AMar — 2Cu Var — 207 k1) ||21]|2 + Cwllz[|* (26)

Hence, from (26) Vl(e, ¢) is locally negative definite. This, together with the positive
definiteness of Vj(e,¢é), implies that the closed-loop system (2), (8) is locally asymp-
totically stable (cf. Khalil, 1992). Finally, because the region of attraction (17) can
be arbitrarily enlarged by increasing K; we obtain semi-global asymptotic stability
(see (Teel and Praly, 1994) for a similar definition). ]

The DCCL in (8) yields semi-global asymptotic stability. By introducing a non-
linear PD action — Ky|le||>(¢+Ae) in the control loop it is possible to establish global
asymptotic stability, see (Sadegh and Horowitz, 1990).

In practice, there will always be uncertainty in the dynamical model (2). This
leads us to the natural question: what can be said about the stability issue in the
presence of model errors? To this end, consider a simple case in which the robot is
controlled by just linear PD feedback, i.e. (8) without model knowledge. So

T=—Kaé— Kpe (27)

Then the next proposition can be proven (Qu and Dorsey, 1991), which essentially
states that linear high-gain state-feedback guarantees the robot system to follow any
reference trajectory with bounded error.

Proposition 2. Consider the PD-feedback controller (27) under Assumptions 1
and 2. Then the closed-loop system (2), (27) is semi-globally uniformly ultimately
bounded or practically stable under some suitably selected (high-gain) condition on
the derivative controller gain K.

Proof (Main steps). The closed-loop dynamics (2), (27) are equal to those of (18)
except for an additional term at the right-hand side representing the model-based
feedforward component in (8), i.e.

AZ = M(ga)ia + C(q4, da)da + G(g4) (28)
According to (3), (4), (58), (9), (10) and (28) can be bounded as

|AZ|| < MpAm +CuVi+Gu
(29)
= k2

Consequently, the bound on Vl(e, ¢) in (26) changes into
Vi(e,¢) < 2ks||z1]| = (Kam — AMar — 2CxVar — 227 ky)||1||* + Carlla])® (30)

Hence, the time-derivative of the Lyapunov function is negative definite in an annulus

of a certain width around the origin. Therefore, the closed-loop system is locally

uniformly ultimately bounded (cf. Chen and Leitmann, 1987; Qu and Dorsey, 1991).
' |
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One characteristic feature of the above state-feedback controllers is that they
require both position and velocity measurements. In practice, however, this require-
ment is generally not fulfilled. Hence, it makes sense to develop a controller that
preserves the attractive implementation properties of the DCCL but which only em-
ploys position feedback. For this purpose, consider the following modification to (8)
(cf. Kaneko and Horowitz, 1994; Berghuis and Nijmeijer, 1993):

Controller { 7 = M(ga)da + Claa, da)ia + Glaa) ~ Kaé — Kpé (31)
¢ = w+Lale—é)

Observer (32)
w = Ly(e—é)

T

. 2T . .
where € represents the estimated tracking error, [e é ] is the estimated error state,

and L, and L4 are positive definite diagonal matrices [n x n]. The estimated error
state is generated by a linear observer, which only requires the position error e as
input. Next, the state estimate is injected in the control loop.

Let us make the following assumption on the structure of the observer gains:

Assumption 3. Ly and L, can be written as
L, = Mgl (34)

where £4 > 0 is a scalar and X is as before (see (11)).

Then we have

Proposition 3. Consider the closed loop (2), (31), (32) under Assumptions 1-3.
Define

zd = [67, (Ae)T, &, (Xe)T] (35)
where € = e — €, and assume that ||z2(0)|| is an upper bound on z(0). If

Kam > AMpy +4CyVar + 327 ky (36)

Li> M7 Kam (37)

then the closed loop system is semi-globally asymptotically stable with guaranteed re-
gion of attraction

AM, Kim—AMpy —4Cy Vi — 3/\—1]61]
B= an = 2 38
{zzem | leall < 450Kd’M[ — (38)



380 H. Nijmeijer and H. Berghuis

Proof. Introduce
s9 =&+ AE (39)
then the closed-loop dynamics (2), (31), (32) are described by
M(q)é+ C(q,9)e + Kq(s1 — s2) = AY (") (40)
M(q)$2+C(q, §)52+H£aM (9)s2+ Ka(s1—52) = AY () +C(g, 4)(52—€)(41)
where AY(:) is defined in (19). Consider a candidate Lyapunov function
V(e,¢,&¢) = Vi(e, ¢) + Va(E, €) (42)

with Vi(e,¢é) asin (22), and V3(E, €) equal to
L1 1 |
Va(8,8) = 53{ M(q)ss + §éT(2/\Kd)é (43)
As before, V(e,é,¢, é) satisfies
1 , a1 ,
gPmllz2ll” < V(e é,€,€) < o Pullz2|| (44)

where P, = 1M,, and Py = 6/\‘1Kd,M.

3

Evaluating the time-derivative of V(-) along (40), (41), using bound (21) on
AY (+), and employing the sum of perfect squares, the proof can be completed along
the lines of the proof of Proposition 1. [ |

As can be seen by comparing Propositions 1 and 3, both the state- and output-
feedback solution to DCCL can be treated in a unified way. Using the same math-
ematical machinery essentially the same stability result is established. As a natural
consequence, we also obtain the next proposition, in analogy to Proposition 2. For
the proof we refer to Berghuis and Nijmeijer (1994).

Proposition 4. Consider the linear estimated state-feedback controller
r=Kaé— Kyé (45)

where the error state is determined with the linear observer proposed in (32). Suppose
Assumptions 1-3 are satisfied. Then the closed-loop system (2), (45) is semi-globally
uniformly ultimately bounded under suitably selected (high-gain) conditions on Ky
and £4.

Remark 1. Proposition 4 was given under the condition that both Assumption 2
and Assumption 3 hold, which in particular implies that in (11) and (33) the same
parameter A appears. This is in fact not at all necessary in that we may replace (11)
and (33) as K, = M1 K4, Lg = (£a+ A2)! and L, = Ay4y] for different parameters
A1 and Az, and the result of Proposition 4 is still true, but the proof becomes slightly
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more involved. This extra freedom of selecting the controller-observer gains will be
used in the simulations of Section 4.

Hence, the highly non-linear robot dynamics can be stabilized around any
bounded reference trajectory by a linear output-feedback controller. In the next
section it is shown that the presented results in robot control can also be used in
other physical systems, in particular the Duffing dynamics.

3. Feedback Control of Duffing Equation

The Duffing equation describes a specific non-linear circuit or a pendulum moving in
a viscous medium, and is given as (see (1))

& + po + p1T + pax® = a cos(wt) (46)

where po > 0, p1 > 0, p2, a and w are known constants. Depending on the choice
of these constants it is known that solutions of (46) exhibit periodic, almost periodic
and chaotic behaviour cf. (Chen and Dong, 1993a; 1993b; Guckenheimer and Holmes,
1983).

It is our purpose to discuss a controlled version of (46). For this we consider
& + poZ + p12 + p2z® = u + a cos(wt) (47)

where u(-) is the physical control input. The general problem that we want to study
is whether we are able to find a suitable feedback controller

u=k(z,z,zq4,1) (48)

such that for the closed-loop system (47), (48) the solution z(t) asymptotically
converges to a desired trajectory z4(t),t > 0. Here z4(t) may represent any smooth
and bounded time-function, including fixed points or periodic orbits.

The crucial observation is that from a control point of view the dynamics of the
controlled Duffing equation (47) is essentially the same as that of a one-DOF robot
system. The main difference are the linear and cubic term in z, but these terms do
not cause any problems in both the control design and the stability analysis, as will
be shown below.

Assume we want the system to follow the reference z4(t). For this purpose, we
define in analogy with (8) the control input as

u = Z4+ potq+ p12q+ przs — acos(wt) — Kqé — Kpe+ v (49)
v = 3pazzge (50)

with e = z—z4,and K4 > 0, K, > 0 scalar. The compensation term v is introduced
in order to deal with the cubic term in (47). As before, let us take (cf. (11))

K, = \Kq (51)

and A > 0 scalar. Then we can prove:
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Proposition 5. Let K, satisfy (51). Then under the condition

Kq > max(A, —p1 A1) (52)
the closed-loop system (47), (49), (50) is globally asymptotically stable.
Proof. The closed-loop system (47), (49), (50) is described by

€+ (po+ Ka)é+ (p1 + Kp)e + pae® = 0. (53)

In correspondence to (22), consider the candidate Lyapunov function
: 1,1 - - PNCINE
Vi(e, €) = o5t 5(@1 + AKg) + A(po + Kq) — X)e” + 7P2e (54)
Because of (52) and py > 0, Vi(e, ¢) is positive definite. Along (53), Vi(e,¢) equals

Vile,é) = —(po + Kq — A)é? — A(p1 + AK4)e? — Apae® (55)

Under (52) we have Vl(e,é) globally negative definite in (e, é). Consequently, the
closed-loop system (53) is globally asymptotically stable (cf. Khalil, 1992). [}

Controller (49), (50) allows us to steer the Duffing equation towards an arbitrary
reference trajectory z4(t). Hence, the chaotic behaviour the uncontrolled Duffing
dynamics may display is completely annihilated by feedback control. Now, suppose
that x4(t) represents a (stable or unstable) equilibrium motion of the uncontrolled
dynamics, 1.e.

Z4+ potd+ piza + paxs = acos(wt) (56)

Then by combining (49), (50) and (56) we have:

Corollary 1. If the desired motion ©4(t) satisfies (56), then the controller
u=—K4é — Kye +3pyz z4e (57)

guarantees that the Duffing equation asymptotically converges under assumption (51)
and condition (52) towards (56) in a global sense.

It is rather straightforward to show that PD-feedback (27) allows the controlled
Duffing dynamics (47) to follow any bounded reference trajectory with bounded er-
ror. In particular, under high-gain PD-control semi-global stability of the closed-loop
can be shown, in analogy to Proposition 2. As discussed in (Nijmeijer and Berghuis,
1994), for (47) also output-feedback type of controllers can be developed that yield
global asymptotic stability. Here we will concentrate on the model-independent linear
estimated state-feedback controller (45), and analyze its stability properties when it
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is used to control the Duffing equation. In particular, consider
Controller {u = —K4é — K,é (58)
{ é = w+2K(e—é)
Observer (59)

W o= 2K,(e—é)

Since measuring & in the controlled Duffing equation (47) might be difficult and
noise-sensitive, the controller-observer combination (58), (59) seems very attractive.

We can prove the following result.

Proposition 6. Consider Duffing equation (47) under robust linear output-feedback
control (51), (58), (59). Then the closed-loop dynamics is locally uniformly ultimately

bounded for Ky sufficiently large.
Proof. The error dynamics (47, (51), (58), (59) is given by

€+ poé + pre +p263 + Kgs1 = Kgsa + AW — 3pazzge
E+ Kgsy = —Kgs; + AW — 3pazzge — poé — pre — poe’
where
AW (-) = acos(wt) — Z4 — potq — p1Z4 — PaTs
Take the Lyapunov function candidate
Ve, é,8,&) = Vi(e, é) + Va(E, é)
-where Vi(e,é) asin (54) and
Va(E, €) = %s% + %(2,\11’4 —A%)e?
The time-derivative of V'(-) along (60), (61) equals to
V(e,6,6,6) =—(po+ Ka— A)é? — (A~1py + Kg)(Ae)? — Apye?
—(Ka— V)& — Kq(A6)?
+(é4 e+ E+ A)(AW — 3pé$§e — 3pazge?)
—(&+ 28)(poé + pre + p2e?)
For the bounded reference trajectory we define

Py =supllza(®ll, Vi =supllzat)ll,  Am = sup [|Za(2)]]

(60)

(61)

(62)

(63)

(64)

(65)

(66)
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Then a bound on V/(-) is given by
V() < arlleall = (Ka — az)l|ll® + aqllz2||* (67)

where x5 as in (35), and the constants a;, i = 1,2,4, are given by

a1 = 4(| a | +Anm +poVu+ | p1 | Py + p2Py) (68)
az = max(A, —A71p1) +2po + 2271 | p1 | +18A7 Vi pa) (69)
aq =81 3p, (70)

Thus, V() is negative definite in an annulus around the origin, whose width can
be enlarged with K4. As shown in (Chen and Leitmann, 1987) (see also Qu and
Dorsey, 1991), this implies that the closed-loop system is locally uniformly ultimately
bounded. This completes the proof. ]

4. A Route to Chaos

To generate chaos in robot systems, we consider the simplest case, the dynamics of a
one-DOF robot, 1.e.

me2§ + mglsin(q) = 7 (711)

where m > 0 and £ > 0 scalar. Let us take the robust linear output-feedback
controller (cf. (32), (45))

Controller {T =—Kgé— Kpé (72)
é = w+ Ly(e—é)

Observer (73)
w = L, (e — é)

The reference trajectory is assumed to satisfy the Duffing characteristics

da+ poda + p1ga + p2q3 = acos(wt) (74)

Now, by selecting different sets of parameters in (74) and initial conditions for (74) the
controlled robot system can be forced to display periodic, almost periodic and chaotic
behavior. Because we consider the robust controller, the actual state trajectory of the
robot system follows the prespecified reference with bounded error. This error bound
can be arbitrarily decreased by enlarging the controller gains Kj.

To illustrate our results we simulated the one-DOF robot (71) to track a periodic
and chaotic trajectory of the Duffing equation (74). This was done by using the
controller-observer combination (72), (73). The robot characteristics were chosen as

m=0.1kg, £=2m (75)
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The Duffing parameters from (74) were selected either as

po=04, p=-1,1, p2=10, w=18, a=0.62 (76)
for generating a periodic orbit or

po=04, pp=-11 py=10, w=18, a=18 (77)

for generating a chaotic trajectory (cf. Chen and Dong, 1993). The controller-observer
gains in (72), (73) were chosen in both cases as (see Remark 1)

K;=10, A=5 (78)
£ =30, A;=0.3 (79)
Reference state trajectory . ' Error state trajectory
1 T 10 r T .

) )

8 3

8 =

2 o

0.5 1 1.5 -0.6 -0.4 -0.2 0 - 0.2
qd (rad) e (rad)

Fig. 1. Results for period-one solution of Duffing equation (74).

The resulting Duffing trajectories in the (gq,¢q)-plane are given in Figs. 1 and 2.
Additionally we visualize in these figures the error-trajectories of the closed-loop sys-
tem (71), (72), (73), (74) with the above parameter selections (75), (76), (77).

Reference state trajectory Error state trajectory

4 ; B . 10
Q @
3 3
3 él
B )
_4 . . . _5 : : .
-2 -1 0 1 2 ' -0.6 -0.4 -0.2 o 02~
" qd (rad) e (rad)

Fig. 2. Results for chaotic solution of Duffing equation (74).
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The error-trajectories in closed loop were initialized at, respectively, (e(to), é(¢0)) =
(—0.5909,0) for the periodic orbit (Fig. 1) and (e(to),é(to)) = (~0.5,0) for the
chaotic trajectory (Fig. 2). Notice that in order to eliminate the transient effects we
have initialized the error-trajectories at some time ¢q > 0. Inspection of both simu-
lations clearly shows that the error trajectories readily converge to a neighbourhood
of (0,0) despite the fact that our controller-observer combination (72), (73) does
not use model information nor velocity measurements. By increasing the gains this
neighborhood of stability can be made smaller, cf. Proposition 6.

5. Conclusions

We have shown in this paper how physically based controllers and controller-observer
combinations can be designed for solving the tracking control problem for rigid robot
manipulators. These so-called passivity-based techniques centre around the idea of
reshaping the energy of the manipulator in such a way so as to fulfil the control ob-
jective, see (Takegaki and Arimoto, 1981). The modified energy is then used as a
Lyapunov-function for the closed-loop system. We show that this type of Lyapunov
control can also be used when no model information is used; in this case the closed-
loop system is shown to be practically stable (instead of asymptotically stable). The
Lyapunov control we use in robot manipulators can also be used in other physical
control systems. In particular we illustrate this fact here for the controlled Duff-
ing equation. The nice feature of our techniques is that, no matter how the initial
dynamical system behaves (stable, periodic, chaotic ..... ), the controlled system can
follow any desired trajectory with any degree of accuracy. In this way this work com-

plements ongoing research on the control of chaotic dynamics, cf. (Chen and Dong,
1993a; 1993b).

Appendix
Function (22) can be written as
L p

Vi() = 5y R(a)y (A1)
where

y" =[5, (2)7] (A2)
and

M(q) 0

R(q) = (A3)

0 2)"1Kg— M(q)
According to (16), we have

Kam > AMay (A4)
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Hence, we obtain

1 1

§lelyl|2 <)< §RM||y||2 (A5)
where

R,=M,, Ry= 2)\_11<J,M . (A6)
By definition,
with

I I
T= . (A8)
0

Note from (A7)
1
Fleall® < llyll? < 3llzafi? (A9)

Together with (A5) and (A6) this implies (23).

References

Berghuis H. (1993): Model-based Robot Control - from Theory to Practice. — PhD-thesis.
Dept. of Applied Mathematics and Electrical Eng., Univ. of Twente, Enschede, The
Netherlands.

Berghuis H. and Nijmeijer H. (1993): A passivity approach to controller-observer design for
robots. — IEEE Trans. Robotics and Automation, v.9, No.6, pp.740-754.

Berghuis H. and Nijmeijer H. (1994): Robust control of robots via linear estimated state
feedback. — IEEE Trans. Automatic Control, v.39, No.10, pp.2159—2162.

Chen G. and Dong X. (1993a): On feedback control of chaotic continuous-time systems. —
IEEE Trans. Circuits and Systems, v.40, No.9, pp.591-601.

Chen G. and Dong X. (1993b): From chaos to order-perspective and methodologies in con-
trolling chaotic non-linear dynamical systems. — Int. J. Bifurcation and Chaos, v.3,
No.6, pp.1363-1409.

Chen Y.H. and Leitmann G. (1987): Robustness of uncertain systems in the absence of
matching assumptions. — Int. J. Control, v.45, No.5, pp.1527-1542.

Craig J.J. (1988): Adaptive Control of Mechanical Manipulators. — New York: Addison
Wesley.

Guckenheimer J. and Holmes P. (1983): Non-linear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields. — New York: Springer Verlag.



388 H. Nijmeijer and H. Berghuis

Kaneko K. and Horowitz R. (1994): Repetitive and adaptive control of robot manipulators
with velocity estimation. — to appear in IEEE Trans. Robotics and Automation.

Kelly R. and Salgado R. (1994): PD Control with computed feedforward of robot manip-
ulators: a design procedure. — IEEE Trans. Robotics and Automation, v.10, No.4,
pPp.566-571.

Khalil H.K. (1992): Non-linear Systems. — New York: MacMillan.

Khosla P.K. and Kanade T. (1988): Ezperimental evaluation of non-linear feedback and
feedforward control schemes for manipulators. — Int. J. Robotics Research, v.7, No.1,
pp-18-28.

Klafter R.D., Chmielewski T.A. and Negin M. (1989): Robotic Engineering - An Integrated
Approach. — New York: Englewood Cliffs, Prentice-Hall International Editions.

Koditschek D. (1989): Robot planning and control via potential functions. — In: The
Robotics Review I (O. Khatib, J.J. Craig and T. Lozano-Perez, Eds.), Boston: The
MIT Press, pp.349-367.

Leahy M.B.Jr. and Whalen P.V. (1991): Direct adaptive control for industrial manipulators.
— Proc. IEEE Conf. Robotics and Automation, Sacramento, U.S.A, pp.1666-1672.

Nijmeijer H. and Berghuis H. (1994): On the Relation Between Controlling Certain Robotic
and Chaotic Systems. — Memo 1225, Faculty of Applied Mathematics, University of
Twente.

Nijmeijer H. and van der Schaft A.J. (1990): Non-linear Dynamical Control Systems. —
Berlin: Springer Verlag.

Ortega R. and Spong M.W. (1989): Adaptive motion control of rigid robots: a tutorial. —
Automatica, v.25, No.6, pp.877-888.

Ott E., Grebogi C. and Yorke J.A. (1990): Controlling chaos. — Phys. Rev. Letters, v.64,
No.11, pp.1196-1199.

Paden B. and Panja R. (1988): Globally asymptotically stable ‘PD+’ controller for robot
manipulators. — Int. J. on Control, v.47, No.6, pp.1697-1712.

Qu Z. and Dorsey J.F. (1991): Robust tracking control of robots by a linear feedback law.
— IEEE Trans. Automatic Control, v.36, No.9, pp.1081-1084.

Sadegh N. and Horowitz R. (1990): Stability and robustness analysis of a class of adaptive

controllers for robotic manipulators. — Int. J. of Robotics Research, v.9, No.3, pp.74—
94,

Singer J., Wang Y-Z. and Bau H.H. (1991): Controlling a chaotic system. — Physical Rev.
Letters, v.66, No.9, pp.1123-1125.

Slotine J.J.-E. and Li W. (1987): On the Adaptive control of robot manipulators. — Int. J.
of Robotics Research, v.6, No.3, pp.49-59.

Spong M.W. and Vidyasagar M. (1989): Robot Dynamics and Control. — New York:
Wiley.
Takegaki M. and Arimoto S. (1981): A new feedback method for dynamic control of ma-

nipulators. — ASME J. Dynamic Systems, Measurement and Control, v.102, No.2,
pp.119-125.

Teel A. and Praly L. (1994): Global stabilizability and observability imply semi-global sta-
bilizability by output-feedback. — Systems Control Letters, v.22, No.5, pp.313-325.



Lyapunov control in robotic systems: tracking regular and chaotic dynamics 389

Wen J.T. and Bayard D.S. (1988): New class of control laws for robotic manipulators: part
I non-adaptive case. — Int. J. Control, v.47, No.5, pp.1361-1386.

Whitcomb L.L., Rizzi A.A. and Koditschek D.E. (1993): Comparative ezperiments with a
new adaptive controller for robot arms. — IEEE Trans. Robotics and Automation,
v.9, No.1, pp.54-70.

Received: December 5, 1994





