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DISTURBANCE DECOUPLING FOR NON-LINEAR
STRUCTURED SYSTEMS

TORSTEN WEY™*, FERDINAND SVARICEK*

A structural approach to the disturbance decoupling problem of non-linear sys-
tems is introduced. For this purpose, in analogy to linear systems theory,
a structural description of non-linear systems is defined. In associating a di-
rected graph to such a system, two important system properties, the differential
output rank and the structure at infinity, can be characterized in terms of input-
output paths. Based on this concept, the disturbance rejection problem can be
easily solved. Moreover, necessary conditions valid for general — non struc-
tured - systems can be defined in a graph-theoretic way. The advantages of this
approach are demonstrated by illustrative examples.

1. Introduction

Structured systems consider only the existence and respectively non-existence of con-
nections between inputs, states and outputs; explicit functional dependencies are
omitted. Though less information is included, a structural approach yields manifold
advantages in systems analysis (Reinschke, 1988). Besides a better insight in the
physical behaviour, especially for large-scale systems, no numerical problems occur.
For non-linear systems this approach is also suitable, because the analysis of such
control problems as system rank, input-output decoupling, disturbance decoupling,
exact linearization etc. has to be done in a complex mathematical fashion (Schwarz,
1991; Isidori, 1989). The computer-aided determination leads therefore to extensive
calculus, which may fail for larger system models due to insufficient memory and
a long run time.

A most promising tool for the analysis of structured systems is a graph
(Andrasfai, 1991). It consists of vertices and edges, which are associated with the
matrix elements of a structured system (Reinschke, 1988). One main advantage of
the graph-based approach is the fact that a large number of efficient algorithms for
the analysis of graphs are already available. As shown by a great number of authors
(Kasinski and Lévine, 1984; D’Andrea and Lévine, 1986; De Luca and Isidori, 1987;
Wey et al., 1994; Reinschke, 1994) the use of graphs is successful not only in the
analysis but also in the synthesis of non-linear systems.

By extending known results (Commault et al., 1991) it is possible to characterize
a non-linear structure at infinity defined by Fliess (1986b) with graph-theoretic meth-
ods. More specifically, vertex-disjoint paths between inputs and outputs are examined
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for this purpose. Based on the relation between a graph and the structure at infinity,
the necessary and sufficient conditions for disturbance decoupling of non-linear sys-
tems can be given in a similar way as for linear systems (Commault et al., 1991). Due
to the omitted functional dependencies these conditions are easy to prove. Moreover,
utilizing the information contained in the graph explicit feedback laws can be found,
which yield disturbance rejection (Wey, 1995).

The methods obtained by the graph-based approach have some important ad-
vantages. In particular, the solutions become more obvious in comparsion with other
methods. Additionally, the computed results hold for classes of systems with an
identical structure.

The paper is organized as follows. First, the algebraic definitions for the rank
and the structure at infinity of non-linear systems are shortly introduced. Next,
the concept of structured systems is discussed. A graph-theoretic description is con-
nected with such systems allowing a compact representation. In Section 4 the static
and dynamic disturbance decoupling problems are defined. Based on this definition,
structural properties are given, which characterize the solvability of the disturbance
decoupling problem for non-linear systems. Using illustrative examples the advan-
tages of the structural approach are verified.

2. Notation and Preliminaries

Consider a non-linear time-invariant control system ) in the standard state space
form
x a(x) + B(z)u (1)
y = c¢(z)=Cx
where z(t) € IR", u(t) € R™, y(t) € RP. Here a(-), columns of B(:) and rows of
¢(+) are analytic with respect to z.

Restricting the class of non-linear systems to a linear output-equation Cz does
not mean a loss of generality, since an equivalent system with n’ = n+p, m' =m, p’ =
p and y = Cz always exists as long as ¢(x) is an analytic function (Schwarz, 1991).

2.1. Differential Output Rank and Structure at Infinity

There are several different definitions of rank and structure at infinity for non-linear
systems. Here the algebraic definitions of (Moog, 1988) will be used, which show
several advantages (Di Benedetto et al., 1989). For an introduction to the algebraic
approach consider e.g. (Fliess and Glad, 1993). Due to (Fliess, 1986b) a non-linear
system ) is defined by the fact that the components of the output y are differen-
tially algebraic over the field k(u). This definition means that the components of u
and y are related by a finite number of implicit differential equations with rational
coefficients. Based on his description, Fliess (1986b) defines the differential output
rank of a system as follows.

Definition 1. (Fliess, 1986b) The differential output rank is the differential transcen-
dence degree of the differential field k(y) over k:

p* = diff.tr.d® k{y)/k . (2)
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A statement equivalent to Definition 1 is that p* coincides exactly with the
maximum number of independent system outputs y; (Fliess, 1986b; Wey and Svaricek,
1995).

For computing the differential output rank of a non-linear system, the abstract
definition of eqn. (2) is hardly usable. Another definition of p* introduced by Moog
(1988) is suited better for this purpose. It is based on the analysis of ordinary vector
spaces and closely related to the structure at infinity (Di Benedetto et al., 1989;
Svaricek and Schwarz, 1993).

First, a chain of vector spaces over the field K of rational functions in
u, ..., ™1 with meromorphic coefficients in # is associated to 3. For the elements
v = (v1, ...,vj) of such a field the derivative operator 0/0v; acting on a meromorphic
function n(v) = p(v)/q(v) is defined as

9 p(v) _ 1(v) 2-p(v) - p(v) 32-q(v) 3
dvi q(v) g*(v) ®)

Then, the differential of n(v) is given by

dn(v) = 3 2Wg,, 4)

Vi
i=1 6 *

The time derivatives of the output are given by

i) = dew= e

oL By 0y,

() N y(m,u)-amw+auu (5)
. k-1

k1) Su®) . Su'k) 141

oo = S

Therefore y, ...,y(™) consist of components in the field K. Let £ denote the vec-
tor space spanned over K by the differentials {dz,du, ..., du(®"1}. The chain of
subspaces & C --- C &, of & is defined by

& := span{dz} =span{dzi,...,dz,}

: ©)
&, = span {d:z:, dy,..., dy(")}

and the associated list of dimensions po < -+ < p, by pr := dim&;. Using this list
of dimensions the infinite zeros (respectively the structure at infinity) can be defined
as follows.

Definition 2. (Moog, 1988) The number o} of zeros at infinity of order less than
or equal to k, ¥ > 1, 1s o = pr — pr—1. The structure at infinity is given by
the list {o1,...,04} and the orders of zeros at infinity agree with the ordered list
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{n1,n2,...,ns,} of indices, for which the difference ¢ — o1 # 0. The indices are
repeated o — ok—1 times.

The maximum number o, of this list corresponds precisely to the rank p* of
the considered non-linear systems (Di Benedetto et al., 1989). For the class of linear
systems, Definitions 1 and 2 agree with the usual linear notion of the rank using
a transfer matrix approach (Fliess, 1986a).

For a simplified computer-aided calculation of p* the dimensions of the vector
spaces & are characterized in terms of rank-conditions of Jacobian matrices (Grizzle

et al., 1987):
J, = 6!'{;,...,y(k)!
Au,...,uF~1)
Y
0 0
ou (7)
= : - 0 L k=1,..

,n
Hy(F) Hy(k)
4 - e

As a function of the ranks Rj; = rank Jj, the structure at infinity can be estab-
lished by

O'k:Rk-—Rk_l (8)
Then, obviously, for the differential output rank the equation
p* = 0n = Rn— Rn_y (9)

is valid. This is similar to the definition of (Nijmeijer, 1986) which is based on
a geometric approach. However, a fundamental difference between these definitions
is that the one in (Nijmeijer, 1986) only holds in a local neighbourhood around an
initializing point xo = x(to). On the other hand, p* is independent of g, because
of the dimensions of & and therefore the ranks Rj) are taken with respect to the
field K and not to the real numbers (Di Benedetto et al., 1989).

3. Structured Systems and Graphs

Considering eqn. (9) a computation of p* might be very time-extensive, especially
in the case of large-scale systems. Not only the computation of the derivatives
dy®)/0ud but also the rank-determination for large matrices J, and J,_; is
difficult. Therefore, another method has to be preferred. One possibility is to use
a structurel approach.

3.1. Structured Systems

In analogy to the theory of linear systems a structured model only considers the
existence (respectively non-existence) of dependencies between inputs u, outputs y
and states  (Reinschke, 1988). Information about explicit functional connections
between variables is omitted. A non-linear structured model is fully described by three
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matrices {B*,C*, D"} which consist of elements 0 and {*3]h € IN}. The relation
between a quantitative and a structured non-linear system is defined as follows:
_ Oz . Oz

T ou " oz

. .y
B == (10)

bl b
*n *p *p

The operator |, means that all non-zero elements of the matrices are replaced by
consecutively numbered elements #;. One can think of the structured system as
a structural interpretation of a general linear tangent system associated to .. For
further investigations, e.g. the consideration of equilibrium points, it might be useful
to examine the quantitative counterparts of eqn. (10):

0k . oy ok

For structured systems a structural rank is defined as follows.

Definition 3. The structural rank pg., of a non-linear system } is given by

p;;en = R:l - :1—1: R): = n;lg.x{rank J:} (12)
The Jacobian matrices J} are computed according to eqn. (7), considering only
structural information {B*,C*, D*}.

The differential output rank of a quantitatively given non-linear state space model
is always limited by the structural rank of the corresponding structured model, which
is itself less than or equal to the minimum of m and p:

p" < Pgen < min(m, p) (13)

It turns out that the structural matrices J} can be simplified in such a way that an
easy graph-theoretic description is possible. For this purpose, the Toeplitz-matrix

E, 0

* E; E; * * T2 o *

H, = , _ , E}=C*D* B*, H.=0 (14)
E;c+1 E:; E;

has to be considered. The following equality holds (Wey et al., 1994):

Pr = Iri::x{rank Jz} +n= ni';),x{rank Hi}+n, k=1,...,n (15)
Hence, the structural rank can be evaluated by

Pgen = n:z:x{rank H;} - niz:,x{rank H;_ .} (16)

In a similar way, it is possible to define the structural orders at infinity. The analogy
to (Moog, 1988) produces the following result. :
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Theorem 1. For a structured system the number oy of zeros at nfinity
of order less than equal 1o k, k > 1 corresponds to the difference max,, {H} —
max,, {rank Hy_;}. The orders at infinity are given by the ordered list
{n},n%,...,n%} of indices, for which o5 — oyx_; # 0. The indices are repeated
ox —0%_1 times. [ |

If a non-linear system has a structural behaviour, i.e. all the elements of
{B(z),C,D(x,u)} are independent of one another, then the list {n,n3,... ng.}
coincides with the orders given by Definition 2.

3.2. Graphs

With the given non-linear system ) a weighted directed graph (weighted digraph) G
defined by a vertex-set and an edge-set is associated as follows (Reinschke, 1988).

The vertex-set is given by m input vertices denoted by u1,us, ..., um, by n state
vertices denoted by 1,2,...,n and by p output vertices denoted by y1,y2,...,%.
The edge-set results from the following rules:

o If the state variable z; really occurs in a;(z)+b;(x)u,ie. 0(a;+b;u)/0x; #0,
then there exists an edge from vertex j to vertex i with the edge weight
6((1,‘ + b;u)/c’)xj.

o If Ob;ju/du; = bij # 0, then there exists an edge from input vertex u; to state
vertex i with the edge weight b;;.

o If dc;x/dz; = ci; # 0, then there exists an edge from state vertex j to output
vertex y; with the edge weight c;;.

An example illustrating the construction of graphs is given in Section 5. For the
analysis of directed graphs an additional definition is required.

Definition 4. A (directed) path is a sequence of edges {e1,e3,...} such that the
initial vertex of the succeeding edge is the final vertex of the preceding edge. The
edges occurring in the sequence {ey, es,...} are not necessarily distinct. The number
of edges contained in the sequence {e1,es,...} is called the length of the path.

A compact representation of the paths is the so-called adjacency matriz (Rein-
schke, 1988). Using this tool all information about the paths between inputs u; and
outputs y; of a system ) can be written through simple matrices E;

E; = CD'"*(z,u)B(z), D(z,u)= g-i— (17)

The element €;,; of E; is equal to a weighted sum of all the paths between
u; and y; with length /. Using the matrices {B*, C*, D"} structural adjacency
matrices E} can be constructed which omit the path-weights but characterize the
existence (respectively non-existence) of input-output paths.
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The previously introduced properties of structural systems can be easily trans-
lated into a graph-based description. The orders at infinity are characterized by the
following dependencies:

TLI = Ll'—l
ny = Ly—n}-—2
(18)
k-1
ng = Lyg—k— ) nj, k=2,...,0}

Jj=1
where Lj is the minimum sum of k vertex disjoint input-output path lengths. The
total number of orders is equal to the maximum number of vertex disjoint paths
in G (Van der Woude, 1991; Commault et al., 1991).
4. Dynamic Disturbance Decoupling
Consider a system ) of the form
a(z) + B(z)u + P(z)w
y = Cz

z

(19)

with z(t) € R™;u(t) € R™; y(t) € IR?; w(t) € IRY and analytic matrix elements.
Disturbance decoupling in the sense given by Isidori (1989) corresponds to the exis-
tence of a regular static state feedback law

u = () + G(z) (20)

with new m-dimensional control » and G(z) non-singular for all #, which renders
the output y independent of the disturbance w. In the first step two conditions have
to be met for solvability of the non-linear disturbance decoupling problem (DDP).

Theorem 2. (Isidori, 1989) There ezists a feedback of the form u = f(x) + G(z)v
defined in a neighbourhood U of o which renders the output y independent of the
disturbance w if and only if

LpLkeci(z)=0 forall 0<k<r-1, 1<i<m (21)

There exists a feedback of the form w = f(z) + G(z)v + H(x)w which renders the
output y independent of the disturbance w if and only if

LpLhci(z)=0 forall 0<k<r—2, 1<i<m (22)
||

In other words, it is necessary for the existence of a non-linear static state feed-
back rejecting the disturbance w that all the outputs fulfil the condition

k
y" %Z% F flw), k=1..mn-1

(23)

Ti ol R ‘
yo= G = fw)



554 T. Wey and F. Svaricek

(in the case of non-measurable perturbation). In a more down-to-earth language, the
solution is possible if “the control inputs reach the outputs more quickly than the
disturbances” (Commault et al., 1991). A similar but weaker result can be achieved
when disturbance measurement is considered (DDPdm).

An extension to the static case is to allow dynamic feedback of the form

z = m(z,z,w)+ N(z,z,w)v

u = f(z,2,w)+ G(z,z,w (24)

which solves the dynamic disturbance decoupling problem with disturbance measure-
ment (DDDPdm), respectively DDDP, if w is omitted (Huijberts et al., 1992). In
what follows, the existence of such feedback is determined by considering the structure
at infinity. Let ¥ denote the system X with w = 0 and X, be an abbreviation
for the system ¥ where the disturbances are assumed to be an extra set of inputs.

In this case one can conclude that the following result holds.

Theorem 3. (Huijberts et al., 1992) Consider an analytic system ¥ and assume that
the conditions p = m (square system) and p* = m (invertible system) are satisfied.
Let xo be a strongly regular point for ©. Then the DDDPdm is locally solvable around
zo if and only if &, and To have the same algebraic structure at infinity. ]

For the DDDP a similar one can be found, if an auxiliary system with additional
integrators in front of u is introduced (Huijberts et al., 1992).

Now consider structured systems with an associated graph G. Then a necessary
condition for DDDPdm can be characterized in a graph-theoretic way.

Theorem 4. The DDDPdm defined above is solvable for a non-linear system if its
associated graph meets the demands:

e the mazimum number of vertez disjoint input-output paths is the same for G
and G, and is equal to p*,

o the minimum sum of p* verter disjoint input-output path lengths is the same

for Go and G, .
|

Proof. A structured system is a linear one with parameters equal to zero or indepen-
dent of one another. Because of its generic behaviour, the following result is valid.

Definition 5. (Van der Woude, 1991) The maximum number of vertex-disjoint
input-/output-paths in Gy is equal to the generic rank péen of the transfer matrix
F*(s) = C*[Is— D*]"!B".

Due to Theorem 3 both the base system and the disturbed one must have the
same structure at infinity. Obviously, the rank has to be identical, too. But due to the
assumption Xy is invertible and therefore the rank is equal to m. Hence, eqn. (13)
leads to

m = p* < ppen < Min(m,p) = m = pg, =m (25)
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This completes the first part of the proof.

The second part is a direct consequence of the identity statement in Theo-
rem 3. As connected with the graph-theoretic determination of the orders at infinity
(eqn. (18)), the identity of the path lengths Ly is immediate. ]

The application of Theorem 4 leads to an efficient test of solvability before any
analytical terms are examined. A large number of fast algorithms developed for
solving transportation problems (Gondran and Minoux, 1986) can be used for this
purpose.

When no disturbance measurement is available, the DDDP instead of the
DDDPdm must be considered. In this case, one edge is added before each control
input in u and Theorem 3 can be applied without changes.

5. Examples

The theory developed in the previous sections will be illustrated by means of two
examples. First, consider a non-linear system of the form (19) with (Huijberts et al.,
1991)

0 2 0 100
a(z)=|z3 |, Bl)=| 0 |, P(z)=|1|,C= (26)
: 0 01
0 1 0

Applying the graph-theoretic approach yields the non-weighted directed graph in
Fig. 1, where the disturbance w is marked using bold edges. Neglecting w, the

Fig. 1. Directed graph G associated to system (26).
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Fig. 2. Weighted directed graph G associated to system (28).

maximum number of vertex disjoint input-output paths is equal to one. But taking
w into consideration two vertex disjoint paths in G, exist:

u— 3=y and w—2—-1—y (27)

Since the genericity is guaranteed for all non-linear systems characterized by
Go and G,,, the DDDPdm is not solvable. Adding an edge in front of u does not
change this behaviour. Hence the DDDP is not solvable, either.

The second example is given by the system matrices (Respondek, 1991):

[0 ] 1 0]
T3 T4 0
a(z)=| 0 |, Bz)=| 0 1
Is 0 0
z 0 0
o ' (28)
0
0
SR H NS
0
1
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Fig. 3. Weighted directed graph associated to the dynamically disturbance
decoupled system (28).

Analysing the corresponding graph for both Gy and G,,, the number of vertex disjoint
input-output paths is equal to two. Moreover, the disturbance does not affect the
minimum path length of the disjoint paths

uy = 1oy and U —3—2—-1y (29)

Therefore, by Theorem 4, the DDDPdm and the DDDP are solvable. Furthermore,
in this example the explicit feedback law needed for disturbance rejection can be
determined by use of path weights only. The idea is to break several edges in the
graph such that w cannot influence the outputs any more. Respondek (1991) has
shown that the DDP is not solvable. Hence an integrator z (a vertex in the graph)
is added in front of u; and the new inputs vi,vs are introduced. The output y
and its time derivatives do not depend on the disturbance, but for y, there exists
a connecting path

w—5—-54—2—y (30)

uy affects 3, therefore a compensating path can be created by an additional edge
between 5 and 3 with weight —z (cf. Fig. 3: bold edges). In a second step the
weight x4 of 2 — 2 is eliminated by adding an edge v; — 3. Transferring the
graph-theoretic results back into an analytic form yields the dynamic feedback law

z = n
Uy = z (31)
Uy = —T4V] — 2T5+ V3 ‘

which solves the DDDP.
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6. Concluding Remarks

In this paper, a structural approach for the solution of the disturbance decoupling
problem for non-linear systems is presented. It turns out that the necessary conditions
for the solvability of the DDDP (respectively DDDPdm) can be given in terms of
graph-theoretic properties. For this aim a directed graph is associated to a non-linear
system, which characterizes the dependencies between inputs, states and outputs.
Structural results are valid for classes of systems with identical structure and can
be evaluated by efficient graph-theoretic algorithms. In general, structural system
properties coincide with the original ones whenever the non-linear system behaves like
a generic one, that is to say the system parameters are independent of one another.
Nevertheless, non-generic systems can be analysed, too. Besides the analysis, it is
also possible to find explicit feedback laws using graphical methods. To this end,
path weights, calculated by partial differentiations, are taken into consideration. In
further activities it must be clarified for which classes of non-linear systems such an
approach is useful.
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