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GENERALIZED 2-D CONTINUOUS-DISCRETE LINEAR
SYSTEMS WITH DELAYS

Tapeusz KACZOREK*

A general Kurek (K) type model and a general Roesser (R) type model of 2-D
continuous-discrete linear systems with deviating arguments are introduced. A
solution and the general response formula for the regular general type model of
2-D continuous-discrete linear systems with delays are derived. The necessary
and sufficient conditions for the local reachability and the local controllability of
the regular general K type model are established. The minimum energy control
of the regular model is solved.

1. Introduction

The most popular models of two-dimensional (2-D) linear systems are the discrete
state space models introduced by Roesser (1975), Fornasini and Marchesini (1976;
1978) and Kurek (1985). The models have been extended for singular (implicit)
linear discrete systems in (Gregor, 1992; Kaczorek, 1988b; 1990). A review of sin-
gular 2-D discrete linear systems has been given in (Kaczorek, 1993c; Lewis, 1992).
Generalized multidimensional linear systems with deviating arguments (specially with
delays) have been investigated in (Kaczorek, 1992; 1993a; 1993b). Continuous 2-D
models of linear and non-linear systems have been considered in (Bergman et al., 1989;
Idczak and Walczak, 1992; Walczak, 1988). Recently in (Kaczorek, 1994a; 1994b) sin-
gular 2-D continuous-discrete models of linear systems have been introduced. In 2-D
continuous-discrete systems one independent variable is continuous and the other in-
dependent variable is discrete. Such continuous-discrete models appear for example in
the iterative learning control synthesis (Kurek and Zaremba, 1993) and the repetitive
processes analysis (Rogers and Owens, 1992).

In this paper a general Kurek (K) type model of 2-D continuous-discrete systems
with deviating arguments and a general Roesser (R) type model of 2-D continuous-
discrete systems with deviating arguments will be introduced.

The general response formula for the regular general K type model of 2-D
continuous-discrete linear systems with delays will be derived and the necessary and
sufficient conditions for the local reachability and local controllability will be estab-

lished. The minimum energy control problem for the general K type model will be
solved.

* TInstitute of Control and Industrial Electronics, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warsaw, Poland



440 T. Kaczorek

2. Models of 2-D Continuous-Discrete Linear Systems

Consider a general Kurek (K) type model of 2-D continuous-discrete model linear
system with deviating arguments described by the equations

Ex(t,k+1) = Aoz(t, k) + Ai1a(t, k) + Aza(t, k + 1) + Boz(t — di, k — dy)
+B12(t — di,k — d3) + Bya(t — d1,k —da + 1)
+Cou(t, k) + Cru(t, k) + Cau(t, k + 1)
for t,di ERy, k,dy €Z,
y(t, k) = Doz(t, k) + Dyu(t, k) (1b)
dz(t, k)

(1a)

where #(t,k) = , z(t, k) € IR™ is the semistate vector, u(t,k) € IR™ is
the input vector, y(t,k) € IR? is the output vector, £ € IRI*", A; € RI*™ B; €
R™", C; € R¥*™, i1 =10,1,2, Dy € RP**, D; € IRP*™ and IRY*" is the set of
¢ x n real matrices, IRy and Z,; is the set of non-negative real numbers and integers,
respectively.

If ¢#n or det E =0 when ¢ =n, model (1) is called singular (implicit).

If ¢=n and det £ # 0 the model will be called standard. In this case premultiply-
ing (la) by E~' we obtain a model with E = I (the identity matrix).

If g=n and det £ =0 but :

det [Esz — Ao — A15s — Agz — Bpe*%1 ;7% _ Byge=d1,7d2 _ Bye~d15,1-d2 #0

for some s € € (the field of complex numbers) model (1) will be called regular. If
d1 >0 and dy >0 then (1) will be called a model with delays (retarded arguments)
and d; < 0 and d; < 0 then it will be called a model with advanced arguments.
When all or some entries of the matrices E, 4;, B;,C;, i = 0,1,2, Dy and D,
depend on ¢ and k then (1) will be called a model with variable coefficients.

From (1) for C; =0 and C; = 0 we obtain the first generalized Fornasini-Marchesini
model of 2-D continuous-discrete linear systems with deviating arguments. Similarily,
from (1) for A9 =0, Bo =0 and Co = 0 we obtain the second generalized Fornasini-
Marchesini model of 2-D continuous-discrete linear systems with deviating arguments.

The general Roesser (R) type model of 2-D continuous-discrete linear systems
with deviating arguments has the form

E[ zh(t, k) } _ [ A A

z¥(tk+1) An Az z¥(t, k)

zh(t, k) }

Bi1 Bjg :L'h(t —dy, k- dg) Cio
o b J A } + [ o } k)
_ zh(t, k)
y(t, k) = { Doy Do } l: (4, k) :I + Diu(t, k) (2b)
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h
where z"(t,k) = W:

z”(t,k) € R™ is the vertical semistate vector, u(t,k) € IR™ is the input vector,
y(t, k) € IR? is the output vector, and

z"(t,k) € R™ is the horizontal semistate vector,

A1r, By EREX™ Apg Biy € R9*™2 Ay, By € R%2X™ | Ay, By; € RI2X™
Cio € R#*™ Oy € RI2X™, Doy € RP¥™, Doy € RP*™, Dy € RP*™

Similarily as for (1) the generalized Roesser model (2) will be called singular if ¢q; #
Ty, qz # Mg or det E = 0 when ¢ = 71, g2 = Wp. If E is square and det E # 0
then model (2) will be called standard.

Model (2) will be called regular if ¢; =71, g2 =72 and det E =0 but

Eis — Ay — Brie™*% 2% Eioz — Ay — Bije shim %

det 4 —d i —a
Ey158 — Agy — Bgre™%%127%  Fonz — Agg — Bgge~ %1702
)

40

for some s,z € €, where

Fiy Er
Eq1 Ea

E =

] : Ei € RTX™, E3; € IRI2X™2

It can be shown that the generalized Roesser model (2) is a special case of the
model (1).

3. Solution to the Regular General Model

To simplify the notion we write (1a) in the form
Ei(t, k+1) = Aoz(t, k) + Ar2(t, k) + Azz(t, k + 1) + Box(t — dy1, k — d3)
+B12(t — d1,k — d2) + Boz(t — d1, k —dz + 1) + f(t, k) (3a)
where
f(t, k) := Cou(t, k) + Cru(t, k) + Cou(t, k + 1) (3b)
It is assumed that ¢ = n, det E =0 and
det[Es — A3] # 0 for some s € C (the field of complex numbers)  (4)

It is well-known that if (4) holds then there exist non-singular matrices P,Q € IR"*"
such that

Inls—— Azl 0

Plbs - 4,]Q = 0 Ns—1I
I,

(3)

where n; is the degree of det[Es — A3, ny :=n —ny, As € R"*™, N g IR"2*"2
is a nilpotent matrix with index ¥(N”~1# 0 and N” = 0).
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In a similar way as in (Kaczorek, 1993c) it can be shown that if (4) holds then
the model (3a) is regular. Premultiplying (3a) by P, introducing the new vector
T (t, ]C)

Q lz(t, k) := ealt )

} , z1(t, k) e R™, z,(t,k) € R™?

and using (5) we obtain
.’i!(t, k+ 1) = Amzl(t, Ic) + Aozmg(t, k) + Anz'l(t, lc) + Alzi,‘g(t, k)
+A21(L’1(t,k+ 1) + Boll‘l(t —-dy, k- d2) + Bogl:z(t - dl, k— dz)

(6a)
+B1121(t — dy, k — d3) + Biazo(t — dy, k — d3)
+Ba1z1(t — di, k — d2 + 1) + Bpaza(t — di, k — dy + 1) + fi(t, k)
N:i:g(t, k+ 1) = A()s.’ltl(t, k) + A04112(t, k) + Algii}l(t, k) + A14Ilz(t, k)
+za(t, k+ 1) 4+ Bosz1(t — di, k — da) + Boaza(t — d1, k — do)
+Biaiy(t — di, k — dp) + Biado(t — dy, k — ds) (6b)

+Basz1(t — di,k — da + 1) + Bagza(t — di, k — da + 1) + fo(2, k)
for t € IR.+, k € Z+

where

PAQ=| M A oy

k3 Ara
PBiQ=| 7 1, j=0,1,2,

i3 Bj

t k

Pf(t,k): fl(’ )

fZ(tak)

The submatrices A, Bij, k = 0,1; i = 1,2,3,4; j = 0,1,2 and the vectors
fi(t, k), fa(t,k) have dimensions compatible with the dimensions of z; and z,,
respectively.

Let the boundary conditions for (3a) be given by

z(t,k) and &(t, k) for t > —d;, —d2 <k <0 and —d; <t<0, k>0 (7N

It is assumed that the boundary conditions and u(t,k) are (v 4 1) - times dif-
ferentable with respect to ¢. The boundary conditions (7) are called admissible if for
a given u(t, k) there exists a solution z(t,k) to (3a).

Knowing (7) we may find the boundary conditions for (6)

z1(t, k) z1(t, k)
Z‘z(t,k) xg(t,k)
for t > —d;, —dzngOand—dlgtSO, k>0.

} =Q 'z(t,k) and [ } = Q7 'a(t, k) (8)
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Note that equations (6) are coupled by the matrices A;z, Ai3, ¢ = 0,1, Bj3, Bjs,
j = 0,1,2 and if at least one of the matrices is non-zero the equations cannot be
solved independently.

To find the solutions z1(f,k) and z3(t,k) to (6) with boundary conditions (8)
let us consider the equations for £ =0

z1(t,1) = Aq1z1(t, 1) 4+ Fro(t) (9a)
Nza(t,1) = z2(t, 1) + Fao(t) (9b)
where
Fio(t) := Ap1z1(t,0) + Ag2z2(t,0) + A1121(¢,0) + Araza(t,0)
+Bo1z1(t — d1, —d3) + Boaz2(t — di, —d3) + Br1Z1(t — d1, —d3)

' (10a)
+Biszy(t — d1,—d2) + Baz1(t — dy, 1 —da)
+Basza(t — dy, 1 —da) + fi(t,0)
Fao(t) := Agaz1(t,0) + Apaza(t,0) + A13z1(t,0) + A1422(t,0)
+Bosz1(t — di, —ds) + Boaza(t — di, —d3) + Biai(t — di, —d3) (10b)

+Biazo(t — dy, —d3) + Baazi(t — dy, 1 — dy)
+Bz4£2(t — dl, 1- dg) + fz(t, 0)

are known for given (8), fi(t,k) and fao(t, k).
The solution z;(t,1) to (9a) has the form (Gantmacher, 1959; Kaczorek, 1993c)

¢
z1(t,1) = eA'21(0,1) + / eAn (=T Fyo(7) dr, te Ry (11)
0

Premultiplying (9b) successively by N, N2,...,N¥~! and differentiating with respect
to t we obtain
N(i?z(t, 1) - .’Bz(t, 1) = on(t)
20(t,1) — Nio(t, 1) = N Fyolt
zy (t,1) = Na2(t,1) = N Faot) (12)

N2, 1) - Nv=t2¢ D, 1) = NeLR ()

where :r:gi)(t, 1) and Fz((i))(t) denotes the i-th order derevative of 3(t,1) and Fao(t),
respectively.

Adding equations (12) and taking into account that N” = 0 we obtain the
solution z3(t,1) to (9b) in the form

nt,1) = - S NFDE) (13)
1=0
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If dy > 2 then substituting £ =1 into (6) and using (11) and (13) we obtain

21(t,2) = Ao1z1(t, 1) + Aoaza(t, 1) + A1121(8, 1) + A1222(8, 1) + Agiz:1(t,2)
+Bo121(t — d1,1 — da) + Boaza(t — d1,1 — d2)
+B1121(t — d1,1 — da) + Biaza(t — d1,1 —d3)
+Bo1z1(t — d1,2 — d2) 4+ Baaza(t — d1,2 — d3) + f1(t,1)

1 v—1 X
= Aor [e41121(0,1) + / AN Fyo(r) dr| + oo - S NTFE(1)]
0 1=0
t
+An [A216A21t£1(0,1)+F10(t) +A21/ eAn(=7) Fyo(7) d"'] (14a)
0

v=1
+Ai [ —_ ZN"F2(B+1)(1):I + A21:c1(t, 2)
i=0
+Bo1z1(t — d1,1 — da) + Boaza(t — d1,1—d3)
+B1121(t — dy,1 — da) + Braza(t — di, 1 — d3)
+leil:1(t —dq,2- dz) + Bzzl‘z(t —d,2- dg) + f1 (t, 1)
= Azlxl(t, 2) + Fll(t)

and

Niy(t,2) = Aosza(t, 1) + Apaza(t, 1) + Arsd(t, 1) + Arada(t, 1) + z2(t, 2)
+Boaz1(t — d1,1— da) + Boaza(t — d1,1 — d2)
+B1321(t — d1,1 — d3) + B1aZa(t — dq, 1 — d3)
+Bosz1(t — d1,2 — da) + Baaza(t — d1,2 — da) + f(2, 1)

= Aoa[eu1t21(0,1) + /OteAﬂ(t"')Flo( )dr| + doa [ - ZN‘FZSO) )
A3 [AmeA“txl(O, 1) + Fro(t) + An /0 eAnt=T)F, (7 d-r] (14b)
A [ - SN*‘FS,“)@)] +25(t,2)
+ng:c1(tli0d1, 1 — dy) + Boaza(t — di, 1 — dg)
+Biaiy(t — dy, 1 — dy) + Brada(t — di, 1 — d)

+Bgail:1(t —dq,2— dg) + Bz4l‘2(t —d,2- dg) + fz(t, 1)
= Iﬂz(t, 2) + F21(t)
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where

t
Fuu(t) =4 [GA“txl(O, 1) +/ eAn(t=1) Fyo(r) dT] + A11F10(t)
0

v—1
= [AgzNin(;)(t) + AlzNin(;,“)(t)] + Borzi(t — dy, 1 —dy)
i=0

+Bo2za(t —d1, 1 —d2) + Bi1z1(t —di, 1 —d3) + Braza(t — di, 1 —-d3)
+Bul‘1(t - d1, 2— dz) + Bzzl’g(t —dy,2 - dg) -+ fl(t, 1)

t
Fg]_(t) = ZZ [eAmt.’l:l(O, 1) +/ CA“(t"T)Flo(T) dT] + A13F10(t)
0

v—1
-5 [A04NfF§g)(t) + A14N*'F§:,+1)(t)] + Boszy(t — dy, 1 — d3)
i=0
+Boazo(t —d1,1 — d2) + Bia&1(t — d1,1 — d2) + Braza(t — di, 1 —d3)
+Bza$1(t - d1, 2 — dz) + B24.’B2(t — dl, 2— dz) + fz(t, 1)
A = Ap1 + A11Aa, A = Ags + A13An
The solutions z;(t,2), z2(t,2) to (14) have the form

t
21(t,2) = e*12,(0,2) + / AnC-DFy(r)dr,  teRy
0

v—1
za(t,2) = = > N'Fu(2)

If dy < 2 we also have to substitute (11) and (13) instead of z;(t — d1,2 — d3) and
z3(t — d1,2 — d3) into (14). For dz =1 we have

1
Fu(t) = 4 [6’“”931(0’ 1) +/ eAn(t=7) Fyo(r) dT] + A11F1o(t)
0

v—1
-3 [A0aN F @) + AN FGH @) + BN F(E - dy)]

1=0
t
+Ba; [eA“(t‘d‘)zl(—-dl, 1) + / EA”(t—d‘_T)Flo(T) dT] + Bgl.’ltl(t — dl, 0)
0
+Boaz2(t — d1,0) + Bi121(t — d1,0) + Biaza(t — d1,0) + fi(t, 1)

t
le(t) = Xz [EA”t:L'l(O, 1) + / €A21(t—T)F10(T) dT] + A13F10(t)
0

v—1
- [AMN"Fz(S)(t) + AN PO (@) + BN F(t — dl)}
=0
t
Bas {eAzl(t_dl)xl(—dl, 1) + / eA“(t_d‘_T)F]_o(T) d‘r] -+ Bos.’ﬂl(t —d, 0)
0

+Boaza(t — di,0) + Bizz1(t — di1,0) + Braza(t — dy,0) + fa(t, 1)
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Continuing this procedure after k steps we obtain

11
z1(t, k) = e#1'a; (0, k) + / e =D Fy g (r)dr (15a)
0
v-1 ) .
za(t, k) = — Y NF)_,(2) (15b)
i=0

where Fyx_1(t), Far-1(t) for k > d» satisfy the equations

11
Fl’k(t) = Zl [BA“t.’Bl(U, k) + / eA“(t_T)Fllk_l(T) d’r] + AllFl,k—l(t)
0

v=—1 .
=Y [AogNinEf,{_l(t) + AlzNing,j_l}(t)] + Boyzy(t — dy, k — dy)
1=0

(16a)
+Boaza(t — d1, k — dy) + B1121(t — d1, k — d3) + Braza(t — di, k — ds)
+B1z1(t — di,k — da + 1) + Baaza(t — dy, k — da + 1) + fi(t, k)

_ t
Fz,k(t) = A, [6’42”:61(0,]6) + / eA“(t"T)Fl,k_.l(T) dT] -+ A13F1,k._1(t)
V_l . 0 .
> [Ao4N"F2(2_1(t) + A14Nin(,lz:r_li(t)] + Bosz1(t — di, k - dy) (16b)
1=0
+Bo4.’L‘2(t — dl, k— dz) + Blgfbl(t — dl, k— dg) + Bl4.’i‘2(t — dl,k - dz)
+Baszy(t — di,k —dy + 1) + Boaza(t — di, k — da + 1) + fa(t, k)
P, P:
Let P = ' 12 e g linear operator (map) defined as follows
Py Py
_ 11
PllFl(t) = AI/ eAQl(t_T)Fl(T) dr + AllFl(t)
0
v—-1
PiaFa(t) i= =Y [Aoa N F{O(t) + AN FS 0 1)
z'=0t (17)
PglFl(t) = Zz/ CA“(t_T)Fl(T) dr + A13F1(t)
0
v—-1
PyFy(t) ==Y [AMN*'F;)(t) + AN "F§’+1)(t)]
1=0

and P* := PoPo...oP isthe k multiple composition of P (by definition P%:=1T
(the identity operator)).
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Using (17) and
hl(t, k) = ZleA”txl(O, k) + Bol.’L‘l(t —dy, k- dz)
+Boaza(t — dy, k — da) + Bri&1(t — di, k — d3) + Biaza(t — dy, k — dy)

+Bg1z1(t — di, bk —dy + 1) + Bagza(t — di, bk —da + 1) + fi(t, k)
(18)
hz(t, k) = deAnt{El(O, k) + B03.’L'1(t — dl, k— dz)

+Boazo(t — dy, k — dy) + Bia&y(t — di, k — da) + Braza(t — dy, k — dy)
+Boszi(t —dy, k —dy + 1) + Baazo(t — di, k —da + 1) + fa(t, k)
we may write equations (16) in the form
[ Fia() | Fuaa(®) |, [ et k)
i Fzyk(t) ] Fz’k_l(t) hz(t, k)
It is easy to show that the solution to (19) has the form
[ Fua(t) |
, — +
| Faxt) | Z

where Fig(t), Fao(t) are defined by (10).

In a similar way we may define the operator P and the vectors hi(t, k), ha(t, k)
for k < dy. Therefore, the following theorem has been proved.

:|, tEIR+, kEZ+ (19)

Fro(t)
on(t

hl(t,i-}- 1)

k>0 20
hao(t,i+1) (20)

Theorem 1. If the assumption (4) holds then the solution z(t,k) to (3a) with (7)
has the form

t
eAntz, (0, k) + / eAnl=NFy p_y(r)dr
z(t, k) = Q ° . teRy, keZ, (21)

zw% )

where Fy k(t), Far(t) are given by (20).

Substitution of (21) into (1b) yields the desired general response formula, which able
us to find y(t, k) for given u(t, k) and admissible boundary conditions (7).

4. Local Reachability and Local Controllability

The local controllability (reachability) of 2-D discrete and continuous linear systems
has been considered in many papers (Bergman et al., 1989; Fornasini and March-
esini, 1976; 1978; Idczak and Walczak, 1992; Kaczorek, 1990; 1993b; 1988a; 1994b;
Kaczorek and Klamka, 1987; 1986; Klamka, 1994; 1993; Roesser, 1975) and books
(Kaczorek, 1993c; Klamka, 1991). In this section the necessary and sufficient con-
ditions for the local reachability and local controllability of the regular system (3a)
© with f(t,k) = Cu(t, k) will be established.
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Definition 1. System (3a) with f(t,k) = Cu(t, k) is called locally reachable in the
rectangle

[h,r] :={(t,k) E Ry xZ : 0<t < h, 0<k<r} (22)

if for any admissible boundary conditions (7) and every vector z; € IR"™ there exists
u(t,k) for 0<t<h, 0 <k <r—1 such that z(h,r) = z;.

Using
: P} Fio(t
p} .= L ey Fo(t) := 10(t)
Py Fio(t)
hl(tak)
h(t, k) := , teRy, ke
(t,k) halt, B) ] + kEZy
we may write (20) as
E—1 .
Fii(t) = PEFo(t)+ Y PFTth(t,i+1)
i=0
- k>0 (23)
Fa(t) = PE,Fo(t) + Y P57 h(t,i+ 1)
i=0

From (21) we have

+ v-1 .
z(t, k) = Q [eAzlfml(o,k)+/ eAn(‘-*)Fl,k_l(r)dr]~ZQ2N‘F§j,Z_1(t) (24)
0 1=0

where @ = [Q1,Q2], @1 € R™*™ and Q, € R™**"2,
Substitution of (23) into (24) yields

t
z(t,k)=Q1eAmz1(o,k)+/ QleAm@—f)Pl’i;lFo(r) dr
0

k-2 .t v—1 .
. . ()
+3 / QueAn P h(r,i + 1) dr — Y QuN[PEFo(t)] (25)
i=0 v 0 iz
u—(ik—z . . ) 0
“SS QN [P;;J—Qh(t,j + 1)] E>1
1=0 j=0

From (10) and (18) for f(t,k) = Cu(t,k) we have
Fo(t) = PAoa(t,0) + PAyi(t, 0) + PBox(t — dy, —ds)
+PB1(I.3(t——dl,—dg)-i-PBz:L‘(t—dl,l—d2) (263.)
= Fyc(t) + PCu(t,0)
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and
A
h(t, k) = 7 eA2tz1(0,k) + PBoxz(t — d1, k — d)
- (26b)
+PBl:c(t — dl,’c—dz) + PBzz(t —dy,k—dy+ 1)
= hyo(t, k) + PCu(t, k)
where
Fbc(t) = PA().’B(t, 0) + PAli'(t, 0) + PB()C'I(t —dy, —dg)
+PBl.'L'(t —ds, —dg) + PBgli(t —dq,1- dz)
A
hye(t, k) := = eA“t:L‘l(O, k) + PBQ:C(t —dy, k—ds)
2
+PB11.‘(t —dq,k— dz) + PBzz(t —dy,k—dy+ 1)
Assume that
u(t,k):=ux for 0<t<h, 0<k<r (27)
where u; is independent of ¢.
Taking into account (26) and (27) we may write (25) in the form
t
z(t, k) = zpe(t, k) +/ QreA (=D PFTTPC dr ug
0
k-2 ,¢ ) v—-1 i &)
+Z/ QleAn(t—-r)Plk,:t_zPC dr Uipl — ZQQN’ I:P2k,t—1] PClug (28)
i=0 0 i=0
v—1k-2 . 0)
D IPICZY [sz,t_J_z] PCujn
=0 j=0
where
t
zye(t, k) := QreA=tz (0, k) +/ QueAn NPT Ry () dr
0
k-2 .t . v-1 ) ()
+Z/ QieAn (=D PEZI=2h, (r,i4+1) = ) QN [P{;lFbc(t)] (29)
i=1 Y0 i=0
v—-1k-2 ) i )
—Z ZQZNI [Pz,t_J_zhbc(t;j + 1)]
1=0 j=0

Theorem 2. System (3a) with f(t,k) = Cu(t, k) is locally reachable in the rectangle
(22) if and only if

rank[Ro, Rl, ceey Rr-—l] =n (30&)
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or
rank[Vo,Vi,..., Vi) =n (30b)
where
Re_i—y= R(h) := /0 ' QieAn=7pj _PCdr - Zl Q2N [P, pc (300)
=0

1=0,1,...,7r=1
Vi = Vi(h) := RiRT and T denotes the transposition.
Proof. Using (28) for t = h, k =7, (29) and z(h,r) = z; we obtain

Uo
u1
7 zye(h, 1) = Ro, Ry, ..., Ry ] . (31)

Ur-1

From (31) it follows that for any admissible boundary conditions (7) and every vector
z; there exists a sequence ug,uy,...,u,—1 if and only if (28) holds. The equivalence
of conditions (30a) and (30b) can be shown in a similar way as for 1-D case (Klamka,
1991). [ ]

Definition 2. System (3a) with f(t,k) = Cu(t, k) is called locally controllable in
the rectangle (22) if for any admissible boundary conditions (7) there exists u(t, k)
for 0<t<h, 0<k <r—1 suchthat z(h,r)=0.

Theorem 3. System (3a) with f(t,k) = Cu(t, k) is locally controllable in the rect-
angle (22) if and only if condition (30a) or (30b) holds.

Proof. Using (28) for t = h, k =r, (29) and z(h,r) =0 we obtain (31) for z; = 0.
From (29) for t = h, k = r it follows that for any (0, k) the term QieA2t2z,(0,r) is

an arbitrary n-dimensional vector. Therefore, there exists a sequance ug, uy, ..., ur—1
satisfying (31) for z; = 0 if and only if (30a) holds. |

From theorem 2 and theorem 3 we have the following important.

Corollary. For the 2-D continuous-discrete regular system (3a) the local controlla-
bility is equivalent to its local reachability.

In (1994) Klamka has considered the local controllability od 2-D continuous-discrete
linear systems under the assumption that u(t,k) € ILy([0,00],IR™). The Klamka’s
approach can also be applied to the 2-D continuous-discrete linear systems with delays.

5. Minimum Energy Control

The minimum energy control problem for 2-D discrete linear systems has been con-
sidered in many papers (Kaczorek, 1988a; 1990; Kaczorek and Klamka, 1986; 1987;
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Klamka, 1983; 1991; 1993). In this section the problem will be extended for regular
2-D continuous-discrete linear systems with delays.

Consider system (3a) with f(t,k) = Cu(t, k) and the performance index

I(u) := X—: ul Qu; (32)

=0
where @ is the m x m symmetric and positive definite weighting matrix.

The minimum energy control problem for system (3a) can be stated as follows. Given
the matrices A;,B;, i = 0,1,2,C of (3a), the weighting matrix @, the numbers
h,r and the boundary conditions (7), find a sequence ug,us,...,%,—1 defined by
(27) which transfers the system to the desired final state zy, z(h r) = zy and and
minimizes the performance index (32).

To solve the problem we define the matrix
r—1
Wq =) RiQ 'Rl (33)
1=0
where R; is defined by (30c).
It is easy to show that matrix (33) is non-singular if and only if system (3a) is reachable
in (22).
We may define the input sequence
U = QT IREWR (ep — mee), k=0,1,...,r—1 (34)

where zy. is given by (29) for t = h, k=r.

Theorem 4. Let us assume that

1) system (3a) with f(t,k) = Cu(t, k) is reachable in rectangle (22),

ii) W, k € [0,r — 1] is any input sequence which transfer the system to zy.
Then the input sequence (34) accomplishes the same task and

I(@) < I(3) (35)
Moreover, the minimum value of (82) is given by
I(@) = (x5 — zoe) Wg ' (z5 — @3c) (36)

Proof. First we shall show that the input sequence (34) provides z(h,r) = x. Using
(28) for t = h, k =r, (30c), (34) and (33) we obtain

r—1 r—1
s(h,r) = zpe + Y Rifl = zoe+ ) RiQ 7 RIWG (25 — 2ue) = 2
i=0 =0

Since u; and U;, ¢ € [0,7 — 1] transfer the system to the same zy, then

r—1 r—1
E Ryu; = E R;4;
i=0 =0
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and
r—1
Y Rilm—a]=0 (37)
i=0
From (37) and (34) it follows that
r—1 r—1
@ — @) BRI W5 (27 — ze) = D [ — )7 Qi = 0 (38)
1=0 =0
Using (38) it is easy to show that
r—1 r—1 r—1
Y ouQul =) alQui+ )y [m — )" Qu: — i (39)
1=0 i=0 i=0

Inequality (35) holds since the last term in (39) is always non-negative. To obtain the
minimum value of (32) we substitute (34) into (32).

r—1 r—1 X T
1@) =Y a7 Qi = Y [Q7 RIWg (o) — )| Q@ RTWg (25 — 2]
1=0 i=0
r—1
=D (21— z0e) WG RQ RT W5 (o) — aae) = (21 — 23T W5 (25 — 2ve)
=0

6. Concluding Remarks

The general Kurek type and the general Roesser type model of 2-D continuous-discrete
linear systems with deviating arguments have been introduced. The solution (21) to
the regular model (3a) satisfying condition (4) with admissible boundary conditions
(7) has been derived. The necesary and sufficient conditions for the local reachability
(theorem 2) and the local controllability (theorem 3) of the regular model (3a) have
been established. It has been shown that for regular 2-D continuous-discrete linear
systems with delays the local controllability is equivalent to their local reachability.
The minimum energy control problem for the regular 2-D continuous-discrete linear
systems with delays has been solved (theorem 4). An extension of the theorems for the
regular model (1) satisfying condition (4) and n-D (n > 2) case is straightforward.
An extension of the above considerations for the singular model (1) which does not
satisfy condition (4) is not easy and will be considered in subsequent paper.
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