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DECENTRALIZED FEEDBACK CONTROLLERS FOR

UNCERTAIN INTERCONNECTED SYSTEMS WITH
MARKOVIAN JUMPING PARAMETERS!

EL-KEBIR BOUKAS*, ANDRZEJ SWIERNIAK**, HAILANG YANG*

This paper addresses the problem of design of decentralized controllers for a
class of interconnected linear systems with Markovian jumping parameters and
unknown but structured uncertainties. Results of Trinh and Aldeen (1993) are
extended to a stochastic class of piecewise deterministic systems. Under the
assumption that the Markovian jump process (disturbance) is irreducible and
the complete access to the system’s state and its mode is realizable, we establish
the conditions which enable us to obtain a robust decentralized controller. An
estimation method for the difference between the cost for the real system under
our control law and the optimal performance for the nominal model is also
presented.

1. Introduction

Most real physical dynamic processes comprise uncertain plants. Methods for de-
signing stabilizing controllers for systems with uncertainty have been investigated by
many researchers. However, in this context, only few works have been done on the
systems with Markovian jumping parameters. This class of systems has been used to
model many real life systems, including manufacturing ones (see e.g. the papers by
Boukas and Haurie (1990), Boukas and Yang (1993), Boukas et al. (1994), and the
references contained therein).

For the deterministic case, many authors have considered the uncertain large-
scale interconnected systems stabilized by LQ controllers, see e.g. (Ikeda and Sil-
jak, 1990; 1992) where the problem of the decentralized stability for a class of non-
linear interconnected systems is discussed. In an interesting paper by Trinh and
Aldeen (1993), a method for the design of decentralized controllers for interconnected
dynamic systems with structured uncertainties is presented. The aim of this paper is
to extend the results of Trinh and Aldeen to the systems with Markovian jumping
parameters. Trinh and Aldeen did not make any discussion about the performance
index degradation which may be very important (see e.g. Swierniak, 1982). In our
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paper, we establish an estimation method for the difference between the cost for the
real system under our control law and the optimal performance for the nominal model.

The paper is organized as follows. In Section 2, we describe the class of systems
under consideration and formulate the addressed problem. In Section 3, we state
the decentralized stability result and give its proof. In Section 4, an analysis of the
suboptimality of the control law is presented.

2. System Description and Problem Formulation

We consider an uncertain linear interconnected system with Markovian jumping pa-
rameters composed of N uncertain subsystems. The system may be described by the
following dynamics:

z(t) = [A(E(1) + 6A((), a)]e(t) + [B(£(t)) + 6B(E(1), a)]u(t)
Z‘(O) = Iy

(1)

which is an interconnection of N linear subsystems of the following form:

zi(t) = [Ai(€(®)) + 6Au(é(2), a)lei(t) + [B:i(€(t)) + 6Bi(£(t), a)]ui(t)

N
+ ) A5 (EQ) + 644 (E(t), a)le; (1) ()

T
where z;(t) € IR™ stands for the state of the subsystem, u;(t) € IR™ is the con-
trollable input vector, A;;(¢) and B;(¢) are matrices of appropriate dimensions,
6Aij(£(t),a) and 6B;(£(t), a) represent the uncertainties of the subsystems, &(t) rep-
resents a homogeneous continuous discrete-state Markov process taking values in a
finite set B = {1,2,..,s}. We assume that P, = (P}, ..., P}?) with P® = Pr{¢, = a},
a =1,..,s, satisfies the Kolmogorov forward equation, i.e.

dP; _
—dt_t'—l}Pt’ 0<t<T 3)
Py, =P

. _ T
where P is the initial probability of the process {{;}, A = [qap] is the stationary

transition rate matrix of the process {¢{;,t € [0,71}, gap stands for the transition
probability rate from state o to state B and satisfies the following relations:

ap 2 0 4)
qa = —Qaa — Z qap (5)
BEB
a#f

The vector parameter a lies within a prescribed bounded and connected set @ C IRY.

In eqns. (1)~(2), z(t) = (27,...,2%)T € IR" stands for the state of the system,
n= Ef\il ni, w(t) = (uf, ..., uk)T € R™ is the controllable input vector of the inter-
connected system, m = Ef\il mi, A(€) = (Ai;(€)) and B(€) = diag(B1(¢€), ..., Bn(€)).
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Let the uncertainties satisfy the following matching conditions (see e.g. Leitmann,
1979).

Assumption 1. For each o € B, let the uncertainties satisfy the following equations:

5AE(), ) = BE(L)G(E(),a) (6)

6BE(t),a) = B(E()H(E(),a) (1)
where

SAE(),a) = (6455(E(t),a)) € R™"

SB(E(t),a) = diag(B1(E(1),a), ., 6BN(E(1), @) € RV

G(E(t),a) = (Gii(6(1), a)) € R™
H(E(t),a) = disg(H1(E(t), 0), .., Hn(€(t),a)) € R™*™

From now on, when we say that A > B, we mean that A — B is a positive
definite matrix, and we use the Euclidean matrix norm. We also need the following
assumption.

Assumption 2. H;(§(t),a) € R™*™ satisfies the following condition:

aerlr%l,laneQ{H’ (a,a)+H,(a,a)}+Im‘ >0 (8)

In the literature, many definitions for the stochastic stability have been proposed.
In this paper, we will use the one given by the following definition.

Definition 1. The system (1)—(2) is said to be stochastically stabilizable if, for all
finite zo € IR" and « € B, there exists a control u = u*(z, o, t) such that there exists
a symmetric positive definite matrix P satisfying

T
Tlim Eyu(y {/ £ (t, xo, @, a,u)z(t, 2o, a, a,u) dt|:co,a} < :cg’f’z'g 9)

where z(t, o, a,a,u) represents the corresponding solution of system (1) at time ¢
when the control u(-) is used and the initial conditions are respectively zo and a.

The purpose of this paper is to find a robust stabilizing decentralized state con-
trollers of the form

u(t) = —K(§)z(?) (10)

where K (§) = diag(K1(€), ..., Kn(€)) € R™*" is block diagonal, and K;(§) € IR™*™
are feedback gain matrices.
In the sequel, we will refer to the system

z(t) = A(§(®))z(t) + BE(®))u(?) (11)
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as a nominal system of (1) and let P(a) a symmetric, positive definite solution of the
following set of the coupled matrix Riccati equations

AT(a)P(a) + P(2)A(a)
—P(a)B(e)R7(a)BT (@) P(2) + Q@) + Y qapP(B) =0  (12)
We will assume that the nominal system is stochastically sta:ieliszable under the control
law u(t) = —R~1(a) BT (c)P(a)z(t).
3. Decentralized Stability

The following theorem states the main result of this paper.

Theorem 1. For each o, let L(a) € IR™*™ be an arbitrary matriz and K () € IR™*™

be a block diagonal matriz, satisfying the following relationship for each o € B
K(a)+ L(a) = R Ya)BT (a)P(e) (13)

where P(a) is a symmetric, positive definite solution of (12) and the matrices R(a) >
0 and Q(a) > 0 (symmetric) are chosen to satisfy the following conditions:

R(a) = %Im (14)
and
Q(e) > GT(a,a)G(a,a) + }%ES(H H*()) L7 () L(c) (15)
where x(a) > 1 is a real scalar, () and B%(a) are respectively defined by:
7(e) = minAmin [H7 (2, 0) + H(a,a) + ] (16)
H*(e) = max||H(a, a)]’ (17)

Then the system (1)-(2) is stochastically stabilizable by the control law u(t) =
—K(a)z(t).

Proof. Due to the assumption that the nominal system is stochastically stabilizable
by the control law u(t) = —R~!(a)BT (a)P(a)z(t), from (Ji and Chizeck, 1990), we
have that the matrix P(a), i.e. the solution of (12), is positive definite and symmetric.
Let the Lyapunov function be defined by the following expression:

V(a,z) = 2T P(a)z (18)

Consider the weak infinitesimal operator A of the process {¢, z(t),t € [0,77]},
which is given by

AV(@,2) = [[A(a) + 8A(a, )]z (t) + [B(a) + 8B(e, a)]u(t)]TP(a)x(t)

+27 P(a) [[A(e) + 84(, a)]a(t) + [B(@) + 8B(o, )u(®)] + 3 ¢V (8, )
BeB
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Substituting the control law and using eqn. (12) in conjunction with the matching
conditions gives

AV(@,2) = 27 [[AT(a)P(a) + G7 (@,0) BT (@) P(e)

 —2P(a)B(a)R™ (a)BT (a)P(a) + LT (a) BT (a) P(a)
—P(a)B(a)R™}(a)HT (e, a) BT () P(a) + LT (¢)HT (@, a) B (a) P(cx)
+P(a)A(a) + P(a)B(a)G(a, a) + P(a)B(e)L()
—P(a)B(a)H(a,a)R™(a)BT (¢)P(a)
+P(a)B(a)H(, a)L(a) + [; 1pP()| 2

Using the matrix inequality EFT + FET < 1FFT + EET, where 0 > 0, E and F
are matrices of appropriate dimensions, the fact that LT (a)HT (@, a)H(a,a)L(a) <
H?*(a)LT(a)L(e) (see Zhou and Khargonekar, 1988) and taking into account
eqn. (12), we have that

1
x(e)
—P(a)B(a)R_l(a)BT (a)P(a) = P(a)B(a)H(a, a)R'l(a)BT(a)P(a)

AV(a,z) < 27 [-Q(@) + G7 (@, 0)G(a, 0) + —— (1 + H%(a)) L7 (a)L(a)

—P(a)B(o) R~ (a)H” (o, ) B” (@) P() + (1 + 2x(a))P(2) B(a) B (o) P(e)] =
Furthermore, we have:

T [—P(a)B(a)H(a, a)R™ ()BT (a)P(e)
—P(a)B(a)R™Y(a)HT (o, a) BT () P(e) — P(a)B(a)R™}(a) BT (a)P(c)
+(1 + 2x(@))P(0) B(0) BT (o) P()] 2

_ 1+ 2x(a)

n(c) [BT(Q)P(O‘)"C]T [H(a, a)+ H  (a,a) + I — ()1
X [BT((I)P(a)z] < 0

The last inequality follows from eqn. (16).
Let

1 ; — a,a a,a)— L 12 (« o)\«
oy B Q@) - 67 (@ a)G(a, ) = 511 + A2 (@)L (2) (o)
Amaz [P(a)]
which is positive due to (15). Then it follows that
AV(a,2) < ~v(o)V(e,2)
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where v 1= n}eig ¥(@). Then, by Dynkin’s formula and the Gronwall-Bellman lemma,

we obtain for all « € B,

ElV(a,2)] < exp(—71)V (e, zo) (19)
Considering the conditional expectation, we have that
E[V(a,z)|z0,£(0) = a] < exp(—7yt)zd P(a)zo (20)

Thus we have

T
E{/ T ()P (a)x(t) dt|:c0,a} < (/ exp(—'yt)dt) 23 P(@)zo
0
1 T
< - [exp(—‘yT) - 1] zy P(a)zo (21)
Letting T' — oo and
5 _Pa)
= max 22
R TP Y
we get
T ~
Tlim Eu() / :cT(t):c(t) dt|:c0,oz} < z¥ Pz, (23)
— 00 0
This completes the proof of the theorem. ]

4. Suboptimality of the Control Law

In the above discussion, we have not used the optimal control law to control the
large scale system. For the nominal system described by eqn. (11), the optimization
problem consists of minimizing the cost function

J=E { / " T (0QE®)2) + 4T ORED)) dt} (24)

We know that the control law u(t) = —R™!(a)BT (a)P(a)z(t) minimizes the
cost (24) and the minimum cost for the nominal model is given by

J? = 2T P(a)zo (25)
where P(a) is the solution of (12). The control law, u(t) = —K(a)z(t), we used
is not an optimal one. In the sequel, we try to estimate the difference between the
optimal cost and the cost corresponding to our control law. Since our control law
u(t) = —K(a)z(t) also stabilizes the nominal model, the corresponding cost for the
nominal model is given by

J* = E {'/:" T ()[Q(E®R)) + KT (E(t))R(E(1) K (€())]x(t) dt}

2l M (a)zo (26)
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where M (a) satisfies the following equation (see e.g. Ji and Chizek, 1990):
[4(e) - B(@)K(a)]" M(a) + M(a)[A() — B(a)K ()]
+Q(a) + KT (@) R(a)K(e) + D gusM(B) = 0 (27)
peB
Therefore,

J* = J° = ¥ [M(a) — P(a)]zo (28)

J*— Jo < Amaz[M(@)] = Amin[P ()] _ Amaz[M ()] _

JoO = Amin[P()] Amin[P(a)]
Next, we will estimate the difference between the optimal cost of the nominal
system and the cost corresponding to the real system (1) using our control law. Since

our control law u(t) = —K (a)z(t) also stabilizes the real system, the cost for the real
system may be found as

J=E { ot + K Gorea K @) dt}

1 (29)

= 2T N(a,a)zo (30)
where N(a, a) satisfies the following equation (see e.g. Ji and Chizek, 1990):
[A(a) + 6A(e, a) — B(a)K(a) — 6B(a,a)K(a)]T N(, a)
+N(a,a)[A(a) + 6A(e, a) — B(e)K(a) — §B(e, a)K(a)]

+Q(a) + KT (a)R(a)K () + D ¢apN (8, 0) =0 (31)
peB

Therefore,
J—J%=2T[N(e,a) — P(a)]zo (32)

J—=J° < Amaz[N (e, a)] = Amin[P(@)] _ Amaz [N (@, a)]
Jo - Amin [P(@)] Amin[P(e)]

-1 (33)

In order to estimate the maximum eigenvalue of N(c, a), we need the following
lemma.

Lemma 1. Under the assumptions of Section 3, the system

() = A(§(1)=(t) + [B(E(1) + 6B(E(1), a)]u(?) (34)
is stochastically stable under the control law u(t) = —R™*(a)BT (o) P(a)z(t).

Proof. Let the Lyapunov function be defined by the following expression:
V(a,z) = 2T P(a)z ‘ (35)
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Consider the weak infinitesimal operator A of the process {£,z(t),¢ € [0,T]}, which
is given by

AV(a,z) = o7 [AT(a)P(a) ~ 2P(c) B(a) R} () B () P(a)
~P(a)B(a)R™ Y ()HT (a, a)BT(a)P(a) + P(a)A(a)

~P(a)B(@)H(a, )R ()BT (0)P(e) + Y 1as P(H)| 2
peB

= 27 [-Q(a) - P(a) B()R™}()B" () P(a)
~P(a)B(@)R~" (o) HT (@, a) BT (o) P()
—P(a)B(a)H(a, a)R-l(a)BT(a)P(a)] z
From Assumption 2, we have
2T |-P(a)B(a)H(a, a)R™*(a)BT () P(a)
—P(a)B(a)R™!(a)HT (a,a)BT (a)P(c)
—P(a)B(a)R™}(a) BT (a)P(2)| 2

= —1—-—%(2%@ [BT(a)P(a)x] ’

x[H(a,a)+ BT (@,0) + 1] [BT(a)P(a)a:] <0

Then it follows that
f‘iV(a,m) < "’\min[Q(a)]“xuz
The same approach as in the proof of Theorem 1 can be used to finish this proof. m

The following theorem gives an estimate on the maximum eigenvalue of N(a, a).

Theorem 2. Under the assumptions of Section 3, the mazimum eigenvalue of the
solution matriz N(a,a) of (31) has an upper bound given by

max{Amaz [V (e, @)} < max{Azk, [<Q(a) + (14 2x(e)) B” (2)B()]

x[Q(@) + K () R(o)K ()] } (36)

where x (o) is the same as in (14).
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Proof. For ( € C™, we have
¢T[A(a) + 6A(a, a) — B(a)K(«) — §B(e, a)K (a)]T N(a, a)C
+¢TN(a,a)[A(e) + 6A(a,a) — B(a)K(a) — §B(a, a) K(a)]¢

+T Q@) + KT()R(@)K ()l + Y qapCTN(B,a)¢ =0 (37)

BeB

which can be rewritten as

2\i[N (e, )¢ S(ex, a)¢
+T[Q(a) + KT ()R(e)K (0)[¢ + ) _ dap¢(T N(B,a)¢ =0 (38)

peB
where
S(e,a) = 7 [A(e) +8A(a, @) ~ B(@)K(e) = 5B(a, )K ()
+[A(a) + 6A(e, a) — B(a)K (@) — §B(e, a) K ()T
Since the system is stable under control law u(t) = —K(a)z(t), S(a,a) is nega-

tive definite (S(a,a) < 0). Let us notice that A[N(e,a)] > 0 and ¢(T[Q(a) +
KT(a)R(@)K(a))¢ > 0 (( # 0). If ag € B is such that Apmae[N(ao,a)] =
maxeen{Amaz [N (e, a)]}, then we have

1

Amaz{N (e, a)]

since

25(a,a)

QCT S(ag, a)(

T (T[Q(a0) + KT (o) R(cxo) K (e0)¢

v

v

5 (T N(B,a)C
Taob Amaz [N(Oto, a)]CT[Q(aO) + KT (aU)R(aO)I{(aU)]C

pfeB

_ 2CTS(C!0, a)C
¢T[Q(a0) + KT (o) R(cr0) K (0)]¢

Amin [—QS(ao, a)[Q(a0) + KT (cr0) R(cro) K (cxo)] (39)

A(a) + §A(a, @) — B(a)K(a) — §B(a, a)K ()

+[A(a) + 6A(a, a) — B(e)K(a) — 6B(a, a)K (a)]”

Aa) + AT (a) + B(¢)G(a,a) + G (a,a) BT (a) — B(a)K(a)

—KT(a)BT (a) — B(a)H (e, a)K (a) — KT (a)HT (a,a) BT ()
A(e) + AT(a) + B(a)G(e, a) + GT(a, ) BT (a) — B(a)P*(«)

+B(a)L(a) — P*T(a)BT (a) + LT (a)BT (a)
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—B(a)H(a,a)P*(a) + B(a)H(a,a)L(a)
—P*T(a)HT(a,a)BT (a) + LT (a)HT (a,a) BT ()

where P*(a) = R™(a)BT(a)P(a).
Once again, using the matrix inequlity EFT 4+ FET < %F FT + 0EET | where
# > 0, E and F are matrices of appropriate dimensions, and the fact that

LT(a)HT (a,0)H(e, a)L(e) < H*(a)LT () L(e)
we have

25(a, a)

IA

A(@) + AT (a) + BT (@)B(a) + G (a, a)G(a, a) — B(ae)P*(a)

—P*"()B () + 2x()B" () B() + ——L" (a) L(a)

( )

L ——H%L7(a)L(e) — B(a)H(a,a)P*(a) - P*T(a)HT (a,a) BT ()

( )
A(@) + AT (a) + (1 + 2x(@))B” (@) B(a) + Q(a) — B(a)P*(a)
—P*T()B” (o) — B(a)H(a, a)P*(a) — P*T(a) H” (a, a) BT (a)

IN

The last inequality is valid because of (15). Taking into account the fact that the
system (34) is stable under the control law u(t) = —P*(a)z(t), we have

25(e,a) < Q(a) + (14 2x(a))BT (a)B(c)

Therefore,
1
e 2 Mmin[T19(e0) + (14 2x(20) B (a0) B(eo)]
x[Q(a0) + KT (cr0) R(0) K (o)} * (40)
From this we conclude our result. [ |

5. Conclusion

In this paper, the decentralized controller design method for large-scale uncertain
linear systems with Markovian jumping parameters is presented and an estimation
method for the difference between the result of our control law and the optimal per-
formance for nominal model is given. The result is obtained under an assumption on
the matching conditions. The weighting matrices in the performance index are chosen
to ensure robust stability for the overall system and the performance deterioration
resulting from the uncertainties is estimated.
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