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PARTIALLY DEFINED CONTROL SYSTEMS.
CONTROLLABILITY AND STABILIZABILITY?

ZBIGNIEW BARTOSIEWICZ*

The paper gives a setting for studying controllability and stabilizability of par-
tially defined systems. Some results known for globally defined systems are
transferred to this more general setting, some are shown to be not valid for par-
tially defined systems. Global reachability and local stabilizability for partially
defined linear systems are studied in more detail.

1. Introduction

In many cases the vector fields forming a non-linear system are not defined on the
entire state space. This happens e.g. if the vector fields have rational components.
Moreover, different vector fields may have different domains and this leads to the con-
cept of partially defined control system. Bartosiewicz and Johnson (1995) introduced
necessary formalism, based on Johnson’s theory of universes, to study observability
properties. In this paper, we follow that way but in a more intuitive and less formal
fashion. One of the key points in (Bartosiewicz and Johson, 1995) was the calculus
of partially defined functions, making use of the “phantom” which represented an
undefined scalar. In order to study controllability properties we introduce here the
phantom vector (which could be deduced from the general theory of (Johson, 1986).
This allows for similar calculations with partially defined vector fields. In particular,
we can amalgamate several vector fields that agree on common domains into one vec-
tor field defined on the union of their domains. Having this concept we can construct
the Lie universe of a partially defined control system which plays the same role as the
Lie algebra for globally defined systems.

This paper is aimed rather at introducing the proper setting for studying con-
trollability problems than presenting final results. We feel that global reachability is
an especially interesting problem for partially defined systems. Even if the system has
poor local control properties, it can still be globally reachable. This may be caused
by a reasonable number of directions available globally, while locally only few of them

-may be used. The starting point for this problem should be global reachability of
partially defined linear (or affine) systems. We make a first step in this direction
studying a linear hybrid system in which we have two controls: the standard contin-
uous one and a discrete control which allows switching between different dynamics
(systems). We also give a short overview of some basic results for the globally defined
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non-linear systems see e.g. (Isidori, 1985) and show which of them remain valid in
our setting. We present counter-examples when the results are no longer true for a
partially defined system. This is a very selective and by no means exhaustive account.
We believe that future papers will go deeper into that area.

Feedback transformation of a partially defined system produces a control-free
global system. Hence, a natural stabilization problem consists of two parts: standard
local stabilization and globalization. Another problem, maybe more interesting, is
local stabilization at an equilibrium point that lies on the boundary of the domain.
In this case, we are interested in system’s behaviour in the neighbourhood of the
equilibrium point, so we do not require the resulting system to be global. We solve
this problem in a particular case when the system is linear. A similar problem, but
in a more global form, was studied by Bacciotti and Boieri (1990).

2. Partially Defined Functions

For a complete description of the theory of partially defined functions see e.g. (Bar-
tosiewicz and Johson, 1995; Johson 1986). Here we give only basic definitions and
properties.

Let Ap be the real line extended by an element representing the “undefined
scalar” which is called the phantom and denoted by @p. If X is any set and f is
a real function defined on a subset U of X (called domain), then we treat f as a
function X — Ag assigning f(z) = 0y whenever z ¢ U. Since the result of any
operation involving @y (like addition or multiplication) is again @, we can extend all
those operations to partially defined functions on X. In particular, we shall need

substitutions for partially defined functions on IRF.

If F is a partially defined function on IR¥ and ¢1,..., ¢k are partially defined
functions on X, then the partially defined function F(p1,..., k) is defined on X

F(‘Ph---,sok)(z) :F(gol(x),...,gak(a:)) (1)
where we put §g whenever the composition is not defined.

Another operation we shall need is amalgamation. Two partially defined func-
tions are matching if they take on the same values at all the points in the intersection
of their domains. A family H of functions is matching, if any two functions in this
family are matching. One can show that for any matching family H of functions one
can construct a function denoted by H and defined on the union of domains of all
functions in H such that H is matching with every function in H. This process is
called amalgamation.

The set of all the partially defined functions on X will be denoted by IRx. If M
is an analytic manifold, then by Aps we shall mean the set of all the partially defined
analytic functions on M. If a € A4g and V C X, then ay denotes the constant
function on X equal to a in the domain V.

Let us introduce several classes of functions defined on open domains in IR* for
all k> 0. By L we denote the class of linear functions, by P the class of polynomial
functions, and by A the class of analytic functions. Let K denote any class of
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functions. By K-universe on X we mean any family C' of partially defined functions
on X, which contains 0x (global zero function on X), is closed under substitutions
(1) for F € K, and is closed under amalgamations, i.e. for every matching family

McC,MeC.

In particular, a linear universe is any L-universe and an analytic universe is
any A-universe. Observe that if M is an analytic manifold, then Aas is an analytic
universe.

3. Partially Defined Vector Fields and Distributions

Most of the material in this section can be developed more formally using the lan-
guage of (Bartosiewicz and Johson, 1995). We prefer here a more staightforward and
intuitive approach.

Similarly as the undefined scalar, we introduce the undefined vector in IR™ de-
noted by 0,, and called the phantom vector (one may interpret it as the point or the
vector at infinity). Then IR, := IR®U{0,} is an extension of the standard real vector
space. By a subspace of IR, we shall mean a linear subspace of IR" together with
0.. A linear subspace of IR,, will be just a linear subspace of IR".

For a C* n-dimensional manifold M, T, M denotes as usual the tangent space
to M at z, and P, M will mean the extended tangent space at z (one can say
“isomorphic” to IR,), containing one more element §,. For any vector v € To M
and element o € Ay we define v+ 0, =0, +v =10, , Ogv =0, and b, = 0,.
Any element of T, M may be interpreted as a derivation mapping from the set Apr
of partially defined analytic functions on M, into Ag. Similarly, §, is a derivation
which assigns (g to each function of Aps.

A partially defined vector fieldon M is a vector field f defined on an open subset
of M denoted by dom f. Such a vector field may be identified with an extended
vector field on M where we put f(z) = 0, if = ¢ domf. It may also be viewed
as a derivation from Ay into Aps (see Bartosiewicz and Johson, 1995). Then, for
¢ € Apr, we have dom fo = domf N domep. In particular, domf may be decoded
as dom(fy) where ¢ is any globally defined analytic function (e.g. 0ar). Similarly,
dom(faf1) = domf, N domf;, where fof; denotes the composition of derivations.
Finally, dom[f, f2] = domf; Ndomf,. The last equality may also be obtained within
the framework of the standard calculus on IR™, where a partially defined vector field
would be treated as an analytic mapping f : U — IR", U C IR" is open.

Let us extend the meaning of Oy to a zero vector field with the domain equal
to U (as we denote by 0 a real number and a vector). A convenient way to restrict
a vector field f to a subset U is to write f+ Oy.

A trajectory of a partially defined vector field f is a mapping v : I — domf
defined on any interval I, satisfying the following differential equation

¥(t) = f(r(1) (2)
forall t € I.

Let Vo, (M) be the the set of all the partially defined analytic vector fields on M.
Although it is no longer a linear space, V,,(M) has a structure of a linear universe,



484 Z. Bartosiewicz

i.e. it is closed under substitutions into linear partially defined functions and closed
under amalgamation. The latter operation is defined in the same way as for functions.
Hence, we can add two partially defined vector fields, multiply such a field by an
element of Ag, and glue together a matching family of partially defined vector fields.

Let F be any family of partially defined vector fields on a real analytic manifold
M. By LC(F) we denote the smallest linear universe containing F, and by £(F) —
the Lie universe generated by F,i.e. the smallest set of partially defined vector fields
on M containing F and closed with respect to linear substitutions, Lie brackets and
amalgamation.

By a (partially defined) distribution D on M we mean a map which assigns
a subspace D(z) of P, M to each z € M. A distribution is analytic if there exists
a family F of partially defined vector fields on M such that for every z € M,
D(z) = LC(F)(z). We admit the case where D(z) consists only of §,, for some or all
z € M. We say that a partially defined vector field f belongs 10 a distribution D, if
f(z) € D(z) for all z € M.

A distribution D is integrable if for any £ € M there exits an immersed sub-
manifold N of M (maybe empty) such that for each y € N we have P,N = D(z).
For the empty submanifold N the extended tangent space consists only of 0, (or,
more precisely, §p). A distribution D is involutive if for every pair of vector fields f
and g belonging to D, their Lie bracket belongs to D, too. .

Partially defined distributions have much richer structures and behave more freely
than globally defined ones. It is clear however that some facts of local nature will
remain true also for partially defined distributions.

Proposition 1. If D is integrable, then it is also involutive.

Proof. 1t is analogous as for globally defined distributions. [ ]

Unfortunately, the Nagano Theorem cannot be extended to partially defined
(analytic) distributions as the following example shows.

Example 1. Let D be given by two vector fields f and g on M = IR?, where
f =01 and g = 1y0s, U being the right-hand side open half-plane, and §; = -
The distribution is obviously involutive, but there is no integral manifold passing

through any point ¢ with 2z, = 0. What happens here is quite similar to pathologies
observed in the C*®case.

One can easily change this picture to have still partially defined, but now inte-
grable distribution.

Example 2. Let M =1R? and let D be generated by vector fields f and g, where
f(x) = 2,0, and g is defined as in Example 1. Then for all z with z; > 0 the
integral manifold of z is the right-hand side half-plane. Any point z with z; = 0 is
itself a zero-dimensional integral manifold. And finally, the integral manifold passing
through z with z; < 0 is a half-line parallel to the z;-axis. Observe that one cannot
find globally defined vector fields which define D.
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Fortunately, the Frobenius Theorem is still valid for partially defined analytic
distributions.

Theorem 1. If dim D(z) is constant in the state space, then D is integrable.

Proof. Take a point £ € M and choose vector fields fi,..., fr belonging to D,
linearly independent at z and spanning D(z). Then they are linearly independent
in some neighbourhood U of z, and since the dimension of D(y) is constant, they
span D(y) for all y € U. Hence, on U, D is spanned by global vector fields and has
a constant dimension, so it is integrable by the standard Frobenius theorem. |

Example 3. Let M = IR? and let D be generated by the vector fields f,g; and
g2, where domf = M, f = 8;, domg; = Uy = {z : 2, < 1}, g1 = =01 + 02 and
domgy = Uy = {z : z; > 0}, g2 = 81 + 8. Then at each z € M, dim D(z) = 2, so
D is integrable. For each z there exists a neighbourhood on which D is generated
by two vector fields globally defined on U, but this cannot be done globally on M
(using only vector fields from L(f, g1, 92)).

4. Controllability

By a partially defined control system ¥ we shall mean a family of partially defined
vector fields {f.,w € } on an analytic manifold M, parametrized by some set
(the set of control values or commands). This is an abstract version of the standard
description of a control system given by a differential equation of the form

&(t) = f(=(t), u(?)) ©)

with the common identification f, = f(-,w). Partial definiteness of the system means
that for any fixed command w (i.e. the control value u(t) for some t), the domain
of the vector field f(-,w) may not be the entire manifold M. The set of controls U
will consist of all piecewise constant functions '

u:[0,T,] = Q (4)

where T, > 0 depends on wu.

If U is an open subset of M, then Xy denotes the restriction of £ to U which
is the family of the vector fields {f, + Oy}. Observe that M is still the state space
for the restricted system.

The trajectory of ¥ starting at o € M and corresponding to a control u € U
is a function v on [0,T;] with the values in M such that y(t) € domfy,s) and
Viltitiya] 1S @ trajectory of f, if u(t) = w for ¢ € [ti,ti41]. We shall also write
v(t, zo, u) instead of y(t) to stress the dependence on z¢ and u. For a given control
» and an initial condition zo, the trajectory may not exist. One reason for this
might be incompleteness of one of the vector fields involved, another one — partial
definiteness of those vector fields. We do not define “partial”trajectories, existing only
on some subinterval of [0,T,]. Instead, we can always consider shorter controls, i.e.
restrictions of u to [0,T], where T' < T,. Let U(zo) denote the set of the controls
u € U such that the trajectory for zy and u exists.
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The following definitions are standard, once we have the precise notion of trajec-
tory. The reachable set of ¥ from zo at time t > 0 is defined by

R(Z, zo) = {7(t, zo,u) : u € U(zo) and Ty, =1} (5)
Then the reachable set from zg is
R(Z,zo) = U Ri(Z, zo) (6)
>0

When the system is fixed, we often skip X in (5) and (6).

We say that ¥ is accessible from zo if R(X,zo) has a non-empty interior, is
strongly accessible from zo if R¢(X, zo) has a non-empty interior for all ¢ > 0, and
is locally accessible from ¢ if for every open neighbourhood U of zg, the restricted
system Xy is accessible from ;.

We say that ¥ is reachable from o if R(Z,z0) = M, and is locally reachable
from =g if for every open neighbourhood U of zg, R(E|U,¢o) contains some open
neighbourhood V' of zo (of course V C U).

It is known that reachability properties for non-linear systems are often replaced
by accessibility ones.

Let the Lie universe of a partially defined system T be defined by £(Z) =
L{fu,w € Q}. The proof of the following result is the same as for globally defined
systems (Sussmann and Jurdjevic, 1972).

Theorem 2. If L(X); = P; M, then I is locally accessible (and accessible) fromz.
]

However, for partially defined systems Theorem 2 cannot be reciprocated.

Example 4. Let M = R? and ¥ = {fi, fo} where f; = 8; and f, = 8, + Oy, U
being the right-hand-side open half-plane. Then ¥ is strongly accessible (and then
accessible), while £(X) evaluated at z =0 is spanned only by &; (and contains 0,
by definition).

We say that ¥ is symmetric if for every w € Q there is w’ € ©Q such that
—fu = fur. The following theorem is a simple extension of the results known for
globally defined systems.

Theorem 3.

a) If ¥ is symmetric and L(X); = P, M, then ¥ is locally reachable from .
b) If £ is symmetric and for every ¢ € M, L(X); = P;M, then T is reachable
from any z € M. [ ]

Because the structure of a partially defined system may heavily depend on the
current state of the sytem, we may have global reachability property even though
locally the system is poorly controllable. We think that such a phenomenon is an
essential feature of a partially defined system and studying global reachability should
be one of the most interesting problems in this theory. Though a general solution



Partially defined control systems ... 487

seems to be out of reach at the moment, one can try to characterize the reachability
for systems with a simpler structure.

A natural starting pbint for such a journey is a linear partially defined system.
Such systems appear e.g. as linear approximations to non-linear systems. Let us
consider a (globally defined) non-linear system affine in control

= f(z)+gi(x)ur + ...+ gm(2)um ' @)

where z(t) € M = R and u;(t) € R for i = 1,...,m. Choose zo € M. Then
locally around o, (7) can be approximated by a linear (affine) system

z=Az+ Bu+d (8)

where d = f(zo), A = %5(:00) and B = (g1(z0),---,9m(z0)). We neglect here
bilinear terms involving * and u and all the higher order terms. Instead of ap-
proximation, one can obtain (8) via suitable coordinate change around zo or using
a feedback transformation of static or dynamic nature. Whatever the method that
leads to (8), the common feature is that we usually get only the linearized system
locally around zg. If we are interested in many operating points, the procedure results
in a family of aﬁzne systems

(i) &= Aix+ Biu+d; (9)

where i belongs to some set of indices J (possibly infinite) and each system X; is
defined on some open neighbourhood U; in IR™ of a point ;. Let X be the collection
of all ¥;, i € J. Then X is a partially defined system with the set of commands
Q=J xIR™ and the affine vector fields f;,(z) = A;z + Bijw + d; (written as maps)
with domf;, = U;.

Global controllability properties of such a system ¥ must depend not only on
matrices and vectors A;, B; and d;, but also on domains U;. It is natural to assume
that the union of all the domains covers the entire state space IR". A common
sense strategy of controlling system ¥ from one point to another would be to use
overlapping regions where two (or more) systems X; and X are valid to switch from
system X; to system Xy (or vice versa).

In order to solve the problem described above it seems necessary to have a good
theory for the systems we call hybrid after Brockett (1993). A hybrid system on IR™
is a family of linear or affine globally defined systems X; of the form (9) where i € J.

To control a hybrid system we need to specify the index i and the standard
control 4 — both are (piecewise constant) functions of time. One can easily see that
the standard control theory of linear systems cannot accomodate this problem.

Let K(X) be a linear subspace of IR" spanned by the columns of the matrices
of the form Al*. A“Bs,wherese{l mhb k> 0,i1,...,i €J and j1,...,J%
are greater than or equal to 0.

Proposition 2. Assume that d; = 0 for all i. Then ¥ 1is reachable from every
¢ € R" iff K(£) =IR".
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Proof. Observe that £(X)o = K(¥) and that ¥ is globally defined. Hence T is
locally accessible from 0 iff K(X) =1IR". Moreover, one can show that the reachable
set from 0 is a linear subspace of IR". This means that reachability from zero is
equivalent to accessibility from 0. Extending the result to all points of the state
space is a standard procedure. [ ]

One can show that if we drop the requirement that d; = 0, the condition given
in Proposition 2 will still be sufficient for reachability. Now we can use this result in
partially defined systems.

Corollary 1. Suppose that ¥ consists of Xy and Yo, where L1 is globally defined
and Ty is defined on an open half-space U, given by the inequality ¢’z < a (c is
a vector and a € IR). Assume that K(X) =1R" and ¢ ¢ K(X2). Then the system T
is reachable from any z € R".

Proof. It is clear from Proposition 2 that we can travel from any z to any y if
z,y € U;. The condition ¢ ¢ K(X;) allows us to leave the set U; when we start
from a point z in Us, and to reach any point y in U, from outside of U,. This gives
reachability. |

5. Stabilizability

In order to define feedback transformation of the system 3 we need a regular depen-
dence of the vector fields f, on the control parameter w. In this section, we assume
that the state space is M = IR™ and the set of control values 2 is an open subset
of IR™. Define a partially defined mapping f : IR" x @ — IR™ by

f(z,u) = fu(z)

Let us assume that domf is open and that f is analytic. Thus, as before, for every
w € Q, domf, isopen, but also for every £ € M, the set {w: f(z,w) # 0,} is open.
It is also clear that domf projected onto M (€, respectively) is the entire M (Q,
respectively).

By a global feedback of ¥ we mean an analytic mapping v : M —  such that
the resulted closed-loop system is global, i.e. g(z) := f(z,v(x)) is defined for every
z € M. This is in agreement with the requirement that every z € M is in the domain
of some vector field of the system.

By ‘a local feedback at zo € M we mean a mapping v : U — Q, where U
is a neighbourhood of zy. We do not assume that the resulting vector field =z —
f(z,v(z)) is defined on U. But in applications, this vector field will be defined on
an open subset of U with z( in its closure.

Suppose that g is a partially defined vector field on M, zg is in closure of domg
and limg_,., g(z) = 0. We say then that xo is an asymptotic equilibrium point for
g. Of course, a standard equilibrium point is also an asymptotic one. The vector
field g is asymptotically stable at such a point if for every open neighbourhood U of
zo there is an open neighbourhood V of zo such that for every z € V N domg the
trajectory of ¢ starting from z is in U N domg after some time and tends to zg
when time goes to infinity.
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We say that the system X is locally feedback stabilizable at a point zq if there
is a local feedback v such that the point zy is in the closure of the domain of
the resulting vector field g, zp is an asymptotic equilibrium point for g, and g is
asymptotically stable at zo. The system X is globally asympiotically stabilizable at
zo if there is a global feedback v such that z, is a globally asymptotically stable
equilibrium of the closed-loop system.

Remark 1. Assume that f(zg,up) = 0 and consider only feedbacks v such that
v(zo) = uo. Then the point zq belongs to the (open) domain of the closed-loop vector
field ¢ and is an equilibrium point for g. We can now study standard asymptotic
stability of g at zo and standard stabilizability of f. It is clear that standard
stabilizability implies the local one introduced above.

Now we are going to study local stabilizability in the linear case. Assume that
Y is defined by the linear mapping f

f(z,u) = Az + bu (10)
where z € IR", v € IR and

domf = {(z,u) : Tz + du < €} (11)
We are interested in a linear feedback

v(z) = kT (12)

Observe that k, ¢ and b are vectors in IR", whereas d and e are scalars. The point
z = 0 is an asymptotic equilibrium if e > 0.

Global stabilizability is easy to deduce.

Proposition 3. The linear system X is globally stabilizable iff e > 0, and the matriz
A—bcT/d is stable.

Proof. ¥ is globally stabilizable iff there is k& such that the matrix A + bkT is
asymptotically stable and the inequality ¢’z + dkTz < e holds for every z € IR".
This is possible if and only if e > 0, ¢T + dkT = 0 and A + bkT is asymptotically
stable. [ |

In a regular case, local stabilizability is equivalent to the standard stabilizability.

Proposition 4. Assume that e >0 in (11). Then X is locally stabilizable at 0 with
feedback (12) iff the pair (A,b) is stabilizable.

Proof. Observe that the closed-loop system is defined in an open half-space contain-
ing 0. Local asymptotic stability of this system is then equivalent to global asymptotic
stability of the closed-loop system without restrictions. |

The singular case, when e = 0 in (11), is much more iﬁteresting. So far, we have
a complete answer for n = 2.

Theorem 4. Assume that n = 2 and the pair (A,b) is controllable. The system
& = Az + bu with the constraints ¢Tx + v < 0 is locally stabilizable at 0 iff the
characteristic polynomial of the matriz A — bcT has only real zeros.
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Proof. If the system had no constraints, it would be stabilizable because of the
controllability. Hence, the only goal to achieve is to make sure that the trajectories
stay in the half-space (¢ + kT)z < 0. This holds iff the subspace (cT + kT)z = 0
is invariant under the linear map defined by the matrix A + bkT. This, in turn, is
equivalent to the fact that

(c+ k)T (A+b0kT) = Mc+ k)T (13)

for some real A. Let us first assume that A and b have the form

1=(a ) =(1)

We can achieve it via a coordinate change since the system is controllable. From (13),
eliminating A, we get

(c2 + k2)* (a1 + k1) = (c1 4 k1) + (c1 + k1)(ca + ka)(az + k3)
This is equivalent to a quadratic equation in k;

k;(al — (:1) + k2(2620t1 + coky — crep — ciap — klaz)

+(C§Ot1 + c%k‘l - C? —2¢1k; — k% — C1Co0p — Ic1C2a2) =0
The discriminant of the equation takes the form

A = (k1 +c1)*[(a2 = e2)? + 4(a1 — 1))
The quadratic equation has a real solution iff A > 0, ie. iff the polynomial
Xa-bcr (A) = A2 — Maz — ¢2) ~ (@1 — ¢1) has real zeros.

Hence, the last condition is necessary for existence of the required k. However,

1t is also sufficient, since choosing sufficiently negative k; we get also sufficiently
negative ky in order to achieve stability of the matrix A+ bk”. Finally, observe that

Xa—pcr does not depend on a particular coordinate system in IR™. This means that
our condition is necessary and sufficient also for the general form of A and . | ]
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