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ON MULTIPURPOSE CONTROL SYSTEMS SYNTHESIS

FOR NON-SQUARE DISCRETE-TIME MULTIVARIABLE
PLANTS

STANISEAW BANKA*

The paper is devoted to the synthesis of multipurpose control systems for linear
m-input l-output (m > ) discrete-time models of plants defined by proper
right-invertible rational transfer matrices in z € €. The under consideration
control systems simultaneously ensure: (i) complete dynamic decoupling, (ii)
arbitrary closed-loop pole placement and (iii) steady-state output rejection of
deterministic part of disturbances and zero steady-state regulations (or tracking)
errors. Two cases of control systems are considered assuming that the state
vector of the plant is either accessible or inaccessible for direct measurement.
In the case of inaccessible plant’s state vector, a stationary Kalman filter or a
Luenberger observer is applied to estimate (to reconstruct) the state vector of
the plant, which is then used in a linear state variable feedback. In a stochastic
case with the inaccessible state vector, two control system structures can be
designed with the filtered output §(k) or the original output y(k) which are
then used to define the error signal vectors e(k) = yo —§(k) or e(k) =y, —y(k),
respectively. The idea of the method and the algorithm for the synthesis of the
proposed control systems as well as a short analysis of control system properties
are presented.

1. Introduction

Applications of computer techniques along with recent synthesis methods developed
for designing multivariable control systems give new possibilities for solving complex
control problems. They are especially useful for multipurpose systems that ensure
simultaneously the design goals as input-output dynamical decoupling, zero steady-
state control errors with rejection of disturbances, and a prior: assumed dynamical
properties of the system defined by location of its closed-loop poles.

The first results, in which the above purposes were really achieved, were ob-
tained by Wolovich (1981). His paper was concerned with deterministic, continuous
multivariable plants described by strictly proper and invertible transfer matrices.
Next steps have been made by Barika (1991a; 1991b; 1994a) to expand the results of
Wolovich to more general proper continuous plants with both stochastic and deter-
ministic disturbances. In these papers, however, it has been proved that such multi-
purpose systems can be unstable if the square plants have non-minimum phase zeros
(Banka, 1991b; Barika and Moskwa, 1994). Thus in the paper (Barika, 1994b) a new
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algorithm is presented for designing multipurpose control systems which ensure all of
the above-mentioned properties for non- square (right-invertible) continuous plants
which can be both unstable and non-minimum phase.

In this paper, the recent results obtained for such type of discrete-time control
systems with plants described by proper rational rectangle (right-invertible) transfer
matrices T'(z) with full rank T'(z) = [ have been presented. The multipurpose
control systems under consideration achieve simultaneously:

i) complete dynamic decoupling of the closed-loop control system,
il) arbitrary closed-loop pole displacement into the unit disc of |z| < 1 (including
deadbeat poles located at the centre of that disc) and
iii) complete steady-state output rejection of the deterministic part of disturbances
and zero steady-state regulation (or tracking) errors.

In the stochastic case, three control system structures can be designed as follows:
(1) a control system structure with an access to the original output y(k) and an
accessible state vector (k) of the plant, (2) a system with the filtered output g(k)
and the filtered state vector (k) and (3) a structure with the filtered state vector
Z(k) and the original output y(k). In these structures the filtered output ¢(k) and
the filtered state vector Z(k) are obtained from a stationary Kalman filter. For a
deterministic case only two structures with (1) an accessible and (2) inaccessible state
vector of the plant can be applied. In this case, a Luenberger observer (either reduced
or full-order) may be used to reconstruct the unmeasured state vector of the plant.

In order to solve the problem considered we apply the direct polynomial matrix
approach using simultaneously the following principles: diagonal dynamic decoupling
and pole placement by linear state variable feedback (1.s.vf.) with “input dynamics”
(Wolovich, 1974), the “internal model” principle in the form of sufficient conditions
given in (Callier and Desoer, 1982) and the well-known “separation” principle for

solving the state estimation (reconstruction) problem irrespectively of solving the
control tasks (i)—(iii).

2. The Plant Model and Structures of the Control Systems

We consider fully controllable and observable linear, multi-input, multi-output
(MIMO) discrete-time models of plants defined by the state and output equations

z(k+1)

y(k)

where y(k) € R*, u(k) € R™ and y(k) € IR! (m > 1) are the state, the input and
the output vectors, respectively. In the stochastic case, the vectors w(k) € IR? and

v(k) € IR' represent zero-mean, discrete “white” random processes with the mutual
covariance matrix

w(7) . . w S
{2 [ ool [ & e ¥

Az(k) + Bu(k) + Er(k) + Gw(k) 1)
Cz(k) + Du(k) +v(k)
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This block matrix can be semi-positive definite for a positive definite density ma-
trix V' > 0. The vector r(k) € IR" describes deterministic (non-diminishing) distur-
bances which in the stochastic case (with E = G) can also be treated as non-zero
mean values of the disturbances w(k).

Adopting the polynomial matrix approach we transform the plant model (1) to
the relatively prime matrix fraction description in z € € as follows

y = B1(2) A7 (2)u + A3 (2) Ba(2)w + A7 ' (2) Bs(2)F + v (3)
where

Bi(2)A7!(2) = C(zI, - A)"'B + D, (4)

ATY(2)B3(2) = C(zI, — A)"'G (5)
and

A7 (2)Bs(z) = C(zI, — A)" Er(z) (6)

Since the transformed disturbance vector =(z) is included into the transfer matrix (6)
the symbol 7 in eqn. (3) denotes a “fictitious” impulsive input signal to the deter-
ministic disturbance model. Similarly, the reference signal vector is generated from
the reference model defined by

vo(2) = A7 (2) Bo(2)¥o (7)
This is a diagonal and strictly proper transfer function matrix with the impulsive
signal input ¥,.
Three possible structures of stochastic control systems in the time domain are
presented in Figs. 1, 2 and 3.
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Fig. 1. Structure of the control system with an accessible state vector of the
plant.
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Fig. 2. Structure of the system with an inaccessible plant’s state vector and
direct feedback from output of the plant.

w(k)l/r(k)
Yo {kv ek q(k) u(k) ‘L v (k)
+ G_ CONTROLLER FEEDFORWARD CLANT o
- COMPENSATOR
y (k)A y®
f& ﬁ 0 [
KALMAN
F FILTER
A4

Fig. 3. Structure of the system with feedback from the filtered plant’s output.

In Fig. 1 where the direct state feedback f(k) = Fz(k) is employed, the pro-
posed “two-part” compensator/controller includes a diagonal controller and a feedfor-
ward compensator (“input dynamics”). When the plant’s state vector is not available
for measurement, then the control system structures pictured in Figs. 2 and 3 contain
additionally the third part which is either a stationary Kalman filter or a Luenberger
observer for the deterministic case, respectively. In this structure, the error signal
vector is defined simply as e(k) = y,(k) — y(k). Moreover, as it is seen in Fig. 3,
the additional filter’s output #(k) can also be used to define the error signal vector
e(k) = yo(k) — g(k).

In the deterministic case only two distinct structures can be applied. These are
generally consistent with the schemes given in Figs. 1 and 2 with the substitution of
a Luenberger observer for a Kalman filter.
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The structure of the multipurpose control system in the z-domain is presented
in Fig. 4.
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Fig. 4. Structure of the system in the z-domain for the stochastic case.

It is compatible with the most developed control system structure given in Fig. 3
for the stochastic case. Particular parts of the system are suitably defined in the
z-domain by

1) the strictly proper (diagonal) transfer matrix M3'(z)N2(z) for the controller,
2) the proper and possible “low-order” transfer matrix G7'(z)L(z) for the dy-
namic feedforward compensator,
3) the strictly proper transfer matrices
Q '(2)H(z)=F(zI, - A+ KC)"'K (8)
and
Q '(2)K(2) = F(zI, - A+ KC)"Y(B - KD) (9)

for the Kalman filter along with the feedback matrix F,
4) the strictly proper transfer matrix

Q' (2)Hy(2)=C(2I,— A+ KC) 'K (10)
and proper transfer matrix

Qi'(2)Ki(2)=C(2I, -~ A+ KC)"Y(B-KD)+ D (11)

for the Kalman filter along with the plant’s output matrix C.

For a deterministic problem (or for a case of Fig. 2) the last transfer matrices
are not present. Moreover, when a reduced Luenberger observer is applied, strict

properness of the transfer matrices Q™ (z)[H (z):K(z)] defined by eqns. (8) and (9)
1s not valid. In this case both of them may be proper.
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All of the above-mentioned polynomial matrix fractions are relatively left prime
(RLP) with non-singular, row-proper, denominator matrices Ms(z), G(z), Q(z)
and Q;(z). The transfer matrices (8)—(11) for the Kalman filter (or (8)-(9) for a
Luenberger observer) must be stable with the poles located within the unit disc. We
also assume that the polynomial matrices M3(z) and L(z) as well as M1(z) and
Q(z) are relatively right prime (RRP).

The problem is as follows. Given the transfer matrices of a plant defined
by eqns. (4)~(6) and (7) determine the transfer matrices M5! (2)N1(z), G™1(z)
L(2), Q" '(2)[H(2):K(2)] and Q7(z) [H1(2):K1(2)] for the above-mentioned
parts of the control system so as to realize the design objectives (1)—(iii).

3. Layout of the Method

The idea of the proposed method for solving the considered control tasks is as follows.
Using the linear state variable feedback (l.s.v.f.) along with the dynamic feedforward
G !(2)L(2) we decouple the “inner” part of the system between the signals q(k)
and y(k) to obtain the diagonal transfer matrix

Tye(2) = B1(2)[G(2)A1(2) = F(2)] ' L(2) = N(2)D™'(2) (12)
where
D~'(z) = B() [G() A (=) - F(2)]' L(2) (13)

Then we can apply the “internal model” principle for designing a feedback system
with the “decoupled plant” defined by eqn. (12). According to the sufficient conditions
of that principle given by (Callier and Desoer, 1982), see also (Bengtsson, 1977;
Wolovich, 1974), the denominator matrix of the controller can be chosen as M (z) =
Iim(z) = diag[m(z)], where m(z) is the least common multiplier of polynomials for
all the unstable parts of the transfer matrices in eqns. (4)—(7). Hence it results in the
Diophantine (diagonal) polynomial matrix equation

M (2)D(z) + N(2)Na(2) = A(2) (14)

where A(z) = diag[6;(2)], i = 1,2,...,I, with 6;(z) chosen as stable (monic) poly-
nomials of degree deg[m(z)] + deg[d;(z)] matched to the assumed configurations of
the closed-loop control system poles into the unit disc. The minimal degree solution
(with respect to IN3(z)) yields both the numerator matrix INo(z) for the controller
and the denominator matrix D(z) for the decoupled “inner” part of the system.

The main problem is to find a method for diagonal decoupling of a rectangular
(non-square) plant with (m > I) so as to obtain the transfer matrix (12) free of
cancellation of unstable “hidden” modes (uncontrollable and/or unobservable poles
of Ty,(z)). They may occur if a plant has “interconnection transmission zeros”
(Wiliams and Antsaklis, 1986). In order to do it we adopt the following lemma and
the theorem given by Hikita (Hikita, 1987), slightly modified to the case considered.
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Lemma 1. The diagonal matriz D(z) € R[z]"™! that satisfies relation (13) ezists iff
there are polynomial matrices L(z) € R[z]™*(™~) and B(z) € R[z]™*(m=D of full
rank such that

G(2)A41(2) - F(z) - L(:)D(2)B(2) = L()B(2) (15)

|
Theorem 1. The closed-loop poles of the decoupled system Ty (2) realized by Ls.v.f.
with dynamic feedforward consist of the zeros of |[L(z), L(z)]|, which are uncontrol-
lable, the zeros of [[BT(z),BT(z)]TI, which are unobservable and the zeros of |D(z)|
which are controllable and observable. [ |

To avoid unstable cancellations in the transfer matrix Ty,(z) it is necessary
for all the uncontrollable and unobservable poles to lie inside the unit disc. If the
polynomial matrix G(z) € R[2]'*!, whichis a g.c.l.d. of B(z) defined by the relation

Bi(z) = N(2)B(2) = N(2)G(2)B(z) (16)

is not unimodular and if its zeros lie outside of the unit disc, the poles of the decoupled
system corresponding to these unobservable zeros are fixed and unstable. To remove
those unobservable poles we use the compensation scheme together with an additional
dynamic feedforward compensator obtained by augmenting the plant model with a
serial dynamic element R,(2)P;'(z) connected to the input of the original plant.
The transfer matrix of the “augmented plant” is given by

Bi(2) AT} () Ra(2)P;(2) = N(2)J (2JUL(2)B(:) P ()P (2) (17)

where the matrices listed on the right-hand side of this equation should be_cal-
culated using the proposed design algorithm. Substituting N(z) for N(2)J(z),
G(z) for I, B(z) for U,(z)B(z) and A;(2) for P4(z)P(z), a decoupled system
Ty,(2z) without fixed poles caused by G(z) is obtained, see (Batika, 1991b; 1994a)
and (Hikita, 1987). Thus we obtain the following design algorithm for the control
system under consideration.

The algorithm

Step 1. Define the matrix My(z) = Iim(z) with m(z), a completely unstable
(monic) polynomial generated from unstable poles of the transfer matrices
(4)—(7). Let m = deg[m(2)].

Step 2. Define N(z) = deg[n;(z)], where n;(z), i=1,2,..1, isag.cl.d. of the i-th
row of By(z). Calculate the matrix B(z) € R[2]'’*™ from the relationship
B;(z) = N(2)B(z) and determine the matrix G € R[z]¥, agecld. of
columns of the matrix B(z) = é(z)ﬁ(z) If G(z) is unimodular (or
stable), then go to Step 3.

If a decoupled system without fixed poles is desired, the following
additional steps should be taken.
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Step 2.1.

Step 2.2.

Step 2.3.

Step 2.4.

Step 3.

Step 4.

Given (~¥(z) and vectors e;, defined by the unit matrix I, =[ey, ez, ..., e,
derive by the RRP fraction the vector transfer functions

G (e = Ri(0)T7 (2), i=1,2,..,1 (18)
Define

R(z) = [Ri(2), - Ri(2)] and T(2) = diaglTis(2)]  (19)
to obtain

G(2)B = J(2)U1(z) with Uy(2) =1, (20)

Given B(z) € R[z]*™ and R(z) € R[z]"! calculate B(z) € R[z)}*x™
and R(z) € IR[z]™*™by the RRP fraction ﬁ—l(z)ﬁ(z) = fB(z)R_l(z).

Derive R,(z) € R[z]™*™ and P € R[z]™*™ such that A,(z)R(z) =
R,(2)P(z) where |Rq(2)| = B|R(z)| and 113(z)| = 1/8|41(2)]. In
order ‘to do it we set the matrix A;(z)R(z) to the Smith form
H(z) defined by the relationship A;(2)R(z) = Usx(2)H(2)Us(z) =
Uy(2)H p(2)H 4(2)U3(2).

Set Ru(z) = Us(z)Hr(z) and P(z) = H,(2)U3(z), where Hpg(2)
and H 4(z) are m x m diagonal polynomial matrices such that |Hg(z)| =
a1|R(z)| and |H 4(2)| = as|A1(2)|. (The matrices Uj(z) and Us(z) are
unimodular, o; and «y are some scalars)..

By selecting an unimodular matrix Uyg(z) € R[2]™*™ such that
R,(2)U4(z) is column-proper, derive the matrix Pg,(z) = U4(z)A(2),
where A(z) = diag[A;], ¢ = 1,2,...,m. The polynomials X;(z) are arbi-
trary so long as deg[Ai(2)] = deg,;[Ra(2)U4(2)].

Substitute A;(z) := Po(2)P(z), B(z) := Ui(z)B(2) and N(z) :=

Choose B(z) € R[2](™~D*™ 5o that

B(z)
- c m mxm 21
(20 cn "
is unimodular.

Perform the RLP factorization of

B(z)

A(2) [ B0 } = Q (»)P(2) (22)

to obtain 13(z) € R[z]™*™ and é(z) € IR[2]™*™ which are row-reduced.
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Step 5.

Step 6.

Step 7.

Determine v; = deg,; [é(z)],j =
v; and v derive

1,2,..,m and v = max[y;]. Given the

Q2) (23)

2V =Vm

P(z) (24)

L ZV=Vm

and define [PF(Z),PL(Z)] = P(z), where i)F(z) € R[z]™*! and

P"(z) e R[zmx(m-D).

Determine the degree d; = deg[d;(z)] for each diagonal element of D(z) =

deg[di(2)], i1 =1,2,...,1, from the constraint
d; = ma.x{degci [PF(Z)] -y, 0}

Set A(z) = diag[é;(2)], ¢ = 1,2,...,] and solve the Diophantine eqn. (14)
for D(z) and Njy(z). Each diagonal element of A(z) can be chosen as a
stable polynomial of the degree m+d; suited to the assumed displacement
of the closed-loop poles, inside the unit disc, for each (decoupled) loop of
the control system. The zeros of A(z) and N(z) should be disjoint.

(25)

Perform the RLP factorization of

Ay(2) [ D(z)B(2) (26)

B(2) } = &5 (2)8n(2)

to obtain ®n(z) € R[z]™*™ and &#p(z) € R[z]™*™ which are row-
reduced.

Determine y; = deg,;[®p(2)], j = 1,2,..,m and p = max[y;].
Given p; and p derive
[ u—m 1
&p(z) = @p(2) (27)
zP—Hm
zl‘—l‘l i
Pn(z) = @n(2) (28)
L ZzB—Hm
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Step 8.

Step 9.

Step 10.

Select a unimodular matrix W(z) € IR[2]™*™ such that &5 (2)W(2) is
column-proper.

Determine the degree I-] = deg[ij(z)], J = 1,2,..;m, for each diagonal
element of L(z) = diag[l;(z)], from the constraint

I = ma,x{degCJ [@N(z YW (2) ] ,u,O} (29)

and set the matrix L(z). The elements of L(z) can be chosen freely as
stable (monic) polynomials suited to the assumed uncontrollable poles of
the transfer matrix Ty,(z).

Calculate [L(2),L(z)] = L(2)W(z). The matrices L(z) € R[zJ™*! and
L(z) € R[2]™*(™=D are given by the first | columns and the last m — I
columns of i)(z)W(z), respectively.
Perform the right division of
[L(2)D(2)B(2) + L(2) B(2)] A7 ' (2) = G(2) — F(2)A7'(2)  (30)

where G(z) € IR[z]™*™ is the quotient and —F(z) € IR[]™*™
is a strictly proper pa.rt of the division that satisfies deg.;[F(2)] <
deg(:][Al(z)] .7 =1 2> »m

If the additional Steps 2.1-2.4 were taken, the following step would be
performed to obtain the feedback matrix F and the dynamic feedforward

G (2)L(2).

Step 10.1. Derive by RLP factorization the matrices G(z) € R[z]™*™ and

Step 11.

Ly(z) € R[z]™*™such that

G~ (2)Lo(2) = Ra(2) [G(2)Pa(2)] (31)
and calculate L(z) = Lo(2)L(2). If Lo(2z) # I, then perform a right
division of

Lo(2)F(2)AT'(2) = Xp(2) + X r(2) AT '(2) (32)
by the original denominator matrix A;(z) and set tlie matrices G(z)
G(z) — Xp(z) F(2) := Xg(z), L(z) := L(2) and Lo(z) := I,

Given the column structure of the plant’s denominator matrix A;(z) and
the obtained matrix F(z), determine the feedback matrix F from the
relationship

F(2)=F T 8(z2) (33)

where

S(z) = block diag ' for i=1,2,..,m (34)

ZBi—1



On multipurpose control systems synthesis for non-square ... 501

and T is a similarity transformation matrix which results from the well-
known Wolovich structure theorem (Wolovich, 1974). The polynomial
matrix §(z) and the transformation matrix T are calculated during the
RLP factorization in eqn. (4).

This step finishes solving the problem with an accessible state vec-
tor of the plant. If the plant’s state vector is not accessible for a direct
measurement, then the following steps should be made.

Step 12. In a stochastic caLse with the Kalman filter, perform the spectral factor-
i1zation of

Ax(2)V A5(2) + As(2)ST By(2) + By(2)S A3(2) + Ba(2)W B3(2)

= C3(2)UUT C3(2) (35)

which yields a stable (left) factor C3(z) € R[2)'*! (U is an orthogonal
matrix), (Kuéera, 1981; Jezek and Kucera, 1985).

In the deterministic case with a full-order Luenberger observer set the
diagonal matrix

C1(2) = diag[cj(2)], i=1,2,..,1 (36)

where

¢j(z) = (z — z21)(z — 22)..(z — za;) (37)
are (stable) polynomials generated for the assumed values of poles for the

observer. The subscripts d; are observability indices equal to the row
degrees of the denominator matrix Aj(z).

Step 13. Given the row structure of A,(z) transform the matrix C,(z) to a ma-
trix C3(z) with the same (row) structure as As(z). Then determine the
“gain” matrix K for the Kalman filter (or L for the full order Luenberger
observer) from the equation

Ca(z) — Ag(2) = S()TK (38)
where
8(s) = block diag {[1z .27 for i=1,2,..,1} (39)

and T is a similarity transformation matrix. They are calculated during
the RLP factorization in eqn. (5).

Using the matrices F' and K (or L for the full order observer) we can calculate
the transfer matrices of the feedback part of the Kalman filter from eqns. (8) and (9).
They should satisfy the matrix polynomial equation

K(2)A1(2) + H(2)B1(2) = Q(2) F (2) (40)
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Similarly, we can also calculate the additional transfer matrices (10) and (11) for the
remaining part of the Kalman filter which should satisfy the other matrix polynomial
equation

K1(2)A1(2) + Hi(2)B1(2) = Q1(2) B1(2) (41)

The above-mentioned transfer matrices are obtained without solving any poly-
nomial equation. However, if a reduced order observer is employed to reconstruct the
feedback signal f(k) = Fax(k), the polynomial equation (40) must be solved explic-
itly. Then the reduced Wolovich compensator (Wolovich, 1974) or the minimal degree
Rao-Chen compensator (Rao and Chen, 1987) can be used.

To solve the polynomial matrix equation (40) many different methods may be
applied, see e.g. algebraic methods (Rao and Chen, 1987; Wolovich, 1974), polyno-
mial methods (Kaczorek, 1984; 1986; Chang et al., 1986), and interpolation methods
(Antsaklis and Gao, 1993). Minimal-degree solutions of Diophantine equations are
usually employed.

Comments. In order to elucidate the design algorithm presented above we provide
the following additional comments.

Cl1. Step 6 plays the main role in the design algorithm. In this step an arbitrary
closed-loop pole placement for the entire control system into the unit disc is
achieved by a judicious choice of poles for the decoupled “inner” part of the
system between signals y(k) and g(k) (determined by D(z)) and the zeros of
the controller (defined by IN3(z)). An “optimal” displacement of the closed-
loop poles within the appropriate regions of the unit disc is obtained in an
interactive manner by solving the Diophantine equation (14) and performing
simulations of the designed control system. Since the transfer matrix T'y,,(2)
of the decoupled closed-loop system is completely determined by the matrices
Ny(z), A(z) and N(z) (see eqn. (65)), the dynamical behaviour of the control
system can be evaluated just when a solution of eqn. (14) is found.

C2. The (minimal-degree) solutions of the Diophantine equation (14) exist if the
appropriate polynomials in M(z) and IN(z) are prime. But these solutions
can be unsatisfactory from a practical point of view if non-minimum phase zeros
of the designed control systems caused by IN2(z) occur. They can be changed
only by suitable selecting closed-loop poles of the system during solving eqn. (14).
However, some restrictions on these selections exist since the zeros of the diag-
onal matrix A(z) should be disjoint with the zeros of the matrix IN(z). This
condition is sufficient but it is not necessary.

Z T
C3. In Step 3 the unimodular matrix [BT(Z) BT(z)] is usually chosen by adding

m — | rows to the original matrix B(z) calculated in Step 2. This choice,
however, is not unique since this matrix can also be chosen as a square (stable)
polynomial matrix.

C4. Zeros of the denominator matrices Q(z) € R[z]™>*™ (and Q,(z) € R[z]"* in
the stochastic case) should lie inside the unit disc. If the zeros of the observer
denominator matrix Q(z) assumed in Step 12 are to be located exactly in the
centre of the unit disc, then the Luenberger observers have deadbeat properties.
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Cs.

In a similar manner, the deadbeat properties for the entire control system can
also be achieved if the poles of the closed-loop system (i.e. the zeros of A(z))
are located exactly at the centre of the unit disc.

The full control system structure for the stochastic case depicted in Fig. 3 and
4 can be used only if the obtained stationary Kalman filter is “sufficiently fast”,
i.e. if the zeros of the denominator matrix Q(z) obtained from the spectral
factorization of eqn. (35) are located closer to the centre of the unit disc than
the assumed poles of a closed-loop control system. It depends on the intensity
of the noises w(k) and v(k). If this condition is not satisfied, the structure of
Fig. 2 (or of Fig. 1 if the plant’s state vector =(k) is accessible) should be used.
The benefits resulting from the structure of Fig. 3 where the Kalman filter is
used twice consist mainly in additional reduction of modulations of the control
signals u(k).

4. Short Anlysis of Control System Properties

The complete dynamic behaviour of the multipurpose control system in the 2-domain
is described by the (block) polynomial matrix form

P(R)X, = QU )

Y = R()X,+V()U
where*
r GA: L -I, O 0 0 0
0 M, 0 -N, 0 0 0
-KA,-HB, 0 Q 0 -H -H 0
P(z)=| -K,A,-H,B, 0 0 Q, -H, —-H, 0
0 0o 0 0 A, 0 0
0 0 o0 0 0 As O
I 0 0o o 0 0 0 Ao
BN 0 0 0 0 ]
q N, 0 0 0 i
f o 0 0o H Yo e
X,=| 4 [,Qa)=| 0o o o H, |, U=|" |, Y=|uy
w! 0 0 By, 0 v ¥
r 0O B; 0 0 v
L Yo | By O 0 0
0 00 —-I; 0 O I, 000 0
R(z)=| B; 0 0 0 I ,V{(zy)=0 0 0 I,
0 00 I, 0 0 0 000 O

*The operator z is omitted for the sake of simplicity.
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Assuming that the polynomial m(z) is prime with respect to each element of the
matrices Q(z) and L(z), there exist two pairs of the polynomial matrices 9,(z) €
R[z]™*™ and ny(z) € R[2]™*™, as well as n3(z) € R[z]'’*™ and na(z) € R[2})'*}
such that

el @

M QL
3 M4

and

-QL
M,

_ [ —m(2)In QL + QLIm(z) ] _ [ 0

—n3QL + naIim(z) I ] (44)

The last relationship uses the matrix My(2) = I;mn(z) for which there exists another
matrix M(z) = m(z)Ip,.

If we premultiply eqn. (42) by the unimodular matrices

"MQL O 000071[Q 0 I, 0 0 0 0
73 74 0 0000 0 I, 0 0 0 0 O
0 01,0000 m 0 752 0 0 0 O
U2)Ui(z)=| 0 0 01,000 0 0 0 I 0 0 O | (45
: 0 0 00ILO0O 0 0 0 0 I, 0 O
0 0 000I0 0 0 0 0 0 I O
L 000000 ]J]L0O 0 0 0 0 0 I |

we obtain an equivalent description of the control system under consideration given by

P(2)=U,(2)U,(2)P(2)

[ m(2)(QGA; — KA, —-HB;) 0 0 -QLN,-HM,-HM, 0
773(QGA1 ~KA, - HBl) I, 0 —mNy; —-n3H -—-n3H 0
mGA; — nz(KA1 + HBl) -mL I, 0 —neH —nH O
= -K1A,—H.B, 0 0o -Q -H, —-H; O (46)
0 0 0 0 Ay 0 0
0 0 0 0 0 As 0
L 0 0 0 0 0 0 Ao |
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and

QLN; 0 0 0 ]
mNy 0 0 0
0 0 0 mnH

Q(2) = Uy(2)U1(2)Q(z) = 0 0 0 H, (47)

0 0 B, 0
0 B; 0 O

. B, 0 0 0 |

Inverting ﬁ(z) and premultiplying and postmultiplying the result by the matrices
R(z) and Q(z) we obtain the (block) rational transfer matrix between the block
vectors Y and U defined by

1 Tcyu TeF Tew Tev
T(z) = R(2)P (2)Q(2)+V(2) = Tyg, Tyr Tyw Ty (48)
Ty50 Tyr Tyw Tyo

where the most interesting transfer matrices between the error vector e(k) and the
vectors of the signals ¥, 7, w(k) and w(k)as well as the transfer matrices between
the original plant’s output y(k) and the filtered output §(k) with Tespect to the
input vector of the reference signals g, have the following forms:

Ty, = I — Q7' (K1A1 + H1B1)A;'QLN A7 ' By (49)

T = [QT'(K1A1 + H,B,)
A7 QLN>QT'H, - HM)) - Q7' H1]A;'Bs (50)

Tew = [QTY(K1A; + H,B))
ATYQLN,QT H, — HM,) - Q7 'H1]A;' B, (51)

Teo = [QT' (K14, + H1B))

A7HQLNQy'Hy — HM:) — Q7 ' H)] (52)
Tyg, = B1A7'QLN A" By (53)
Tyg, = Q7' (K141 + H1B1)A;' QLN A7 Bo (54)

The remaining six transfer matrices take similar forms as the transfer matrices for
continuous systems obtained by Barka (1991b; 1994a).

By analogy to the continuous systems it can be proved that all the poles of the
control system are given by the zeros of the determinants :

P(z)] = 181(2)] x |42(2)] x |45(2)] % |Ao(2)| G
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with the “internal” closed-loop poles of the system defined by

m(z)(QGA1 -—KA1 —HBl) 0 0 —QLN2
7]3(QGA1 -——KAl —HBl) II 0 —T]4N2

A(z)] =
7]1GA1 -‘nz(KAl'l'HB]_) —7)1L Im 0
-K,A, - H{B; 0 0 -,
= |Qi(2) x |As(2)| ’ (56)
where

Af(z) = m(z)(QGA1 — KAl — HBl)
+QLN2Q7'(K 1A + H,By) (57)

In view of (40) and (41) we have

Tygo(2) = Tyge(2) = B1(2)A7'(2)Q(2) L(2)N2(2) A ' (z) Bo(2)  (58)

where

A1(2) = Q) [m(x)(G(:)A1(2) - F(2)) + L(N2(:)B1(z)]  (59)
Since

Bi(2) = N(z)B(z) = [N(z) o] [ g ] (60)
and

L(z)Na(2) = | L(2) i(z)] N ;(z)] (61)

1t follows that

L(z)N(2)B1(2) = L(z)N2(z)N(z)B(2)

- [L(z)i(z)][N N g} {EE” ©2)

and, in consequence, it results from (58) that

A(()z) 0 ] {B(z)] (63)

As(2) = Q(2) I B(2)

L(z) L(2)
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Thus all the “internal” poles of the control system defined by the zeros of the deter-

minant
£
B(2)

are stable and freely located inside the unit disc. They are uncontrollable poles except
for the poles defined by |A(z)|, which are controllable and observable, and the poles
defined by |[BT BT]|T, which are unobservable (if the latter exist). Also, since all
of the obtained transfer matrices are proper (or strictly proper) the control system
considered is internally proper. This implies that the design goal (ii) is satisfied.

|81(2)] = 1Q1(2)] x [Q(2)] x |[L(2) L(2)]] x |A(2)] x (64)

To show that condition (i) is fulfilled let us consider the transfer matrices Ty, (2)
and Tyy,(2) defined by relationships (53), (54) and (58). Substituting eqn. (63) into
eqn. (58) by using formulae (60) and (61) we have obtained

Tyyo(2) = Tyyo(2) = B1(2)A7 (2)Q(2)L(2)N2(2)

A-lY(z) 0 ] Na(2)
0

0

I

(N(2) o o

] - N@A@N)  (65)

as a diagonal and stable transfer matrix with the poles given by the zeros of |A(z)]
assumed in Step 6 of the Algorithm. This implies a complete dynamic decoupling of
the considered control system.

The zeros of the closed-loop control systems are determined by the zeros
of |IN(z)| which consists of the plant’s transmission zeros. So if the plant is non-
minimum-phase, the closed-loop system remains non-minimum-phase, too. Addi-
tional system’s zeros are generated by the zeros of |IN3(z)|, which are zeros of the
controller. The latter can cause a non-minimum-phase control system obtained even
when the plant is minimum-phase.

To prove that condition (iii) is satisfied we now consider the transfer matrices
(49)-(52). Noting that

I — BiA7'QLNy = - NA™!N; = NA7'YA - N,N|N ™!

= NAT'M,DN"! = A~ Dm(2) (66)
and
B][B] ' [a! o _
B\AT'HM; = [N 0] [ B ] [ 5 ] o 1., [L LIQ*HM,
ATl 0
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and substituting the right-hand side of eqn. (41) into eqns. (49)—(52) after manipula-
tions we finally obtain

To5(z) = A7 (2)D(2)m(2) A5 () Bo(2) (68)
Tor(z) = —[A7(2)D(:)Q7 (:)H1(2)

[N 0] L0AG) £0)] T @ 0 HG)] ()47 () Ba)  (69)

Te(z) = ~[A7()D(QT () Ha(2)
+[N(z) oH (2)A(z) L(z)] B ‘l(z)H(z)]m(z)Az‘l(z)Bz(z) (70)
To(2) = -[A7()D(QT (2)H(2)

+ [N(z) o] [L(Z)A(z) E(z)] 'IQ-I(Z)H(Z)} m(z) (11)

Since all the above-presented transfer matrices are strictly proper and all the unstable
modes of “external” models defined by eqns. (5), (6) and (7) are cancelled with the
zeros of m(z), we have

E {klirgo e(k)} =

Therefore all the design goals are achieved.

5. Conclusions and Final Remarks

In the paper, we have presented an algorithm for the synthesis of multipurpose,
discrete-time, control systems for a general class of linear plants with the number
of inputs greater than the number of their outputs. Moreover, unlike the earlier al-
gorithms given for square (invertible) plants, the proposed algorithm ensures internal
stability and an internal property for non-minimum-phase plants.

On the whole, the discrete-time systems have similar properties as continuous sys-
tems. However, for discrete-time systems the deadbeat properties can also be achieved
if poles of the closed-loop system (and/or poles of the deadbeat observers) are lo-
cated exactly in the centre of the unit disc. Unfortunately, the multipurpose deadbeat
control systems usually do not work in practice because of big amplitudes of signals
encountered. In general, the proposed design procedure is more difficult to apply since
the relationships between the dynamical system behaviour and the displacement of
the system poles (and their zeros) are “richer” and poorly known.

Although the proposed design procedure is considerably more complex (following
the new conditions and a general class of the plants under consideration) than the
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algorithms which have been proposed so far, the realization of the obtained control
systems in time domain is still straightforward since all the transfer matrices are
proper or strictly proper. Unfortunately, many operations used in the algorithm can
cause its numerical instability. Hence, in practice, additional attempts should be
made to develop useful software packages.
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