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MEAN-DEVIATIONAL VERSUS INCREMENTAL
MODELS IN ADAPTIVE CONTROL

KrzyszTor LATAWIEC*

Mean-deviational and incremental formulations of the familiar adaptive control
algorithms, incorporating the recursive LS estimator coupled with different op-
timal single-step controllers, are extensively examined when controlling various
" complex SISO plants governed by the ARMAX model. In the conclusive rec-
ommendations based on a number of simulation runs, we emphasize that the
mean-deviational controllers can surpass the incremental ones with respect to
robustness which is the most important requirement for adaptive controllers.

1. Introduction

It is necessary for the satisfactory performance of a closed-loop control system that
both servo and regulatory behaviours of the closed loop are of good quality. As
regards the servo behaviour, it is known that the control methods like MV, EHAC1
and EPSAC can provide error-free tracking of the constant setpoint even in their non-
incremental formulations provided that the mean E(e(¢)) of the noise e(t) is zero
and T'(1) = 1, where T is the observer polynomial. On the other hand, the methods
like GMV, EHAC2 and GPC suffer from having non-zero steady-state error in that
case. However, it can be shown that selecting proper 7'(1) removes the steady-state
error in those methods as well. Anyway, it is in general not necessary to provide the
proper servo behaviour of process controllers e.g. to insert the integration action into
the loop or to handle input-output signals in a special way.

In order to fulfil the error-free regulatory behaviour requirement in the case of
non-zero-mean noise it is necessary either 1) to use a more accurate (i.e. complex)
model for the noise effects or 2) to introduce the integration action into the loop, or 3)
to employ the incremental algorithms, or 4) to use the mean-deviational formulation.

It is known that the first method may eventually lead to numerical problems, even
in the simplest case of the “offset” models (Latawiec and Chyra, 1983). Although
the above methods 2 and 3 are different, in general, they lead to similar results,
involving integration in a control law. The mean-deviational algorithms are “close”
to the incremental ones but still they avoid the explicit introduction of the integration
action into the control loop.

Now, there are three fundamental model formulations used in practical implemen-
tations of adaptive control algorithms, namely “offset-deviational”, “incremental” and
“mean-deviational” (Latawiec and Chyra, 1983). As regards the two latter ones that
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are the most applicable and attracted considerable interest, the incremental version
is much more popular. At least three possible reasons for such vogue can be pointed
out. First, the way of implementation of the incremental algorithm is straightforward,
which is not quite the case for the mean-deviational version. Second, the incremental
formulation directly involves the occurrence of the integration action in the con-
trol law, thus fulfilling the fundamental performance requirement of the steady-state
error-free regulation. Third, initial applications of (incremental) adaptive control
algorithms have originated from high control accuracy specifications rather than ro-
bustness requirements that have been raised later. The first self-tuners employing the
minimum variance (MV) control law and later provided with robustness-oriented mea-
sures are one spectacular example. The mean-deviational algorithms are known to be
more robust, at the cost of slower regulation, in comparsion with the incremental ones.

The incremental models have been extensively applied in a number of practically
oriented projects on adaptive control as well as in commercially available adaptive
controllers (Astrém and Wittenmark, 1989; Astrom and Hagglund, 1990; Clarke and
Mohtadi, 1989; Kramer and Unbehauen, 1991). In this paper, an attempt is made to
review mean-deviational and incremental formulations and re-evaluate their usefulness
in robust adaptive control schemes.

Adaptive controllers considered here are a combination of the standard adaptive
LS estimator and either the generalized minimum variance (GMV) controller (Clarke
and Gawthrop, 1979) or one of the extended horizon adaptive controllers (EHAC)
(Latawiec, 1991). Having introduced the mean-deviational and incremental models
we outline the control algorithms and review our simulation experiments. In the
comparison of the two formulations we tackle many various aspects. Whilst not
claiming the clear superiority of any model in specific applications, we indicate that
the mean-deviational formulation might have been underestimated, especially in the
robust control environment.

2. Models and Parameter Estimation

Consider a discrete-time SISO plant governed by the general model

A(g~"y(t) = ¢~ ?B(g™")u(t) + (k) + gg:ge(t) (1)

where u(t), y(t) are the input and the output, respectively, at time ¢, d > 1 is the
time delay, A, B, C and D are the polynomials in backward shift operator of order
na, nb, nc and nd, respectively, and e(t) is uncorrelated noise of not necessarily
Zero mean.

It is well-known that the polynomial C is in practice unlikely to be effectively
estimated, so it is used rather as a design, observer polynomial T(g~!) instead of
(C =T). Likewise, the polynomial D, often set as equal to A = 1 —¢~!, is usually
used to make the controller act in an incremental way.
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2.1. The Incremental Formulation

Let C =T and D =1-g¢~!. Now, eqn. (1) can be rewritten as

A (g7 Ny(t) = ¢ B(g™ ") Au(t) + T(g™")e(?) (2)
with
A =(1-g¢"HAe™), Aut) = u(t) —u(t - 1) 3)

which will be referred to as the incremental (INC) model.

Note that u(t) and y(t) can be taken either as the absolute (or full-value) input
and output signals U(t) and Y (t), respectively, or as the deviations of the absolute
input/output signals from their fixed operating point’s reference values Uy, Yier.

2.2. The Mean-Deviational Formulation

Let C =T, D=1. Now, eqn. (1) can be rewritten as

A(g™Ny() = ¢~ *B(q™ )ult) + T(g7)e(t) (4)
with

u(t) = U() — Um(t), y(t) =Y (2) = Yeer (5)

where Up,(t) is the mean value of U(t) and Yier is the absolute output reference
value. Equations (4) and (5) will be referred to as the mean-deviational (MED) model.

The main problem in the implementation of the MED model is the computation
of the mean Uy, (t). The simplest way to update continuously the mean Upn,(t) is to
use the first-order low-pass filter

Un(t) = aUnm(t = 1) + (1 — a)U(¢) ' (6)

with @ normally close to 1, but switched to a lower value in the case of detection of
load or setpoint changes. Note that o can be tuned independently of the estimator’s
forgetting factor, thus providing the separation of handling the rapid load-type or
setpoint changes from that of slow process variations.

2.3. Parameter Estimator

‘The unknown parameters a; or a; and b; of the above models are estimated by
the familiar recursive least-squares procedure, provided with the UD factorization
option, the exponential forgetting adaptation mechanism and blow-up countermea-
sures. In the sequel, we use the p, P and p denotations for the parameter vector,

the covariance and the forgetting factor, respectively.

3. Optimum Control Rules

The single-step GMV and EHAC control laws are examined here, not only for their
simplicity but also for a variety of process dynamics that various versions of EHAC
can effectively control.
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3.1. GMYV Control

The GMYV control of the linear system desribed by one of the two model equations
quoted is optimal in the sense of the performance index (Clarke and Gawthrop, 1979)

min B{[u(k + ) — vl + B1°(1)} (7)

where yer is the reference output and £ > 0 is the control weighting constant.

The GMYV control law is given as

u(t) — Yref — H(Q'l)y(t) -
B(g-)F(g™) + §

where the polynomials F' and H of order d — 1 and na — 1, respectively, are deter-
mined from the polynomial identity

T(g™") = A(¢)F(e ) + ¢ %H(¢g™) (9)

(8)

3.2. EHAC Methods

In EHAC]I, the objective is to design the control u(t) so as to minimize E{y(t+ k)~
Yrer} under the assumption u(t) = u(t + 1) = ... = u(t + k£ — d) and one of the two
model equation constraints, where the prediction horizon & > d.

Introduce the polynomial identity
T(¢") =A@ H)F(g )+ ¢ H(g™) (10)

where the polynomials F' and H of order ¥ —1 and na — 1, respectively, can be
determined given T, A and k > d (k = d being the MV control). The EHAC1
control law is as follows (Latawiec, 1991)

u(t) = G’;(l) lyret — H(g™ Hy(t) — q;lG"(q_l)U(t)] (11)
where

G(g)=F(g")B(g") =G (¢ )+ G"(¢" Mg it (12)
with

G'(¢™Y) =go+g1¢7  + ... + gp—agq ¥ +¢
(13)

G'"a™") = g +g4a7 + o+ ppanrg T

Note that for EHAC1 we have

k—d
G'(1)=Gi(1) = Zg,- (14)
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In EHACr, the control u(t) is determined so as, together with u(t + 1), u(t +
2),...,u(t + k — d), to minimize the performance index E{y(t + k) — yrer} subject to
the input “energy” constraint

k-d
o, Pl D (15)

where r > 2 is an even number.

The EHACr control law is identical to that of eqn. (11), with a different value of
the coefficient G’(1) (Latawiec, 1991)

1
G)=GC.(1) = —— gr 16
W=60)= =3 (16)
For r = 2,4, ... we obtain the consecutive versions EHAC2, EHACA, etc. For r — oo
we have the “EHACinf” controller, for which

k-d
G'(1) = G, (1) = sgn(gx-a) Y _ l9i] (17)
=0

Note that for ¥ = d EHAC1 and all the EHACr controls are equivalent and
identical to the MV control.

Although the discussed EHAC controllers differ, in general, just by one parameter
from each other, they demonstrate entirely different behaviours both in transient and
steady states. Also, the simple EHAC controllers can provide effective control for a
variety of complex plants.

3.3. Steady-State Regulation

It can be easily shown (Latawiec and Chyra, 1983; Latawiec, 1991) that, with T(1) =
1 and zero-mean noise, the output mean value for the GMV and EHAC control
systems is equal to

Yref
Ym = 1+ _} (18)

where v = B/by for GMV, v = G.(1) — G4(1) for EHAC controls, and K =
B(1)/A(D).

Note that for the MED formulation we obtain the steady-state error-free control,
no mattter what T or v are.

3.4. Control Specifications
Specifications for yrer and the absolute control variable U(t) are as follows:
® Yrer =0 for the MED model,

® Yret =0 or yrer = Yrer (if, respectively, deviational or absolute process variables
are used) for the INC model,
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e U(t) = U’ + u(t), where U’ = Upn(t), for the MED model,
e U'=U(t—1) for the INC model.

Wherever appropriate in all the above equations, substitutions of Au(t) for u(t)
and A’ for A are required for the INC model.

4. Simulation Experiments

We have performed hundreds of simulation runs and only selected representative
examples could be listed below. Let the system be actually governed by eqn. (1) with
D(¢7') = 1 and Gaussian N(0,]) noise e(t), the mean of which is offset to 2 for
t>150. Let na=nb=nc=2, d=1, Uy = 10, Yer = 40, b3 = by for t < 200
and by = byo[1 4+ 0.5 sin(0.0128(¢ — 200))] for ¢t > 200, (0) = 0, P(0) = 1051

In order to pursue the drifting phenomena in the plant, we make the controllers
switch the exponential forgetting constants from p; = 0.99 to p = 0.90 and from
a; = 0.995 to as = 0.85 (return preferably gradual) if sgn[U(t) — Unm(t)] remained
constant thrughout, say, seven sampling intervals.

In the incremental and the deviational model eqns. (2) and (4), respectively, we
assume T =1 so as not to obscure the mainstream of our considerations.

Example 1. (The system originally non-minimum phase) The following parameters
have been chosen: a; = 0.8, ay = 0.1, by = 0.75, b19 = 0.65, by = —-0.2, X =
0.2, ¢1 = ¢3 = 0, GMV control, § = 0.1, switching of p and a not included. The
performance of the control system can be seen in Fig. 1 where the values

1 50 . 1 50
03 = %Z[y(t) - yref] , (73 = —5—0 Zuz(t)
t=1 t=1

have been plotted every 50 sampling instants. (Parameter estimates have also been
monitored for analysis purposes). Quite similar results have been obtained for the
EHACQC?2 controller with &k = 2.

The INC model proves better steady-state behaviour and lower sensitivity to
changes in D; also, its tracking the time-varying process conditions is quicker.

It has been found that although the general behaviour of the scheme based on
the INC model is much better (except for the very beginning where it is slower con-
vergent), it is not possible even to approximately reconstruct the true parameters
aj, b; from the estimates &?,I;j even if by is fixed to be equal to by. On the con-
trary, the estimates d;, I;j are “close” to the true parameters in the control scheme
based on the MED model. That feature is important in practice. As a matter of fact,
for open-loop stable processes (as in the majority of industrial plants) we can easily
introduce the open-loop stability constraint into the LS estimator, e.g.

1+&1+&2>0, 1—&1+&2>0, 1—a; >0

The insertion of the above supervising measure to the estimator is only desirable
if the estimates are “close” to the true parameters.
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In the second example, we insert the above open-loop stability constraint into
the estimator. It is interesting that the LS estimation algorithm is not formally
modified to include the constraint along the constrained minimization procedure.
The estimates are simply not accepted when outside the open-loop stability region
and the estimation scheme based on the MED model has appeared to be insensitive
to such a corruption (this is not the case for the “offset” models that we have also
examined elsewhere). In the second example we also introduce switching p and «
for the MED model. (Switching p for the INC model is meaningless).

Example 2. (The strongly disturbed, originally non-minimum phase system) We
adopt the following parameters: a3 = —0.8, ay = 0.1, by = 0.75, byo = 0.65, by =
~0.2, A = 0.8, ¢; = —0.5, ¢ = 0.2, the estimate by is fixed to be the extremely
underestimated value of 0.1, EHACinf control, k = 2 (the performance for the GMV
control with ¢ = 0.4 is similar).

The excellent robust performance can be observed for the MED model (Fig. 2).
However, the performance for the INC model is also surprisingly correct, considering
the lack of any robustifying measures the MED model is provided with.
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Fig. 1. Performance of control objectives, Example 1.
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Fig. 2. Performance of control objectives, Example 2.

5. Discussion

Making use of the INC model leads to the occurrence of the integration action in a
control law. However,the injection of the unit pole into the closed loop is meaningless
as it is cancelled by the identical zero. Right the same holds for the MED model,
with almost unit pole/zero cancellation (at ¢ = a). Anyway, both formulations are
“close” to each other and both provide steady-state error-free servo and regulatory
controls.

Whilst effectively dealing with low-frequency disturbances, in particular load-
type changes, incremental controllers suffer from three main disadvantages, jeopar-
dizing robustness of the control system:

e They are sensitive to high-frequency disturbances both in the process and the
input-output measurements. Therefore, careful prefiltering of the process vari-
ables and, possibly, thorough design of the observer polynomial may be nec-
essary. Sensitivity to disturbances is even more detrimental under adaptive
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control, where the “smooth” operation of the recursive estimator usually neces-
sitates special precautions.

o They fail to provide “integrity” to the closed-loop system. A feedback system
possesses integrity if it remains stable in the face of switching off of control
loop(s) by actuator or sensor failures. For a SISO control system, integrity is
ensured provided both the open-loop and the closed-loop systems are stable.
Integral/incremental controllers violate this condition.

o They are not able to separate slow time-varying effects in the process from rapid
load-type changes in the disturbance. The latter changes, detected reliably by
incremental controllers, happen unfortunately to enter the adaptive parameter
estimator as well. This causes the estimator to overact undesirably as if the
process parameters were changing themselves which might have not been the
case at all. As was mentioned before, the mean-deviational controller can be
arranged so as to separate slow process variations from rapid setpoint or load-
type disturbance changes.

With the above drawbacks, the incremental formulation still possesses one es-
sential advantage, namely the simplicity of implementation. Owing to this feature,
the INC model can outplay the MED one, especially in a low-frequency noise control
environment.

The more complex implementation of the mean-deviational formulation may
bring a margin of arbitrariness. First, diverse algorithms for the control mean calcu-
lation can be employed, with some parameter(s) to be set depending on the process
and/or disturbance properties. In particular, the coefficient @ of the first-order ex-
ponential filter has to be determined. Second, additional service in some “difficult”
situations is often desirable. An example is switching of p and/or « coefficients.
Also, certain robustifying measures like testing the open-loop stability (if applicable)
can be welcome. All these efforts can yield robust adaptive control for processes
corrupted with strong and wide- band disturbances, outperforming what could have
been done with the incremental formulation.

Now, mean-deviational control algorithms can be made more robust than the
Incremental ones at the price of more complex implementation and slower regulation
for load-type changes in process disturbances.

6. Conclusion

We have examined adaptive control schemes combining adaptive LS estimation and
either the GMV or EHAC control laws, based on the incremental and mean- devia-
tional models.

The straightforward implemented INC model has proved to be effective in many
advanced process control applications. Its usefulness has been confirmed here, in
particular for quality regulation under low-frequency disturbances. However, our
recommendation. is to avoid, if possible, the injection of signal increments into the
adaptive-control loop in the case of high-level, high-frequency disturbances.
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The implementation of the MED model is more complex than for INC. However,
the mean-deviational controllers can outperform the incremental ones with respect to
robustness which is the most important requirement for adaptive controllers.

Unfortunately, the clear-cut assignment of the above models to specific processes
and/or disturbances is not possible. Apparently, both formulations should be used in
advanced process control engineering and the MED model could be recommended in
more sophisticated adaptive control problems.
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