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NON-OPTIMAL BEHAVIOUR OF FINITE ELEMENT
METHODS FOR FIRST ORDER
HYPERBOLIC PROBLEMS

Topp E. PETERSON*, Davip B. SHUSTER**

We investigate two explicit finite element methods for linear scalar first order hy-
perbolic equations, one using a continuous piecewise-polynomial approximation
and one using a discontinuous approximation. Several aspects of the perfor-
mance of these methods are considered; in particular, the sharpness of some
existing error estimates, and crosswind spread estimates. For the discontinuous
method, we give a new error estimate for the case of piecewise-constants.

1. Introduction

The model problem we consider is the first order hyperbolic equation
a-Vutfu=f in Q (1)
u=g on 0€Q_ (2)

where  is a bounded polygonal domain in IR? and 6Q. its inflow boundary, «
is a constant non-zero vector, and § is a bounded function. By the inflow boundary
OD_ of aset D wemean {z € 0D : o -n(z) < 0}, where n(z) is the unit outward
normal to D at z. The outflow boundary is defined as D4 = {z € 8D : «-n(z) > 0}.

To define an approximation u”, we first assume that Q is divided into triangular
elements T, each of diameter roughly h. We will consider only quasi-uniform trian-
gulations, meaning that the ratio of the largest to smallest element edge is bounded
from above by a constant independent of k, and that all angles of the elements are
bounded from below by another such constant. We are interested in explicit methods,
for which it is possible to compute u* one element at a time. To formulate such me-
thods, it is first necessary to order the elements in a way consistent with the domain
of dependency requirements. Specifically, we assume the elements are ordered in such
a way that

n-1
or™ C 9Q-u | J o
m=1
That this is always possible is proved in (Lesaint and Raviart, 1974), and in (Falk and
Richter, 1987) for the more general case of non-constant «. One can also say that
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the solution develops one layer at a time, where, for example, the first layer consists
of all elements with 8T_ C 9.

The two methods we will study were both introduced in (Reed and Hill, 1973), in
the context of solving the neutron transport equation. In both, the approximation u”
is a piecewise polynomial of some fixed degree p. In the method that has come to be
known as the discontinuous Galerkin (DG) method, no further restriction is placed
on the form of u”, so that the approximation is not necessarily continuous across
inter-element boundaries. The other method we study, which we will refer to as the
continuous Galerkin (CG) method, generates a globally continuous approximation.

Once the elements have been ordered as described above, the formulation of any
explicit method reduces to the following: given a single element 7' and boundary
data on AT, how is u”|7 determined? For the DG method, we require

/(a-Vuh-I-,@uh)vh-l-/ (u’j_—u’i)vh|a~n|:/fvh Yot € P,(T)
T oT- T

where Pp(T) denotes polynomials of degree p on T, and wy(z) is the limit of
w(z + €a) as € decreases to zero. On OS2_ we take u" to be the given data g, or
some suitable interpolant of it.

The CG approximation is defined on each element 7' by requiring continuity
along 07_, and requiring

/ (o - Vul 4 guP)oh = / fo* Vot € Pi(T)
T T

where ¢ is the number of inflow sides of the element T'. Note that this will always be
either 1 or 2, and we refer to such elements as Type 1 elements or Type 2 elements,
respectively. The reduction in the size of the test space, relative to the DG method,
is necessary to account for the fact that some degrees of freedom will be fixed a prior:
by continuity. On 0Q_, we take u® to be a suitable interpolant of g.

The purpose of this paper is to investigate the performance of these two methods.
This paper is primarily a summary of (Peterson, 1991b) and (Shuster, 1994).

Before proceeding we mention another class of explicit methods known as reduced
continuity methods, in which the approximation is in general discontinuous across
inter-element boundaries, but continuity of certain moments is enforced (see Cai and
Falk, 1994).

2. Known Estimates

In this section we briefly summarize previous analyses of the DG and CG methods.

2.1. Discontinuous Galerkin

Assuming only that the triangulation is quasi-uniform, Johnson and Pitkaranta (1986)
obtained a bound for the error in a certain mesh dependent norm, optimal for that
norm, but which for L,(€2) implies only that

luh = ullo < CRPF2|ju)|p41, 92 (3)
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where the norms are those of Ly(£2) and the Sobolev space HP+1((Q), respectively.
The rate of convergence guaranteed by this result is less than the optimal rate of p+1,
and it is now known that in general the above Ly(f2) estimate cannot be improved:
numerical examples presented in (Peterson, 1991a) (and summarized below) show
that additional hypotheses are necessary to obtain an improved estimate.

In two circumstances an estimate of the form
|[u? — ulla < CRPH|ullpya,n (4)

is known to hold. Lesaint and Raviart (1974) proved this for rectangular elements (in
which case u” is, e.g., piecewise bilinear), and Richter (1988) did so for # = 0 and
‘semi-uniform’ triangulations (defined below) which in addition have all element edges
bounded away from the characteristic direction «. One might expect that alignment
of the triangulation with the characteristic direction would be desirable — we will
consider this further below. Note that to obtain an optimal order estimate both of
these results place some restriction on the triangulation and assume extra regularity
of the exact solution. )

It has also been noted (Johnson et al., 1984) that crosswind spread is limited to
O(h1/?), see (Peterson, 1990) for a proof. (The exact statement involves a logarithmic
factor which will be ignored in the present discussion.) This is, for example, the extent
to which a jump discontinuity in the boundary data g is smeared in the direction
perpendicular to the characteristic line along which it propagates.

A pointwise estimate of the form
llu" = ulloo,0 < CHE*4lul|p41,00,0 (5)

has been proved (Peterson, 1990) using a discrete Green’s function argument which

takes advantage of the known crosswind spread estimate, a technique originally de-

veloped in (Johnson et al., 1987) and (Niijima, 1990) for analysis of the streamline

diffusion finite element method. The norms above are those of Lo (2) and the So- .
bolev space WEF!(Q), respectively. This result is probably not sharp, but for general

quasi-uniform triangulations the exponent of A in (5) could be increased to at most

p+1/2 — see (Peterson, 1991a) and below.

2.2. Continuous Galerkin

For the CG method, Falk and Richter (1987) proved the following L(S2) estimate:

llu— unlla < CAPY Y4 [u|lp41.0 (6)

This estimate was proved for quasi-uniform triangulations under the hypothesis that
no triangle edge is aligned with the characteristic direction. As noted above, such a
hypothesis seems counterintuitive. The necessity of this assumption was investigated
numerically in (Shuster, 1994) and will be discussed in Section 5.

Crosswind spread for the continuous Galerkin method has been proven in (Falk
and Richter, 1992) to be limited to at most O(h!/2) (as above, the exact statement
involves a slowly varying logarithmic term which will be ignored).
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Fig. 1.

3. Discontinuous Galerkin — Piecewise Constants

In this section we study the discontinuous Galerkin method in the simplest possible
setting, that of piecewise constants and g, f = 0.

For p = 0 the discontinuous Galerkin approximation to @ - Vu = 0 is easily
verified to be as follows: on Type 1 triangles

and on Type 2 triangle

U% = AU%‘I + xu%u (8)
where
a= Dillecm| g [Daffecna] )
T3] |e - ng| T |e - ns]

See Fig. 1. Here n; denotes the outward normal to edge T'; of T
Consider the problem

uy=0 on Q 9)
u(z,0) = o(z) (10)

with © = (—o00,00)x(0,1). Assume a semi-uniform triangulation in the sense of
Richter (1988). That is, assume that the elements lie in bands, each band consisting
of one layer of Type 1 elements and one layer of Type 2 elements, the elements within
each layer being identical up to a fixed translation. The j-th band is characterized
by a A; defined as above. We also assume that the total number of bands is O(h~1).
We align the enumeration such that, for j > 3, the downwind vertex of the triangle
To,; 1s shared by the common vertex (upwind) of T/ ;1 and Tj;5;_1; these two
triangles in turn, straddle T ;_» (see Fig. 2.) The infinite extent of the domain is
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of no consequence, as the numerical domain of dependence of any particular element
is finite. (In general, the ordering property discussed earlier may fail on unbounded
domains. However, the hypothesis of semi-uniformity prevents such a failure. Note
that the property of semi-uniformity is dependent on the characteristic direction «.)

7»3 =1/4
32,2 12,2 1122 32,2 M= 518
M =112
x=0 “—h—
Fig. 2.

"We will develop an explicit expression for u*. It will involve certain coefficients
defined as follows: :

o
cik= D Afteoo A

|e|=k

for k= 0,...,7, where A® = X, A =, @ € {0,1}, and |a| = Y, ;. We put
coo =1 and ¢jz =0 for £k < 0 and k > j. Before proceeding further we establish
properties of these coefficients that will be used below.

Lemma 1. The coefficients cj; have the following properties:

Cit1,k = Aj41Cik + Xj+10j,k—1 (11)
J

D ek =1 (12)
k=0

J J ~

Z kCJk = Z/\k (13)
k=0 k=1

i ® o i

> ke = MM+ X (14)
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Proof. For j =0, (11) follows from the convention coo = 1. For j > 0 we compute
as follows:

. = ay,,, )\%+
Ci+lk = Z Al A
|a|=k

)\j+1(2)‘[131"')‘?j)+5‘j+1( Z )‘?"”)\?j)

|B|=k |Bl=k-1

= Xj+16jk + A6 k-1
The remaining proofs are by induction, utilizing (11). The details are straightforward,
and therefore are omitted. ]
Note that if A; =1/2 for all, j then ¢;; = 2—13— (i) and (11)—(14) reduce to well
known properties of the binomial coefficients.

Number the elements as indicated in Fig. 2 and let u;; denote the value of u”
on T;; (where 7 is allowed to represent half integers and j is taken to be an integer).
Note that due to (7) we may identify a Type 1 element with the Type 2 element lying
below it. The one exception is Type 1 elements in the first layer: the values of u®
there are determined entirely by the choice of u® on the inflow boundary. The next
result justifies the introduction of the coefficients c;.

Lemma 2. The values of uh are given by

J
Ui; = E Cik Uk+i—35/2,0
k=0

Proof. The proof is by induction. For j = 1 the above expression reduces to (8). In
general, we use (8), the inductive hypothesis, and (11):

Uij+1 = AjprUio1/2, + Aj1tipaya,;

J J
= Mj41 ) Ok Uk(i=1/2)-3/2,0 + Aj+1 ) Cik Ukb(i41/2)-7/2,0
k=0 k=0

J j
= A+ Z Cik Uk+i=(j+1)/2,0 T Aj+1 Z Cik U(k+1)+i—(j+1)/2,0

k=‘0 k=0
j+1
= ) (Mj16ik F Xj41Cko1)Ukpio(j41)/2,0
k=0
#
Jj+1
= Cj+1,k Uk+i—(j+1)/2,0
k=0

This proves the lemma. |



Non-optimal behaviour of finite element methods for first order ... 585

To simplify notation we consider below only ug; for j odd. The results extend
trivially to other elements. We take u;p to be the midpoint interpolant of the boun-
dary data g, so that u;o = g(¢h). Then

uoj = Xj:%’k g(h(k—j/2)) (15)
k=0

Note that if g =1 then by (12) we have u" = 1. Similarly, (13) leads to an estimate
for the case g(z) = x: in this case (15) becomes

uoj = Zj:cjk n(k-if2) = h(‘i,‘\k - j/2)
k=0 k=1

The location of the downwind vertex of Tp; is

i—-1
zo;=hY A — h(j—1)/2
k=1

Comparing ug; to the value of the exact solution along z = zo; we have
|uoj — g(=0j)| = |hA; — h/2] < h/2

Finally, we will use (14) to derive an error estimate for arbitrary g € C1'1. There will
be no loss of generality in assuming that ¢’(zo;) = 0 since this could be arranged
by subtracting g'(zoj)z from g(z), and we have just seen that linear functions are
approximated to optimal order. By (15) and the mean value theorem,

uoj = ) ¢k [g(xw) + (h(k = 3/2) - ””01')91(5")]}

k=0

for some Zp between zo; and h(k — j/2). Thus using (12)

> cin(hlk — 3/2) — oj)g' ()

k=0

Juoj — g(zoj)| =

With M the Lipschitz constant of g¢’, we have
lg'(Ex)| = 19" (8k) — g'(0j)| < M|Zy — woj| < M|h(k = j/2) — ;]
50

M zj:qk (h(k - %) - a:oj)2

k=0

IA

[ugj — 9(z05)]

i

= MhZZCjk(k—j‘Sik—é—)z

k=0 k=1
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j-1 ‘
|
= Mh2[2(,\k—/\%)+z]
k=1
< thz‘
> 7 J

Since j < O(h™!), this gives an order h estimate.

From (7) and (8) it is clear that the method is stable in Lo, (£2) (with constant 1).
Thus by interpolation we obtain the following result.

Theorem 1. Let u be the piecewise constant discontinuous Galerkin approzimation
to (9)-(10) on a semi-uniform triangulation. Then for r > 0, '

l[u" = ulloo,0 < CA™O D fu|r 0,0

Note first that in contrast to (Richter, 1988) this result is obtained only under the
assumption of semi-uniformity, and we do not also assume the non-alignment condi-
tion. Next note that the optimal O(h) rate of convergence is guaranteed only for
r = 2, whereas for a typical interpolant, » = 1 would suffice. We will now show that
our result is in fact sharp in this regard.

For this purpose consider g(z) = |z|", so that u € W7 (Q), and a uniform mesh
with A; = 1/2 for all j. Then zo; = 0 and the error on the element Tp; (since

9(0) = 0) is

j i12=Vi/4 WAL=
ugsh" ) Jeielk— /2" 2 b7 Y cirlk—j/2r 2 b (T) Cjk
k=0 k=j/2—/7/2 k=j/2—/7/2

For A; = 1/2 this last sum can be shown to be bounded below by a positive constant
independent of j — the details are given in Appendix. On the outflow boundary
j = O(h~1) and we obtain wug; > ch™/2. This shows that min(1,r/2) is in general
the highest rate of convergence that can be expected.

The present situation is also a good one in which to examine the issue of crosswind
spread. Consider taking the inflow boundary data to be

(@) = 1, fz<0
R =0, ifz>0
In a typical cross-section of the discrete solution at y = 1, there will be a region to
the right of x = 0 on which the exact solution would be 0 but on which the discrete

solution has significantly non-zero values. We will show that the width of this region
is of order A!/2. For the boundary data given above, (15) becomes

il2—i-1/2
Uj; = E Cik
k=0
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For i = /7/4 — 1/2 we obtain, using again the result presented in Appehdix for
)\j = 1/2,

il2=vil4
Uij 2 Z Cik > ¢ .
k=i /2= 7/

Since u;; is evidently decreasing in 1, this implies that there are O(\/7) elements to
the right of z = 0 on which u” has a significantly non-zero value, and at y = 1
where j = O(1/h) this gives a width of order /2. Thus the known crosswind spread
estimate for the DG method cannot be improved in general.

It is also easy to recapture a result given in (Peterson, 1991a). Consider problem
(9)-(10) with © = (0,00) x(0,1), boundary data g(z) = z, and the triangulation
indicated in Fig. 3. Extend the domain and triangulation evenly to (—o0, 00) x (0, 1).
The extended u® will be unaffected if the vertical line z = 0 is removed from the
triangulation. Thus the original problem on (0,00)x(0,1) with smooth boundary
data g(x) = z is equivalent to a problem on (—o0,00)x(0,1) with a uniform mesh
but with nonsmooth boundary data g(z) = |z|. Above we have seen that the po-
intwise rate of convergence for this latter problem is no better than O(h!/2). We
conclude that for an arbitrary quasi-uniform triangulation, the order of pointwise
convergence may be limited to 1/2, even if the exact solution is smooth.

NONN
A4

NININANSN

Fig. 3.

4. Discontinuous Galerkin — Numerical Results

In this section we summarize the results of various numerical computations involving
the DG method with p > 1. Complete details may be found in (Peterson, 1991a) and
(Peterson, 1991b).

To investigate the rate of convergence, we again use (9)—(10) as our test problem,
now on the domain @ = (0,1) x (0,1). As the boundary data we take g(z) = z*!,
When using a triangulation as indicated in Fig. 4, the results are as shown in Tab. 1.
The pointwise rate of convergence is clearly only p+ 1/2, even though the exact
solution to the test problem is smooth (u(z,y) = zP*!). Note that in this case the



588 T.E. Peterson and D.B. Shuster

Fig. 4.

Fig. 5.

triangulation does not satisfy the non-alignment condition. In fact, the error is largest
near the vertical lines £ = 0 and z = 1. We can take advantage of this phenomenon
to construct an example in which the Ly(f2) error converges at a rate of only p+1/2,
by introducing additional vertical lines into the triangulation, as indicated in Fig. 5.
By letting the number of these lines vary with A as h=3/4 we obtain the results
shown in Tab. 2. These results show that the estimate (3) is sharp, even for smooth
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Tab. 1. Estimated convergence rate for DG with alignment at 2 =0 and z =1, p=1.

Ly Lo
1/h error rate error rate
626 | 0.3779e-6 0.9981e-5

1251 | 0.9702e-7 | 1.96 | 0.3576e-5 | 1.48
2501 | 0.2497e-7 | 1.96 | 0.1276e-5 | 1.49
5001 | 0.6444e-8 | 1.95 | 0.4539e-6 | 1.49
10001 | 0.1668e-8 | 1.95 | 0.1612e-6 | 1.49

Tab. 2. Estimated convergence rate for DG with semi-frequent alignment, p = 1.

L Lo
1/h error rate error rate
535 | 0.2983e-5 0.1248e-4

1086 | 0.1032e-5 | 1.50 | 0.4409e-5 | 1.47
2128 | 0.3754e-6 | 1.50 | 0.1601e-5 | 1.50
4608 | 0.1189e-6 | 1.49 | 0.5354e-6 | 1.42
8610 | 0.4632e-7 | 1.51 | 0.2009e-6 | 1.56

solutions. When the characteristic direction is slightly displaced from (0, 1), and the
analogous computations are performed on these same triangulations, optimal rates of
convergence are observed in all cases. Thus the counter-intuitive assumption of non-
alignment seems to be natural for this method. Notice however, that if the mesh were
everywhere aligned with the characteristic direction, the results would be extremely
good.

Given a triangulation free from the phenomenon seen above, there is still the
question of how much regularity is required to obtain an optimal order estimate.
Consider (9)—(10) on the trapezoidal domain and uniform triangulation shown in.
Fig. 6, with boundary data g(z) = ||*. Then v € H"(Q) for r < a +1/2. By
varying the parameter a we vary the regularity of u, which may be plotted against
the observed L, rate of convergence. Results of such computations are shown in
Fig. 7. There are three things of note: to obtain optimal order u € H?*1(Q) is not
sufficient; the amount of regularity assumed in (4) appears to be more than necessary;
and the amount of ‘extra regularity’ needed (vis-a-vis the estimate for an interpolant)
appears to decrease as p increases.

The known crosswind spread estimate of O(h!/?) has been shown to be sharp
for piecewise constants. However, numerical results indicate that this improves to
O(h3/%) for p = 1. We now give the details of these results. Consider again uy, =0
on the domain and triangulation shown in Fig. 6, now with the boundary condition
u(z,0) = sign(z). At the outflow boundary y = 1 the number of elements to the
right of £ = 0 on which |u® — 1| > ¢ is counted, for some fixed tolerance e. This
process is repeated for different A and from this an estimate of the asymptotic rate
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Fig. 6.

Rate

— — Optimal, p=1,2

DG,p=1

DG,p=2

Fig. 7.

is made. The whole procedure is repeated for different values of € to check for
consistency. The results are shown in Tab. 3. For p = 1 the rate appears to be well
above 1/2, and consistent with a conjecture of 3/4. The value 3/4 is also consistent
with a study of the streamline diffusion method (Johnson et al., 1987), a method
whose analysis often parallels that of the DG method. For p > 1 the crosswind spread
appears to become better still — we conjecture that it varies like (2p+ 1)/(2p + 2).

Tab. 3. Crosswind spread for DG (e = 107°).

1/h | width | rate | width | rate | width | rate
1250 | .0164 .0092 .0068

2500 | .0098 | 0.74 | .0052 | 0.82 | .0392 | 0.79
5000 | .0059 | 0.73 | .0029 | 0.84 | .00216 | 0.86
10000 | .00345 | 0.77 | .00165 | 0.81 | .00118 | 0.87
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5. Continuous Galerkin

For the CG method, the first non-trivial case is p = 2, since when p = 1 Type 2
elements have no degrees of freedom. Unfortunately, even the p = 2 case is sufficiently
complex to make the type of direct analysis of Section 3 intractable. Thus for the
CG method we present only numerical results. We will investigate three aspects of
the behaviour of the method when p > 2. We continue to use (9)-(10) as our test
problem.

We first consider the role of the non-alignment condition. Recall that the estimate
(6) was derived under this condition. With © = (0,1) x (0, 1), g(z) = z”*1, and the
triangulation indicated in Fig. 5, with the number of strips varying proportionally
to h=3/% for p = 2 and proportionally to h=%/10 for p = 3, the results are as
given in Tables 4 and 5. Notice that the non-alignment condition is violated in this
example. Nonetheless, the rate of convergence is about O(hP*1/4) for p = 2, and
about O(h?P+1/3) for p = 3. We conclude that the non-alignment condition may
not be necessary for (6) to hold, that (6) may be improvable for p > 2, and that to
guarantee an optimal rate of convergence the non-alignment condition (or some other
condition on the triangulation) will be necessary.

To isolate the effect of regularity, we use the domain and triangulation shown
in Fig. 6, with g(z) = |z|*. Plots of the convergence rate against the regularity
of u are shown in Fig. 8. We see that for p = 2, the estimate (6) is sharp, in
that for u € H3(Q) we observe only the O(h?*1/4) convergence. This agrees with
results reported in (Falk and Richter, 1987). For p = 3 the rate is about O(h?P+1/3),
however, again suggesting that (6) may be improvable for p > 2. And we also see
that an optimal rate is obtainable only by assuming additional regularity, and that
the amount of additional regularity appears to decrease as p increases.

Tab. 4. Estimated convergence rate for CG with semi-frequent alignment, p = 2.

L, " Lo
1/h error rate error rate
48 | 1.889¢-06 9.009e-06
96 | 4.270e-07 | 2.15 | 1.842e-06 | 2.29
200 | 7.959e-08 | 2.29 | 3.500e-07 | 2.26
391 | 1.777e-08 | 2.24 | 7.686e-08 | 2.26
780 | 3.838e-09 | 2.22 | 1.612e-08 | 2.26
600 | 7.498e-10 | 2.27 | 3.190e-09 | 2.26
3145 | 1.656e-10 | 2.24 | 6.937e-10 | 2.26
6292 | 3.475e-11 | 2.25 | 1.452e-10 | 2.26
12720 | 7.089e-12 | 2.26 | 2.971e-11 | 2.25
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Tab. 5. Estimated convergence rate for CG with semi-frequent alignment, p = 3.
L2 Ly
1/h error rate error rate
48 | 3.635e-09 1.560e-08
96 | 3.875e-10 | 3.23 | 1.567e-09 | 3.32
184 | 4.819e-11 | 3.20 | 1.847e-10 | 3.29
387 | 4.155e-12 | 3.30 | 1.568e-11 | 3.32
729 | 5.342e-13 | 3.24 | 1.888e-12 | 3.34
1530 | 4.541e-14 | 3.33 | 1.559%e-13 | 3.36
3135 | 4.176e-15 | 3.33 | 1.462e-14 | 3.30
6384 | 3.934e-16 | 3.32 | 1.367e-15 | 3.33
11928 | 5.140e-17 | 3.26 | 1.679e-16 | 3.35

Rate
4 / —r
/ )
o — —  Optimal,p=2,3
2
-
. CG,p=2
‘ o s CG, p=3
1 2 3 4 5
T
Fig. 8.

Crosswind spread for the CG method was investigated using the same methodo-
logy described above for the DG method. The numerical results are reported in
Tab. 6. Notice that the rate increases with increasing p, and that the known estim-
ate of O(h'/2) does not appear to be sharp. If we compare to the DG method,
for which the computational experiments above suggest rates of O(h%/€) for p = 2
and O(h"/®) for p = 3, we see that the continuous method is not quite as good.
However, when consideration is given for the amount of computation required by the
two methods, the differences are mitigated.

6. Streamline Diffusion

In this section we briefly consider the streamline diffusion (SD) method for the model
problem. Unlike DG and CG, this is an implicit method, requiring the solution of a
single large linear system to obtain the approximation; however the analysis of SD

has often been very similar to that of DG, and so it seems appropriate to include it
here.
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Tab. 6. Crosswind spread for CG (e = 107°).

1/h p=2 p=3 p=+4
10 | 0.600000 | 0.416667 | 0.550000
20 | 0.375000 | 0.275000 | 0.312500
40 | 0.250000 | 0.170833 | 0.168750
80 | 0.156250 | 0.097917 | 0.090625

160 | 0.093750 | 0.059375 | 0.048438

320 | 0.056250 | 0.034896 | 0.025781

640 | 0.035938 | 0.019531 | 0.015234

1280 | 0.021875 | 0.011849 | 0.008398

[Rate | 071 | o717 [ oss |

The SD approximation u® of problem (1)—(2) is that element of Sy, the set of
all continuous piecewise polynomial of degree p, which satisfies

/ (o - Vul + Bul — f)(v* 4 ha - Vo) +/ (P —g)vt(a-n)=0 Wt e s,
Q an-

The known general Ly(§?) estimate for the SD method shows the same 1/2 order loss
with respect to an optimal estimate as seen in (3). See (Johnson et al., 1984) and the
references contained therein for details.

For computational convenience, we investigate the optimality of the SD method
with respect to the Lo (£2) norm. We do this by again using the test problem u, = 0,
on the domain (0,1)x(0,1) with the triangulation shown in Fig. 4, p = 1, and
boundary condition u(z,0) = z2. The results are given in Tab. 7, and clearly show
non-optimal convergence. Note that the non-alignment condition is violated in this
example, suggesting that the non-alignment condition may also be relevant to the SD
method.

Tab. 7. Estimated convergence rate for SD with alignment at £ =0 and z =1, p = 1.

Lo Ly

1/h error rate error rate
45 | 2.7053e-5 7.2372e-4

60 | 1.5678e-5 | 1.90 | 4.7737e-4 | 1.45
75 | 1.0262e-5 | 1.90 | 3.4495¢-4 | 1.46
90 | 7.2568e-6 | 1.90 | 2.6421e-4 | 1.46
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7. Summary

For many elliptic problems, the standard finite element method admits optimal
a priori error estimates of the form

[luh — ullo < CRP*H|u|lp41.0

This estimate is optimal in the sense that the power of A cannot be increased, nor
can the index of the norm on the right be decreased. Error estimates for interpolants
constructed directly from u are not better. In contrast, what we have seen above is
that for even the very simple hyperbolic problem (1)-(2), the finite element methods
we have considered show non-optimal behaviour in several respects. In addition, it
appears that in some aspects the extent of this non-optimal behaviour varies with the
polynomial degree p, a phenomenon without analogue in elliptic theory.

We have shown that the estimate (3) for the discontinuous Galerkin method is
sharp. In particular, a rate of convergence higher than p+ 1/2 can only be guaran-
teed by assuming more regularity of the exact solution end making some assumption
on the triangulation beyond just quasi-uniformity. Qur conjecture is that the trian-
gulation should either satisfy the non-alignment condition, or possess some measure
of uniformity. The existing general pointwise estimate of order p 4+ 1/4 is unlikely
to be sharp, and could probably be improved to p+ 1/2, although not beyond that
without the same sort of additional assumptions. And while we have shown that the
existing order h!/2 estimate of crosswind spread is sharp in general, we conjecture it
1s not sharp for p > 1.

For the continuous Galerkin method, the estimate (6) is sharp for p = 2,
although the non-alignment assumption may not be necessary for this estimate, and
the estimate may be improvable for p > 2. To obtain optimal order estimates, ho-
wever, as with the DG method it appears that additional regularity will be required,
as well as an assumption on the triangulation. The known crosswind spread estimate
does not appear to be sharp even for p = 2.

Despite the simplicity of the model problem, the exact behaviour of these methods
eludes analysis to date. In particular there is yet to be given sharp pointwise estimates,
or minimal conditions which guarantee optimal order convergence. Of particular
curiosity is that fact that the counter-intuitive non-alignment assumption seems to
be natural for these methods.
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Appendix
We are interested in the quantity

1 i12=v3/4 i 15 i
s=z, 3 (0259 (da)
k=j/2~-f]2 2

By Stirling’s formula lim /27a®t1/2e=%/a! = 1,
o0—a

a al gatl/2
b) = Wa—b)l = CRTI(q = pyamitie
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Thus

j jj+1/2

=7 2 ¢ =341 i+/i+1

2 (54) 7 (#A)

2
i=y/G41 ir/FH1
= 62j+1j—1/2<. ! > ’ < 4 |
=i i+Vi

and so

n
(A4
pO| =
N

[
l .
S
SNe——

|
|
o

w(ote) T (ogm)
2 i—1 Vi+1

The two factors above have limits as 7 — oo of e!/2 and e~?, respectively. It follows
that S; > ¢ for some positive constant ¢ which is independent of j.
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