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ON THE ROBUSTNESS OF LEARNING IN THE
MULTI-LAYER PERCEPTRON

PauLr WILLIAMS*, ANDREW W.G. DULLER*

The back-propagation algorithm, for training multi-layer perceptrons tends to
be slow to converge to a final solution and many methods have been proposed for
improving this. One technique takes advantage of an alternative training error
criterion, however, we show that this reduces the robustness of the learning in
the presence of outliers in the input data. Two examples are used to show the
characteristics of the learning methods, one a test problem and the other from
a “real-world” problem.

1. Introduction

In this work we investigate the robustness of the back-propagation algorithm applied
to multi-layer perceptrons (MLP) during the training phase under two different output
error criteria; the standard mean square error criterion and an alternative logarithmic
criterion (van Ooyen and Nienhuis, 1992). Van Ooyen employed this measure as an
acceleration mechanism which removes the derivative function from the output layer
of the neural network, thus increasing the speed of escape of the networks neurons
from saturation early on in training. These saturation effects create lengthy plateaus
in the standard mean square error curve.

However, Huang and Lippmann (1987) have shown that the derivative provides
inherent robustness during the learning phase of back-propagation. An investigation
into the effects of the use of the logarithmic measure on the robustness of learning
was therefore undertaken.

2. Motivation

The presence of outliers in training data causes a problem in the training of neural net-
works and can be tackled by using one of three methods; discard the data containing
outliers, by removing outliers from the data using a suitable data cleaning algorithm,
or by relying on the in-built robustness of a suitable classification technique.

Discarding data must be considered a last resort since in most applications suffi-
cient training data is hard to obtain. The removal of outliers from the data generally
involves a large amount of computation and also requires the production of a suitable
parametric model for the generation of the data. In many cases a steady state prob-
ability distribution model is not possible since the presence of a trend may constitute
an important feature. The above alternatives both have major drawbacks and there-
fore the robustness of the back-propagation algorithm is an important feature in the
efficient training of MLP’s with data containing outliers.
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3. Increasing Training Speed

The van Ooyen convergence acceleration method (1992) is designed to take advantage
of the learning error criterion given by
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instead of the standard mean square error criterion which is given by
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where C is-the number of output neurons (classes), N is the number of input samples,
zi; is the actual output of the neural network at node ¢ due to input sample j, and
ti; is the target value associated with the actual output z;;.

Let wi, be the value of the weight connecting the p-th previous hidden layer
node to the i-th output node and y, is the output of the previous layer neuron p.
Analysis of the two error criteria leads to the following:
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for eqn. (1) in which we can see the missing term is 2z;(1 — 2z;) which accounts for
the derivative of the sigmoid function in the output neurons. The derivative of the
sigmoid is thus removed from the error back-propagation equations owing to the use
of the error criterion of eqn. (1).

The advantage of this is that the networks output neurons spend less time in
their saturated regions, a cause of the plateau at the beginning and end of the output
learning error curve.

4. Robustness in Learning

Huang and Lippmann (1987) show that the performance of the MLP exceeds that of
the Bayesian classifier when the input data contains outliers. MLPs are considered
to be robust during training since they place a window on the input data of each
layer when the algorithm multiplies the input data by the bell shaped derivative of
the sigmoid function. Only inputs that are close to the currently estimated decision
boundary may alter the boundary to any degree. Inputs which are further away from
this boundary have little effect on the movement of the decision hyper-plane. It is
therefore expected that the standard MLP is robust to a small number of outliers.
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The problem with using eqn. (1) is that the removal of the output layer deriva-
tive to improve convergence rate has the detrimental effect of reducing the inherent
robustness of the output layer of the multi-layer perceptron, as can be seen from the
results in the next section.

5. Experiments and Results

Two investigations have been undertaken, of neural network training performance on
data which is known to contain outliers using both the standard MLP error criterion
of eqn. (2) and that given by eqn. (1). The first experiment used a simple training
problem (Huang and Lippmann, 1987) and the second was for an application from
the electricity industry involving “real-world” data used in analysing the “flicker” on
domestic lighting circuits.

5.1. Test Problem

Consider the uniformly distributed data shown in Fig. 1 which shows two classes “A”
and “B” of data, together with a set of outliers, A’, which consists of 1% of the data
contained in class “A”. Class “A” has 990 uniformly distributed values between 0.0
and 0.1, class “B” has 1000 uniformly distributed values between 0.25 and 0.75, and
the outlier “class”, A’, contains 10 values between 0.9 and 1.

0.0 0.1 0.25 0.75 09 1.0

Fig. 1. A uniformly distributed data set in two classes, with outliers.

The principle of the experiment was to show that if a network is robust then the
outliers of class “A” will be ignored (and placed in the other class). This problem
was tackled using a 2-layer MLP with structure 1-4-2 (this is the same structure
as that investigated by Huang and Lippmann (1987)), with a learning rate of 0.25
and a momentum factor of 0.7. In one case van Ooyen convergence acceleration was
used and in the other the standard back-propagation algorithm was used; and the
initial weights for all networks investigated in this paper were set randomly in the
range (—0.03,0.03). Since the difference in the number of data samples available
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range {(—0.03,0.03). Since the difference in the number of data samples available
in “A” and “B” is only very small, the generalisation results may be considered to
be independent of this small variation. The standard MLP ignored the 10 outliers
as belonging to class Aj; and since the input must be classified in one of the classes
(Richard and Lippmann, 1991), the network elected to classify the outliers as class
B. The van QOoyen accelerated network classified the outliers as class A rather than
ignoring their class designation; it can therefore be said that the criterion of eqn. (1)
is less robust to outliers during learning than the standard back-propagation learning
procedure using eqn. (2).

In all cases of classification the output node activations were > 0.9 for class
membership and < 0.1 for class the input sample not belonging to that particular
class; the neural networks may therefore be considered to be very confident in their
classification decisions.

An important factor to consider when assessing the robustness of a network is
the networks size (number of hidden neurons). A large network has more degrees
of freedom with which to learn a given problem, whereas a smaller network is much
more rigid during the learning process. This effect is referred to as network flexibility;
a low flexibility (small) network generally will out perform a high flexibility (large)
network during the generalisation process.

It is also the case that for some simple problems using very small networks ro-
bustness to outliers may be high, whether accelerated convergence or standard back-
propagation is used. For example, a network with structure 1—1—2 is just as robust
to outliers in the accelerated version as in the standard version since there is only a
single hyperplane available for hidden layer decision making. Owing to the large prob-
ability density of training samples around the point C in Fig. 1, following training
the network will place the single hyperplane between classes A and B automatically
classifying the outliers, A’, into class B. In addition, a 1 —2 —2 network was inves-
tigated using this simple problem and it was found that both available hyperplanes
separated classes A and B. The exact reason for this is unknown, however it may
be due to very similar initial weights for both hidden neurons and thus the splitting
of the hyperplanes does not take place; this splitting normally takes place later on in
learning when the neurons leave the linear region around the centre of the sigmoidal
activation function.

5.2. Application to a Real World Problem

In order to illustrate more readily the effect of the accelerated convergence algorithm,
a practical application will be demonstrated. The background to this application
is that electricity companies receive numerous complaints from customers when the
“flicker” on domestic lighting circuits reaches a certain threshold. This problem is
generally caused by large pieces of electrical machinery producing voltage fluctuations
in the supply. Each type of equipment causes a slightly different type of fluctuation
which can be identified using a neural network (Williams, 1994; Williams and Duller,
1992). The training data for this application is often collected over a period of many
hours (typically an eight hour shift) and this will be marked as being characteristic of
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the specific piece of equipment. However, this data may well contain samples taken
when the machinery was switched off (e.g. a change of batch on a wire mesh welder
plant) and these will produce outliers in the training set for a particular training
data class. The main goal of this section is to show that in applications where only
few outliers are present, and the network size is suitably chosen, the outliers can be
ignored (thus saving pre-processing time) and training may continue with the full
data set.

Note that what may be outliers of one class may not be outliers of another class,
in fact they may impinge in any other class feature space; so like the simple experiment
above, it is expected that outliers will be classified in some other class.

5.2.1. Background to the Problem

The training data consists of 5 classes; arc-furnace, spot-welder, air-conditioning
equipment, large industrial motors (like those found in rock crushing plant) and steel
rolling-mills. Over a measuring period of 10 minutes, the voltage levels owing to a
particular disturbance are classified into 200 different “quantisation” voltage levels,
a counter, associated with each quantisation level, is incremented each time the volt-
age appears in that level and at the end of the 10 minute period (for a sufficiently
fast sampling rate) a probability distribution function is obtained. Figure 2 illustrates
some typical 200 dimensional probability distribution functions of voltage fluctuations
obtained as training data samples, together with a class called “background” which is
effectively what remains on the supply when a typical disturbing load is disconnected
from the network or switched off. These “background” samples are considered to be
outliers in the flicker data.

5.2.2. Flicker Experiment

The training set consisted of 1000 samples of training data (200 samples from each
of the 5 classes) plus a varying percentage (1% to 20%) of outlier samples. Owing
to the distribution of the training classes in feature space it is possible to use a low
number of hidden neurons (Williams, 1994). A 200 — H — 5 network was used for the
investigation into robustness (where H was varied from 3 to 5 neurons); these are
relatively small networks, therefore low flexibility and high inherent robustness of the
(un-accelerated) network can be assumed. In all cases the standard back-propagation
algorithm displayed higher robustness than the accelerated version, although the de-
gree of robustness depended on the percentage of outliers present and the number of
hidden neurons as can be seen in the Standard column of Table 1 . In interpreting
the results of the various training runs made on the flicker data, it was found that
an extension to the original definition of robustness was required. This leads to the
designations “type 1” and “type 2” for robustness. For the rest of this paper “type
1” robustness is said to occur when:

e an input outlier is given a class designation which is different to the one allo-
cated to it during supervised training; the classification being determined by
the highest output activation

® network output activations sum to 1 and so can be interpreted as probabilities.
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Air-conditioning Spot-welder
0.4 0.1
0.2 0.05
0 L\ 0
0 50 100 150 200 0 50 100 150 200
Arc-furnace Rolling Mill
0.04 0.06
0.04
0.02
0.02
0 0
0 50 100 150 200 0 50 100 150 200
Rock Crusher Background
0.06 1
0.04
05
0.02
0 0
0 50 100 150 200 0 50 100 150 200

Fig. 2. Five classes of voltage disturbing equipment and outliers (background).

Tab. 1. Robustness results for standard back-propagation and van Ooyen en-
hanced back-propagation.

[ % Outliers | Hidden nodes || Standard robust? | van Ooyen robust? |

1 3 yes (type 1) no
3 3 yes (type 1) no
5 3 yes (type 1) no
7 3 yes (type 1) no
10 3 yes (type 2) no
20 3 yes (type 2) no
1 4 yes (type 1) no
3 4 yes (type 1) no
5 4 yes (type 1) no
7 4 yes (type 2) no
10 4 ves (type 2) no
20 4 yes (type 2) no
1 5 yes (type 1) no
3 5 yes (type 1) no
5 5 yes (type 2) no
7 5 es (type 2) no
10 5 yes (type 2) no
20 5 no no
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“Type 2” robustness is said to occur when:
¢ an input outlier produces network output activations that do not sum to 1 and
thus the outputs cannot be trusted; no matter what the output activation values
are.

The table shows which network sizes were robust for each algorithm and a given
percentage of one class being outliers (10% outliers from a class of 200 samples means
20 outliers were present in the data). For standard back-propagation, as the network
size was increased the type of robustness was found to change from “type 1” to “type
27 and then eventually to fail. In general, the larger the network the less robust
was the learning; also, the increasing percentage of outliers in the data reduced the
apparent robustness of the network since the high probability of outliers in the data
gave the impression of the outliers being valid training data. This high concentration
of outliers lead the network to try harder to learn the outliers rather than effectively
fully ignoring them. It can be seen that for all training runs made with the van Ooyen
acceleration algorithm the network was never robust and always learned the outliers.

6. Conclusions

It has been demonstrated that for two layer MLPs the criterion given by eqn. (1)
should not be used where the training data is suspected to contain outliers. This has
been shown for both a test problem and a “real-world” application. In the case of the
“flicker” problem the use of the original learning criteria led to a substantial increase
in the robustness of the MLP over the van Ooyen method for various concentrations
of data outliers and various network sizes.

Two types of robustness have been identified for standard back-propagation and
it has been shown that network robustness degrades from “type 1” to “type 2” before
robustness is lost as the percentage of outliers increases.

The degree of robustness of the MLP is likely to be problem dependent and an
Investigation of this is currently being performed with a number of other “real-world”
applications.
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