Appl. Math. and Comp. Sci., 1995, vol.5, No.4, 751-764

MODELLING SOFTWARE SYSTEMS
IN CONFIGURATION MANAGEMENT

MARIA BIELIKOVA*, Pavor. NAVRAT

A model of a software system is presented. It is on the one hand sufficiently rich to
represent the architectural and development-induced relations which are decisivein
building the configuration, and on the other hand simple enough to allow efficient
processing. We distinguish variants and revisions as two kinds of components.
Systems are represented by two kinds of nodes in an AND/OR-type graph. The
model forms a basis for a method to build a configuration.

1. Introduction

Software systems change more often than it is usually admitted. In fact, the changes
are to be considered more a rule than an exception. Reasons for the unstability are
not only possible errors which are to be corrected, but first of all the changing nature
of the surrounding world to which the software system should be permanently adopted
in the process of the so-called maintenance.

Software systems consist of many components which may undergo changes, as
they indeed frequently do. These modifications are usually incremental, so it appears
to be reasonable to consider results of such modifications to be versions of particu-
lar components rather than independent objects. In a traditional model of versions
(Estublier, 1988; Reichenberger, 1994; Tichy, 1988), two different kinds of modifica-
tions are reflected in two kinds of versions: revisions and variants.

Revisions result from modifications which are caused by error correction, functio-
nality enhancement, and/or adaptation to changes in the environment. They develop
in a time sequence, with each next one usually intended to replace the previous one.

Variants of software components can be described as alternative implementations
of a particular concept (Mahler and Lampen, 1988). A new variant represents an al-
ternative solution. Variants usually exist concurrently. They result from experimental
development or modifications towards ameliorating system properties.

A family of software components comprises a set of such versions of a software
component that were formed by gradual modifications of the given component. A
software system configuration is a set of software components which is consistent.

A software system consists of many interrelated software components. A model
is used to express its structure, respecting in our case the viewpoint of building the

* Dept. of Computer Science and Engineering, Slovak Technical University, llkoviova 3,
812 19 Bratislava, Slovakia, e-mail: {bielikova,navrat}@elf.stuba.sk

752 M. Bielikova and P. Navrat

software system configuration. A frequent and quite natural way of representation
is by means of a tree (see e.g. Rochkind, 1975; Tichy, 1985) or, more generally,
by means of an oriented graph which is usually constrained to be an acyclic one
(Heimbigner, 1988; Lugqi, 1990;. Mahler and Lampen, 1990; Oquendo et al., 1989;
Plaice and Wadge, 1993; Reichenberger, 1989; Vescoukis et al., 1992; Yau and Tsai,
1987). Sometimes, the graphs have a special structure. In (Holt and Mancoridis,
1994), the structure of a software system is expressed by the so-called tube graphs.
They support control of changes of relations between the components during the
system development with respect to given constraints on its architecture.

A general approach to models based on graphs is to represent the components
by nodes and the relations between them by edges. They differ mainly on the ways
of expressing the relations between components and in structuring the components.

The relations between the components are very important from the point of view
of configuration management. In fact, if the components were independent, most of
the problems with software configuration management during software development
and maintenance would simply dissapear. Among the important relations influencing
configuration building, we list e.g. depends_on, contains, refers_to, uses, is_variant,
1s_revision etc.

A model of a software system expresses first of all its structure. When referring to
each of the parts of the system, it uses names. The form of the model is influenced by
the intended application. In software configuration management, the software system
is frequently modelled by a graph in various variations. Besides an acyclic graph and
a tree, some authors also use an AND/OR graph, whose advantages become apparent
especially in connection with supporting the process of building a software system
configuration.

In (Tichy, 1986), a model which is essentially an AND/OR graph is presented, and
its advantages are stressed in comparison with a more “classical” acyclic graph. In this
model, the AND nodes represent configurations, the OR nodes represent families of
components (i.e. groups of versions) and the leaves represent atomic components. The
AND and OR nodes can be freely combined in the graph. Configurations represent in
fact composite components, because the AND nodes take care of integration during
configuration building. In the model, the AND/OR. graph has been generalized to an
attributed graph, i.e. each node can have an associated set of attributes.

A model based on AND/OR graphs has been also presented in (Estublier, 1992).
A component of a software system is represented by a three-level scheme: family of
components — interface — realization. It is allowed to form versions of both the
interface and the realization of a component. Taking into account that the interface
of a component changes significantly less frequently than its realization, we can make
use of this concept in the software system development. On the other hand, the
model becomes more complicated and less transparent. In the AND/OR graph, the
AND nodes and the leaves represent realizations whereas the OR nodes represent the
interface of software components.

The aim of this paper is to devise a way of modelling software systems that would
suit the process of building a software system configuration. We have also developed

Modelling software systems in configuration management 753

a method to support the software engineer in building the configuration. The method
uses the presented model.

2. An Outline of the Proposed Approach

Solving various problems related to building software system configurations in the
process of software development and maintenance requires describing the actual soft-
ware system in a simplest possible way which is still sufficiently rich to reflect the
principal relations and properties decisive in the building process.

We attempt to describe a software system to be used during development and
maintenance, and specifically in building the software system configuration. The-
refore our model encompasses those parts of the system and those relations among
them which are important for building a configuration. When attempting to iden-
tify them, 1t is instructive to bear in mind that a software system is created in a
development process which can be viewed as a sequence of transformations. Because
the initial specification of the system does not (and should not) include details of
the solution, the overall orientation of the transformations is from abstract towards
concrete. However, this does not mean that each particular transformation, especially
when applied to a particular subsystem or a component, is concretisation. In fact,
abstracting, generalizing, and specializing transformations are involved as well. Let
us mention the importance of such kinds of transformations in software reuse, reverse
engineering, etc.

Among all the possible kinds of transformations, it is important to distinguish all
those which correspond to the notion of the component version. Creating a component
version can be done in one of two possible ways. In the first, versions are created to re-
present alternative solutions of the same specification. They differ in some attributes.
Such ‘parallel’ versions, or variants, are frequently a result of different specializations.
In the other, versions are created to represent improvements of previous ones. Such
‘serial’ versions, or revisions, are frequently a result of concretizations of the same
variant.

Versions can by identified by the relation is_version. This relation is reflexive,
symmetric and transitive. It defines equivalence classes within the set of all the
components, each of which is described as a family of software components, i.e. the
family is a set of all components which are versions of one another. However, within
a family we can recognize a binary relation is_variant. This relation is an equivalence.
The equivalence classes are called variants.

We introduce a software component as a revision. In our meaning, even the first
concretization of a variant is called a revision. A software component consists of two
parts: an interface and a realization. In fact, from the point of view of the software
configuration management, the realization part is of only secondary importance. The
relations between components and the components’ properties are more important as
defined in the interface. Here, we identify two parts. One part of the component’s
interface is a description of the variant, which is common for all the revisions of that
variant. Any change to it results in forming a new variant. The other part is the
revision’s own interface. Any change to only a revision part results in forming a new
revision.

754 M. Bielikovd and P. Nédvrat

The relations between software components can be of two kinds:

e relations expressing the system’s architecture, concerned especially with the fun-
cionality of the components and the structure of the system, such as depends_on,
specifies, uses, :

o relations expressing some aspects of the system’s development process, with im-
portant consequences, especially for the version management, such as is_variant,
has_revision, which we shall commonly refer to as development-induced relations.

The architectural relations are defined only between variants and families. As
a result, any change of such relations during forming a new revision must result in
a new variant. We assume that all the revisions of a given variant have the same
architectural relations.

It can be seen from the above that revisions do not have the ‘sovereignty’ to ma-
intain their own architectural relations. All their relations are completely determined
by the variant they belong to. This observation is very important because it allows us
to simplify the situation and to include into a software system model only two kinds
of elements: families and variants.

For a family, the model should represent links to all its variants (links are impli-
citly defined by the is_variant relation). When building a configuration, exactly one
such variant is to be included for each family found to be included in the configuration.

For a variant, the model should represent links to all those families which are
referred to in that variant (links are defined by architectural relations). When building
a configuration, precisely all such families are to be included for each variant found to
be included in the configuration. It should be noted that when a family or a variant is
found to be included in the configuration during the process of its building, ultimately
precisely one software component will be included. The selection of a variant and a
software component within a variant is a part of the version control subproblem.

3. Families of Software Components

Let us attempt to identify the class of those transformations of states in the software
development process which result in forming a new version of some component. Accor-
ding to our analysis, two features are crucial: the language (specification formalism)
of the component being transformed, and the ‘1-to-1’ property which means that one
component is transformed into exactly one component. We assume that all the spe-
cification formalisms used in the software development process are categorized into
groups. Each group represents some type of formalism, e.g. the structure diagram,
the programming language etc. The assumption allows us to consider as versions two
components which are written in two different, but closely related languages. For
example, it is often the case that we have two implementations of some algorithm,
one in language Ly (say, C), and the other one in language L (e.g. Pascal). Natu-
rally, we wish to consider them as versions. Therefore we distinguish a special class
of transformations. A transformation is said to be t_version, if it preserves both the
specification formalism and the ‘1-to-1’ property.

A transformation is applied to a state which consists of software components.
Generally, it may involve several components and it may result in a different number of

Modelling software systems in configuration management 755

components. For example, any refinement step which refines a component (according
to the divide and impera principle) into two components transforms one component
into two components. Of course, all the remaining components are assumed to stay
unchanged during this particular transformation, as they are not involved. Such a
transformation can never create a version.

A transformation which changes radically the language will not result in a version.
For example, if a process specified by a data flow diagram is implemented by a module
written in C, the module will not be considered as a version of the DFD specification.

Only transformations preserving both the described properties lead to versions.
In such a way, all the versions are formed solely by t_version transformations. Trans-
formations of any other kind lead to forming new sets of components. Sets of software
components which have been formed by applying t_version transformations within
them are understood to be in the is_version relation. Such understanding of the no-
tion version conforms to most of the related works in the SCM area. The sets formed
in the described way are called families of software components.

Summarizing, the family of software components is such a set of software com-
ponents that the components included have been formed gradually only by t_version
transformations. These transformations define a binary relation on the set of so-
ftware components of a software system S. Let us call this relation t_versiong. It is
asymmetric and irreflexive.

We get the binary relation is_versiong if we take the reflexive and transitive
closure of the relation (t_versiongs Ut_versiong'). This reflects the above informal
description of the relation is_versiong.

Definition 1. Let COMPONENTSs be a set of components of a software system

S. Let a binary relation t.versiongs C COMPONENTs x COMPONENTSs be
given as follows:

z tversiong y < y is formed by applying transformation t_version to z in

the software system S.

Then the binary relation ts_versiongs C COMPONENTs x COMPONENTs
is given as
is_versiong = (t_versions U t_versiong!')*
To simplify notation, the index S will be omitted whenever it is sufficiently
clear from the context which software system is being referred to. Thus, we write
occasionally COMPONENT instead of COMPONENTSs, is_version instead of

is_versiong, etc.

Proposition 1. The relation is_version is an equivalence.

Proof. The relation is defined as the reflexive and transitive closure, and there-
fore it is trivially reflexive and transitive. It is also symmetric, because the relation
(t-version U t_version™!) is symmetric.]

The relation is_version defines classes of equivalence on the set of components of
a software system. The classes represent families of software components.

756 M. Bielikova and P. Navrat

Definition 2. Let COMPONENTs be a set of components of the software sys-
tem S, and is_versions be a binary relation is.versions C COMPONENTs x
COMPONENTs. The set of all equivalence classes induced by the is_versiong
relation is denoted by FAMILYs:

FAMILYs = {F |F ={z|z € COMPONENT; Az is_version y
for some y € COMPONENTS}}

and called the set of families of software components of the software system S. An
element of FAMILYs 1is called the family of software components.

4. Variants

Next, we focus our attention on the structure of a software component itself. We
define which kinds of properties a component has. Based on that, we can define
variants as sets of those components which share certain attributes.

Definition 3. Let COMPONENTs be a set of software components of
a software system S, and FAMILYs a set of families of &. Let F,
NAME ATTR,NAME_REL be mutually exclusive sets of names. Let DOM
be a set of domains of admissible values of attributes such that for each name
a € NAME_ATTR there is only one domain D, € DOM of admissible values
of an attribute named a. Let f_names : FAMILYs — F be an injective func-
tion which assigns a unique name to each family of a software system S. Moreover,
let e be a well-formed constraint expression from a suitable language and r be an
expression from a specification language. We define the software component to be a
quintuple cg:

s = {ArchRel . REL, FunAttr : ATTR1, CompAttr : ATTR2,
Constr : e, Realis : r}

where REL is a set of pairs (Relationld : n, Familyld : t), n € NAME_REIL,
t € {z|z € FA fnameg'(z) € FAMILYs}, and —(cs € f-name3*(t)), ATTR1
and ATTR2 are finite sets of pairs (a,d),a € NAME_ATTR, d € D,.

In the definition, we have given names to elements of tuples to be able to refer to
them throughout the text. For example, if e is a software component, i.e. a quintuple,
we may refer to its first element as e.ArchRel, to its second element as e.FunAttr,
etc. For example, let us consider a software component cl, for which there exists
an architectural relation contains with family of software components INIT, and a
relation has_document with family DOCUM:

cl = ({(contains, INIT), (has_document, DOCUM)}, %architectural relations

{(phase, implementation), (operating_system, UNIX), % functional attributes
(prog-language, C), (algorithm, simple), (type_of problem, diagnose)},

{(author, peter), (date, 9501_15), (status, working)}, Y%other attributes
(parameters = ordered) = (system_ver = UNIX _4.3), Y%constraint

#define... %program in C language

Modelling software systems In configuration management 757

In the structure of a software component, besides other elements, we have also
included a constraint expression and a specification expression. We shall make use of
them in the process of building a configuration.

In order to describe variants, we define a binary relation is_variant which de-
termines a set of software components with equally defined architectural relations,
functional attributes and constraints within a given family.

Definition 4. Let COMPONENTs be a set of software components of a software
system S with binary relation is_versiong. The binary relation is_variants C
COMPONENTsx COMPONENTS; is defined by
z is_variants y <> ¢ is_versiong y A z.ArchRel
= y.ArchRel A x.FunAttr = y. FunAttr A z.Constr
= y.Constr

Proposition 2. Relation is.variant is an equivalence.

Proof. We use properties of binary relations is_version and ‘=" which are both equiva-
lences, i.e. they are reflexive, symmetric and transitive. We show that these properties
hold for is_variant as well.

The relation is_variant is reflexive because the following holds:

Vz (z is_version x A x.ArchRel = z.ArchRel A z.FunAttr
= z.FunAttr Az.Constr = z.Constr) = Ve (z is_variant z)

The relation is_vartant is symmetric because the following holds:

Ve,y (z is_variant y &< (z is_version y A z.ArchRel
= y.ArchRel A z. FunAttr = y.FunAttr A z.Constr
= y.Constr) < (y is_version z A y.ArchRel
= z.ArchRel AN y.FunAttr = z. FunAttr A y.Constr

= z.Constr) & y is.variant z)

The relation is_variant is transitive because the following holds:

Vz,y,z (z is_variant y Ay is_variant z < (z is_version y A z.ArchRel
= y.ArchRel A z.FunAttr = y. FunAtir A z.Constr
= y.Constr Ay is_version z A y.ArchRel
= z.ArchRel A y.FunAtir = 2. FunAttr A y.Constr
= z.Constr) & (z is_version y Ay is_version z A z.ArchRel
= y.ArchRel N y.ArchRel = z. ArchRel A . FunAttr
= y.FunAttr Ay.FunAttr = z. FunAttr A z.Constr

= y.Constr Ay.Constr = z.Constr) & ¢ is_variant z)

758 M. Bielikova and P. Navrat

Definition 5. Let COMPONENTs be a set of software components of a software
system S and is_variantgs be its variant relation. A set of all equivalence classes in
the relation is_variants is given by

VARIANTs = {V |V = {z|z € COMPONENTs A is_variants y
for some y € COMPONENTS}

and called the set of variants of S. An element of the set VARIANTs is called the
variant.

Variants are important to simplify management of software component versions
in selecting a revision of some component, or in building a configuration. We can
treat an entire group of components in a uniform way due to the fact that all of them
have the relevant properties defined as equal.

Let us present an example of a software system which includes versions of (some
of) its components. The example is taken from the software system KEX, (Bielikova
et al., 1992; Néavrat et al., 1989). The system elements are shown in Fig. 1 along with
architectural relations between them.

EVAL
> family
> variant
> revision
Y
ACTIONS INFER
/ L 4
A MANAGER
INTERR
| l

Fig. 1. An example of a software system: partial hierarchy of elements.

In Fig. 1, the elements are organized in a hierarchy. Families of software compo-
nents comprise variants and the variants comprise revisions. Architectural relations

Modelling software systems in configuration management 759

are defined on the level of variants (they are the same for all revisions within a va-
riant) between a variant and a family of software components. The software system
in Fig. 1 consists of seven families of software components. They are identified by the
names: EVAL, INIT, ACTIONS, INFER, DOCUM, INTERR, MANAGER. Each
family includes several software components, e.g. the family EVAL includes three sets
of components (i.e. variants) which include in turn nine revisions. Thus, the family
EVAL includes nine software components.

5. A Model of a Software System

The concepts introduced above allow us to formulate a model of a software system.
When proposing the model, we attempt to find one which would support the process
of building a configuration. That is why, in our model, those parts and relations of the
software system are represented explicitly, which is crucial in the process of building
a configuration.

Our approach is based on the assumption that families of software components,
variants and revisions are the basic entities involved in version management. All
the relations between these entities can be grouped into architectural relations and
development-induced relations. The development-induced relations determine a mem-
bership of a variant in the family of components, and a membership of a revision in a
variant. Architectural relations must be defined explicitly on the level of variants and
must be the same for all the revisions included in a given variant. This assumption is
very important, because it allows us to formulate a model of a software system which
comprises only two kinds of elements: families and variants.

From the point of view of a family, the model should represent families and
variants included in them. We shall call this relation has_variant. From the point
of view of a variant, the model should represent architectural relations which are
defined for each variant. When building a configuration, for each family already
included in the configuration there must be exactly one variant selected. For each
variant already included in the configuration, all the families related to that variant
by architectural relations must be included. Taking into account that a software
component is determined completely only after selection of a revision, a resulting
configuration is built by selecting exactly one revision for each selected variant.

We propose to represent elements and relations incorporated into a model of a
software system by an oriented graph.

Definition 6. Let FAMILYs be a set of families of software components,
VARIANTs be a set of variants of a software system S. Let F' be a set of na-
mes and f_names : FAMILYs — F be an injective function which assigns a unique
name to each family of the software system S. Let A C VARIANTs x F' be a binary
relation defined as follows

ey Aey < JzIr(z €ey Ar € z.FunRel A r.Familyld = ez)
Let O C F x VARIANTSs be a binary relation defined as

e1 O e3 & e3 C fnameg!(ey)

760 M. Bielikova and P. Navrat

We define the model of the software system S to be an oriented graph Mg =
(N, E), where N = FsUVARIANTs is a set of nodes with

Fs = {:cl:n € F A fnameg'(z) € FAMILYS}

and E = AUO is a set of edges, such that every maximal connected subgraph has
at least one root.

We remark that the binary relation A represents architectural relations and the
relation O reflects the relation has_variant.

Any element of E,(v1,v2) € E, which is called an edge, belongs to one from
among two mutually exclusive kinds. We have either e; € VARIANTs and ey € F,
l.e. the edge is from A, or e; € Fs,es € VARIANTS, i.e. the edge is from O. In
the former case, the node e; is called the A-node. In the latter case, the node e; is
called the O-node. Such graphs are called A/O graphs.

An A/O graph which models a software system has several properties following
directly from the definitions of the family of software components, the variant, and
the model itself:

P1) Every O-node has at least one successor.
P2) Every A-node has exactly one predecessor.
P3) On every path, A-nodes and O-nodes alternate.

The requirement that the model of a software system should have at least one
root is motivated by the fact that the model should be adequate to the purpose of
building the software system configuration. When there is no root in a model, it is
not possible to determine which components are to be selected for the configuration.
Actually, the requirement is not a restriction in the case of software systems. This
follows from the very nature of the development of software systems and its description
by transformations of solution states. Let us mention that the known approaches
to modelling a software system by a graph assume that there is at least one root,
cf. (Estublier, 1992; Miller and Stockton, 1989; Narayanaswamy and Sacchi, 1987;
Ploedereder and Fergany, 1989).

The model of the software system depicted in Fig. 1 can be expressed by an A/O
graph in Fig. 2. To simplify referencing the variants, we invented names for them.
They are derived from the name of the corresponding family of software components
combined with a natural number.

Let us stress once again that in our model only families of software components
and their variants are represented explicitly. We have been led to this choice by
the fact that revisions neither represent different concepts or solutions nor introduce
them. Whenever a revision attempted to do so, according to our model it would
become a variant. On the other hand, revisions are mere improvements, repairs
or enhancements. Creating a revision does not assume any change in architectural
relations between the components in a software system. That is why they need not
be represented in the system’s model.

Modelling software systems in configuration management 761

Fig. 2. Software system of Fig. 1 modelled by an A/O graph.

The usual interpretation is that the A-nodes are origins of edges leading to nodes,
all of which must be considered provided the A-node is under consideration (logical
AND). Similarly, the O-nodes are origins of edges leading to nodes, from among
which exactly one must be considered provided the O-node is under consideration
(logical OR).

The model of a software system describes all the possible configurations. The
space of configurations is extremely large even for modest systems. For example,
assuming a rather small system with 100 families, and with 2 versions within each
family, we have 21%° different versions of the system. The problem is that practically
only very few of them are useful, either for maintenance or for further development.
To solve the problem how to find a desired version of the software system (i.e. a
configuration) without having to search the space of all possible versions is therefore
very practical.

The model of the software system we presented above simplifies greatly the pro-
blem of building a configuration. The problem can be formulated in terms of searching
a graph. Besides simplifying the problem, the model also simplifies representation of
the large set of possible configurations. Without such a model, large tables of con-
figurations would have to be kept, which would be a source of difficulties during
maintenance.

Taking into account the fact that the nodes in our model are component families
and variants, but not revisions (i.e. the actual components), it follows that any con-
figuration we build by searching the model can only be a generic one. It can identify
several configurations of the software system. A configuration of a software system

762 M. Bielikova and P. Navrat

built solely from software components, i.e. revisions, is called a bound one. A generic
configuration consists of variants and it determines a set of bound configurations. To
build a usable (bound) configuration from a generic one, one revision for each variant
in the generic configuration must be selected.

Now we can review the main points of our method for building a configuration.
First, a model of a given software system must be available. The model is a suitable
way of representing all the possible configurations. Several different configurations can
be built from it, usually based on different required purposes of the desired configura-
tion, as e.g. a configuration for the end user, a configuration for further development,
etc. Such configurations can be specified by different configuration requirements. This
second phase results in a generic configuration. In the third phase, a revision for each
variant must be selected, resulting in a bound configuration. A detailed description
of the method shall be presented elsewhere.

The space of software system configurations is hierarchical, with two levels. One
level comprises all the possible generic configurations. For each generic configuration,
the second level comprises all the corresponding bound configurations. Such organi-
zation provides for a high degree of reuse. When building a new configuration, we can
reuse the current generic configuration as long as all the changes are revisions within
the desired generic configuration. Only when a change results in modifying the set of
variants, a new generic configuration must be built.

6. Experiments

The proposed method for modelling software configurations has been implemented
as a part of a larger project aiming at the development of a method of building a
configuration. We have performed experiments to analyse its properties. We have
developed an experimental implementation of the method in Prolog. The imple-
mentation endeavour has become an interesting research question by itself. While
devising an algorithm implementing our method, we essentially faced the problem
of searching an A/O graph with constraints. This led us to techniques similar to
those used in truth maintenance systems, and finally to devising a programming
technique for implementing such algorithms which use markings to maintain consi-
stency. A more detailed description of these results is reported in (Bielikovd, 1995;
Bielikovd and Névrat, 1995).

7. Conclusion

One of the reasons behind our approach to software configuration management is to
allow software engineers to write down information which is effectively interpretable
by a supporting tool. We have identified a possible ‘portfolio’ for such information.
It is based on a model of a software system represented by an A/O graph. In our
model, we assume that there are two kinds of versions, viz. variants and revisions. In
the model, only variants, along with component families are represented. A variety
of architectural relations can be defined between variants and families.

Our approach makes not only the process of building a configuration easier, but
it provides for a high degree of reuse. One can reuse a software system model, a built

Modelling software systems in configuration management 763

generic configuration and configuration requirements. The fact that architectural
relations can be defined between variants and families allows our model to be “more
generic” as e.g. those of (Bernard et al., 1987; Leblang and Chase, 1987; Mahler and
Lampen, 1988; Tichy, 1985). At the same time, our model is more informative than
those cited above in the sense that several models are usually needed to describe the
information contained in our model. In particular, they allow architectural relations
to be defined only between component families.

References

Bernard Y., Lacroix M., Lavency P. and Vanhoedenaghe M. (1987): Configuration manage-
ment in an open environment. — Proc. 2nd Furopean Software Engineering Conference,
Berlin: Springer-Verlag, pp.35-43.

Bielikovd M., Fri¢ P., Galbavy M. and Vojtek V. (1992): KEX — An environment for deve-
lopment of expert systems. — Proc. 14th Int. Conf. Information Technology Interfaces
ITI’92, Pula, Univ. Computing Centre, Zagreb, Croatia, pp.153-159.

Bielikovd M. (1995): Contribution to Knowledge Based Building of Software System Con-
figuration. — Ph.D. Thesis, Slovak Technical University, Bratislava.

Bielikovd M. and Navrat P. (1995): An approach to building software configuration using
heuristic knowledge. — Proc. 17th Int. Conf. Information Technology Interfaces ITI’95,
Pula, Croatia, pp.575-580.

Estublier J. (1988): Configuration management: the notion and the tools. — Proc. Int.
Workshop Software Version and Configuration Control, Stuttgart, Germany, pp.38-61.

Estublier J. (1992): The Adele configuration manager. — Technical Report, L.G.I., Gre-
noble, Switzerland.

Heimbigner D. (1988): A graph transform model for conﬁguration‘ management environ-
ments, In: Proc. ACM SIGSOFT’88 (Hederson P., Ed.). — Boston: ACM Press,
PP-216-225.

Holt R.C. and Mancoridis S. (1994): Using tube graphs to model architectural designs of
software systems. — Research Report CSRI-304, Toronto, Canada.

Leblang D.B. and Chase R.P. (1987): Parallel software configuration management in a
network environment. — IEEE Software, v.4, No.6, pp.28-35.

Luqi. (1990): A graph model for software evolution. — IEEE Trans. Software Engineering,
v.16, No.8, pp.917-927.

Mahler A. and Lampen A. (1988): An integrated toolset for engineering software confi-
gurations, In: Proc. ACM SIGSOFT’88 (Hederson P., Ed.). — Boston: ACM Press,
pp.191-200.

Mahler A. and Lampen A. (1990): Integrating configuration management into a generic
environment. — ACM Sigsoft Notes, v.15, No.6, pp.229-237.

Miller D.B. and Stockton R.G. (1989): An inverted approach to configuration management.
— ACM Sigsoft Notes, v.14, No.7, pp.1-4.

764 M. Bielikova and P. Navrat

Nivrat P., Fri¢ P., Addmy M. and Mlad4 1. (1989): KEX: Computer aided know-
ledge engineering system. — Proc. Computers’89 Conference, Blahovd, Slovakia,
pp.156-162.

Narayanaswamy K. and Scacchi W. (1987): Maintaining configurations of evolving software
systems. — IEEE Trans. Software Engineering, v.SE-13, No.3, pp.325-334.

Oquendo F., Berrada K., Gallo F., Minot R. and Thomas I. (1989): Version management
in the PACT integrated software engineering environment. — Proc. European Software
Engineering Conference ESEC’89, LNCS 387, Berlin: Springer-Verlag, pp.222-242.

Ploedereder E. and Fergany A. (1989): The data model of the configuration management
assistant. — ACM Sigsoft Notes, v.14, No.7, pp.5-14.

Plaice J. and Wadge W.W. (1993): A new approach to version control. — IEEE Trans.
Software Engineering, v.19, No.3, pp.268-275.

Reichenberger C. (1989): Orthogonal version management. — Proc. 2nd Int. Workshop
Software Configuration Management, ACM Sigsoft Notes, v.14, No.7, pp.137-140.

Reichenberger C. (1994): Concepts and technigues for software version control. — Software
— Concepts and Tools, v.15, No.3, pp.97-104.

Rochkind M.J. (1975): The source code control system. — IEEE Trans. Software Enginee-
ring, v.SE-1, No.4, pp.364-370.

Tichy W.F. (1985): RCS—a system for version control. — Software-Practice and Expe-
rience, v.15, No.7, pp.637-654.

Tichy W.F. (1986): A data model for programming support environments and its applica-
tion. In: Trends in Information Systems (Langefors B., Verrijn-Stuart A.A. and Bracchi
G., Eds.), Amsterdam: North Holland, pp.219-236.

Tichy W.F. (1988): Tools for software configuration management. — Proc. Int. Workshop
Software Version and Configuration Control, Stuttgart, Germany, pp.1-20.

Vescoukis V.C., Psaromiligos J. and Skordalakis E. (1992): PB-VSS: a software version
selection system based on logical programming. In: Parallel and Distributed Computing
in Engineering Systems (Tzafestas S., Borne P. and Grandinetti L., Eds.). — Elsevier
Science Publishers B.V., North-Holland, pp.141-146.

Yau S.S. and Tsai J.J. (1987): Knowledge representation of software component intercon-
nection information for large-scale software modifications. — IEEE Trans. Software
Engineering, v.SE-13, No.3, pp.355-361.

Received: January 30, 1995
Revised: July 6, 1995

