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MULTILAYER FUZZY CONTROL OF MULTIVARIABLE
SYSTEMS BY PASSIVE DECOMPOSITION

ALEXANDER E. GEGOV*

The paper considers the problem of multilayer fuzzy control of multivariable -
systems. Some relevant definitions and theorems are given. Multilayer fuzzy
control algorithms, based on passive decomposition of the original system into
layers, are presented and illustrated by numerical examples. The algorithms
use a subset of state variables, leading to a unilayer control solution by taking
into account implicitly the other variables. It is shown that the number of
measured variables and fuzzy relations is significantly reduced and thus the real
time measurement and control implementation are facilitated.

1. Introduction

Multivariable fuzzy control systems have met with great interest recently (Baboshin
and Naryshkin, 1990; Gegov and Frank, 1994; Gupta et al, 1986). This is due
to the inherent complexity of most real control processes which are characterized
by the simultaneous presence of many state variables (multivariability) and model
uncertainty (fuzziness). However, mostly empirical and heuristic techniques have
been used in this field up to now which is due to the fact that fuzzy control theory
has been developed only for simple low-order systems and not for multivariable and
large scale ones. Similar conclusions are presented in (Gegov, 1994; Palm et al., 1993;
Titli, 1992; Zimmermann, 1991) where the necessity of investigations in this direction
is pointed out.

One of the most important problems in multivariable fuzzy control systems is
the computational complexity of the corresponding control algorithms. Many inve-
stigations have been made with the aim to reduce this complexity by decomposing
the fuzzy control rule basis into separate layers and thus to reduce the number of
rules (Burke and Rattan, 1993; De Silva and MacFarlane, 1989; Koczy and Hirota,
1993; Raju et al., 1992; Sustal, 1993). However, no reduction in the number of on-line
computations is achieved in this case. On the contrary, this number is usually incre-
ased because of the necessity to calculate the additionally introduced intermediate
variables which do not have any physical meaning. In this sense, all these works are
more concerned with off-line relational identification than with the real-time fuzzy
control. More specifically, these works consider systems, described by a large number
of linguistic rules and a small number of state variables, taking into account the fact
that the amount of computations by identification of fuzzy relations is proportional
to the number of rules.
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This paper uses a multilayer approach which is different from that presented
above. It is assumed that there exists partial information about the system which is
expressed in a small number of linguistic rules. At the same time, the system is a
multivariable one and is characterized by a relatively large number of state variables.
Moreover, all the variables in the separate layers are supposed to have physical mea-
ning and are the same as those in the original non-layered presentation of the system.
In this case, no additional intermediate variables are introduced and the correspon-
ding on-line computations by real-time control may be significantly reduced. The
reduction results from the fact that the amount of these computations is proportional
to the number of state variables.

The paper is structured as follows: Section 2 contains the problem statement,
Section 3 introduces some definitions and theorems, Section 4 presents multilayer
control algorithms, Section 5 illustrates the theoretical results by numerical examples,
and Section 6 gives some analysis of the results.

2. Problem Statement

It is known that a multivariable system can be controlled by the following linguistic
rules:

If 211y and ... and z,(;) Then u() and ... and um(1)

1)

If zyn) and ... and z,() Then uyp) and ... and umpm(n)

where zj(y, j = 1,...,n and uis), © = 1,...,m are respectively the j-th input
(state) and the i-th output (control) fuzzy variables in the s-th rule, s = 1,...,h
(Gupta et al., 1986). Both = € E™ and u € E™ are defined in universal sets X and
U of equal power f,ie. X,U € Ef, where E is a vector space.

It is also known that the multivariable system (1) can be represented approxima-
tely by m single-output systems in accordance with the so-called “decompositional
inference” (Gupta et al., 1986; Kosko, 1992; Lee, 1990). In this case, the ‘if’ parts
in (1) are repeated for each output variable u;, i =1,..., m and the following control
law is obtained:

n

Ui:ﬂ(xjo ji)) ' i:l,...,m (2)

i=1

The symbol ‘o’ in (2) denotes the max-min composition and R;; € E/7,
j=1,...,n,i=1,...,m are two-dimensional fuzzy relations, calculated by

=

Rj; = (:cj(s)ﬂui(‘,)), j=1,...,n, 1=1,...,m (3)

s=1

where the symbols ‘U’ and ‘M’ stand for the max and min operator, respectively. The
symbol ‘.’ in the notation f.f separates the dimensions of the vector space E and
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the quantity in the outer brackets of (3) is the Cartesian product of the variables z
and wu. .

It should be pointed out that the representation (2)—(3) is not unique, i.e. there
are many ways of defining R;;, j =1,...,n, i =1,...,m and u, i = 1,...,m
(Driankov et al., 1993; Harris et al., 1993; Pedrycz, 1993). However, the above max-
min compositional inference seems to be most widely used at present as shown in
(Gupta et al., 1986), and for this reason it is considered here. In this sense, the
results in the paper are valid only for this inference but can be extended easily for
other types of inferences.

The control law (2) can be represented by

T T
U1 I R11 e Rnl

Um Zn R.,i ... Ruym

where * is the (o,N) operator. This law is shown schematically in Fig. 1.
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Fig. 1. Multivariable system by fuzzy control.

The detailed presentation of (4) is given by

T T

1 1 11 15

uz n 1'1 T]i T]l
= ﬂ : ) : , t=1,...,m (5)

i=1 1

of ! Al
where the upper index ¢t = 1,..., f stands for the respective element of the universal
set and rff, j=1,...,n, i=1,...,m, s;t=1,...,f are elements of the fuzzy

relation R;;.
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The development of (5) for a given element of the universal set uf,

i1=1,...,m, t=1,..., f leads to the following expression:
n !
ul = ﬂ {U (zj ﬂrjf)} (6)
j=1 Ls=1

It is evident from the control law (4) that the number of fuzzy relations and
on-line computations can be enormous which could cause difficulties in the real-time
measurement and control implementation. This number is proportional to the dimen-
sion of the state vector n and the power of the universal set f. For multivariable
systems, n may be a large number while f is chosen subjectively but in any case
it should not be very small if a satisfactory accuracy of the computations is requ-
ired. Therefore, it would be reasonable to find a suitable decomposed form of the
control law that would reduce the computational complexity of the problem. One
possible way in this direction is to find the conditions under which the control law (4)
may be passively decomposed into separate layers. This approach is analogous to
the one presented in (Gegov and Frank, 1994) but the difference here consists in the
decomposition which is temporal and not spatial. It is expressed by the term “pas-
sive decomposition” that the fuzzy relations in the original control law (4) are not
influenced during the decomposition.

3. Definitions and Theorems

For the purpose of multilayer control, two general types of decomposed subsystems
(layers) are considered: single-input single-output (SISO) and non-single-input single-
output (NSISO). NSISO may be multiple-input single-output, single-input multiple-
output or multiple-input multiple-output subsystems (Jamshidi, 1983). The number
of layers will be denoted by N where N = n for SISO layers and N < n for NSISO
layers. In both cases the inputs of each layer are outputs of the next layer. The only
exceptions in this context are the inputs of the first layer and the outputs of the last
layer which are not outputs and inputs of other layers.

The mathematical notation in this section is presented in a way which gives
the minimal necessary information to understand the idea of the proposed multilayer
approach.

Definition 1. The fuzzy relation (relations) Ry, k € [1,n], i = 1,m is (are)
dominant with respect to the control variable u;, ¢ = 1,m in the control law (2) if
the effect of the other fuzzy relations R;;, j = 1,n, j # k in the same i-th column
of the corresponding relational block matrix in (4) are negligible with respect to u;.

The notation k£ = 1,n in the above definition means that & takes all the values
in the range of the integers 1,2,...,n—1,n. On the contrary, the notation k € [1, n]
will mean further in the text that k& can take one or more, but not all, values in this
range.

The neglecting of the effect of one or more relations on a given control variable in
Definition 1 is based on the observation that some intermediate max-min operations
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may not influence the final solution. Thus, the fuzzy control law may be significantly
simplified without any serious consequences if these computations are omitted.

3.1. SISO Layers

Let system (4) be decomposed into N SISO layers with respect to each control
variable u;, 7 = 1, m as follows:

Ly =I10 D1,2

(7)

ry =zny_19DN_1 N

u;=zyoDy;

where Dj_,; € Eff, j=2,...,N and Dy, € Ef/. This multilayer presentation
is shown schematically in Fig. 2.

_____________________________________________

_____________________________________________

Fig. 2. Mﬁltivariable system by multilayer fuzzy control: the SISO case.

The brief form of the first N — 1 equations in (7) is given by
;i =zj_10Dj_y;, J=2,N, i=1m (8)
where the corresponding relations are calculated by

h

Dj—-l,j = U (l'j—l(k) n :cj(k)), 1= 1,m : (9)
k=1

on the basis of the ‘if’ parts of the linguistic control rules (1). These relations show
how the separate state variables of the system are interrelated and the way of their
determination is in accordance with the basic notion of fuzzy relations, i.e. how to
reflect the mutual connection between an arbitrary couple of physical variables. The
relation in the last equation of (7) is calculated by (3).

Definition 2. The control law (2) is partially decomposable into N SISO layers
in the form (7) if the fuzzy membership values of at least one control variable wu;,
i € [1,m] in both cases overlap in a linguistic sense.

The overlap in the above definition means that one and the same linguistic value
of the control variable is inferred in both cases in spite of the possible difference in
the corresponding fuzzy membership values. This consideration of the system on a
linguistic level is more flexible than the relational consideration which usually imposes
some restrictions.
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Proposition 1. The control law (2) is partially decomposable into N SISO layers
in the form (7) if there exists at least one fuzzy relation Rj;, j = 1,n, i € [1,m]
which is dominant with respect to at least one control variable u;, i € [1,m].

The assumption of decomposability into layers in the above proposition follows
from the notion of dominance of fuzzy relations with respect to a given control variable
in accordance with Definition 1. In this case, the effect of the other fuzzy relations
can be considered as negligible in the sense of the same definition.

The order of state variables in the corresponding layers in (7) is conditional,
i.e. the lower indices of these variables correspond to the indices of the corresponding
layers and not to the original indices in the linguistic control rules (1). Therefore there
may exist different permutations of these variables on the basis of the reindexation
used.

Let a given permutation of the state variables in (7) be denoted by P?, v €
[1,N!] where N! = 1-2.--(N — 1) - N is the number of all permutations. The
original index of the input state variable of the first layer in the v-th permutation
will be denoted by wv;.

Theorem 1. The control law (2) of the multivariable system (1) is partially decom-
posable into N SISO layers in the form (7) if all the state variables are represented
by normal fuzzy sets and the following conditions hold for all the elements of the uni-
versal set ul, t = 1, f of at least one control variable u;, i € [1,m] and for at least
one permutation PY v € [1,N]:

Tstli;'vle[lyN]; S:Lfsr;f, jzllNl j#vl, S:luf (10)
N

Ryi= (_0 j—1,j) o Dy, v1 € [1, N] (11)
i=2 ‘

Proof. 1t is supposed that conditions (10)—(11) hold. In accordance with Definition 2,
it will be necessary to compare the fuzzy membership values of the control variables
in (2) and (7). For this purpose, all intermediate state variables z;, j = 1, N in (7)
are sticcessively substituted and the following expression is obtained

ui:wl0D1,2°~~°DN—1,N0DN,1':-'L'loDl,i:xl*Dl,i, i:l,m (12)

where the operators ‘o’ and ‘+’ are equivalent because of the block-wise influence
of the latter. This expression is an equivalent unilayer form of (7) and is shown
schematically in Fig. 3.

__________________

Fig. 3. Equivalent unilayer presentation: the SISO case.

Expression (12) shows the relation between z; and wu;, ¢ = 1,m as all other
state variables are taken into account implicitly by Djy_1,5, j = 2, N and Dn.
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The index 1 of the state variable is conditional and denotes the first element in the
considered permutation PY, v € [1,N1] of z;, j = 1, N. Therefore this index can
be substituted by a more general index v;. It is proved in (Gegov, 1994) that when
condition (10) holds, the relation Ry, v; € [1, N], i = 1, m is dominant with respect
to u;, ¢ = 1,m in the control law (2) in accordance with Definition 1. At the same
time, this relation is equal to the relation D;; in (12) when condition (11) holds. It
is evident in this case that the fuzzy membership values of the control variables in (2)
and (7) will overlap in a linguistic sense according to Definition 2 and therefore the
proof is completed.

Definition 3. The control law (2) is fully decomposable into N SISO layers in the
form (7) if the fuzzy membership values of all the control variables u;, i = 1,m in
both cases overlap in a linguistic sense.

Proposition 2. The control law (2) is fully decomposable into N SISO layers in the
form (7) if there exist m fuzzy relations Rj;, 7 = 1,n, i = 1,m such that each of
them is dominant with respect to each control variable u;, i = 1,m.

The notion of full decomposability in the above definition and proposition is
concerned with all control variables. Therefore it is a more desirable option than the
partial decomposability which is concerned with at least one but not all such variables.

Theorem 2. The control law (2) of the multivariable system (1) is fully decomposable
into N SISO layers in the form (7) if all the state variables are represented by normal
fuzzy sets and conditions (10)-(11) hold for all the elements of the universal set
uf, t = 1,f of all control variables w;, i = 1,m and for at least one permutation

P, v e[l NY.

The proof of Theorem 2 is analogous to the proof of Theorem 1 and for this
reason it is omitted.

3.2. NSISO Layers

Let system (4) be decomposed into N NSISO layers with respect to each control
variable u;, i = 1, m as follows:

1414y

221 = (2110 D1,121) N...N (T1n, 0 Dijnyo21)

Ton, := (#110D11,20,) N...N (210, © Dinyy2,ns)

ZN1 - (zv-1,10DN-1,1,81) NN (ZN-1,0yy © DNty N,1) (13)
anJ\:, = (zn-110 DN-11,Nny)N...N (@N-1,ny_y © DN-1ny_y,Nnn)

i = (2§10 DN,1i) M- .0 (Tvny © DN ynyyi)
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where Dj_15j.4 € EfS, j=2,N, s=1,nj_1, ¢=1,nj, Dngi € Eff g=1,nn.
The first lower index of each state variable z denotes the respective layer and the
second index — the input state variable of the layer. This multilayer presentation is
shown schematically in Fig. 4.

ﬂ Ly Tong * "TNnE oDnj,:i ||

Lts10D1,1,2,n5
. .

Tinr— »0D1,n,,2,n,
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] 1
i [}
1 1]
Ti1— 0D1,1,2,1 1 i
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Fig. 4. Multivariable system by multilayer fuzzy control: the NSISO case.

The following notation and substitutions are introduced for further considerations:
N T
Enj =n,z;= [l‘jl,...,a:jnj], R;; = [lei,...,Rjnji:l , i=1N (14)
j=1

The brief form of (13) is given by

nj
Tjq = ﬂ (93]'—150Dj—1,s,j,q), J=2,N, ¢=1,n;
s=1
. (15)
ui=ﬂ (mNsoDN,x,i), i=1,m
s=1

where the quantities D;_1 54, j =2,N, s =1,nj_1, ¢ = 1,n; are calculated as

h

Dj-1,55,0 = U (l‘j—ls(k) Ni; q(k)), t=1m (16)
k=1

on the basis of the ‘if’ parts of the linguistic control rules (1) and the relations
Dns,i, s =1,ny are calculated based on (3).
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Definition 4. The control law (2) is partially decomposable into N NSISO layers in
the form (13) if the fuzzy membership values of at least one control variable u;, i €
[1,m] in both cases overlap in a linguistic sense.

Proposition 3. The control law (2) is partially decomposable into N NSISO la-
yers in the form (13) if there ezists at least one set of ‘q’ fuzzy relations R;gi,
J=L1N, ¢=1,n;, i € [1,m] which is dominant with respect to at least one control
variable u;, © € [1,m].

The order of the state variables in the corresponding layers in (13) is also con-
ditional. Therefore there may exist different permutations of these variables on the
basis of the reindexation used.

It is known from combinatorics that the number of ng-combinations from among
all n state variables in (13), corresponding to the k-th layer, k =1, N, is calculated
according to

Cs (:k) = ;]m’—’_i——mﬁ (17)

A given permutation of all the state variables with respect to all the layers will
be evidently a function of ng-combinations of these layers and could be denoted by
Py, w € [1,z]. In this case, the number of all the permutations z is calculated
through the formula

z= ———’L_l (18)

nil...ny!

The multilayer presentation (13) can be developed in the following recursive form:

Layei' N

U; = TN * DN,z' (19)
where oy = [zN1,...,ZNny] € B/, Dy, = [DN1y, ..., DNiny,il¥ € EI7NT.
Layer N -1

tyy=zN-1%Dno1 N

: (20)

TNny = EN-1* DN_1,Nny

where ZIN-*I:[xN—llj---yl'N—lnN_l]EEan_l, .
DN.—l’N’l = [DN'111:N117 . '!-DN—I,YLN_l,N,l]T E Ean—l'f}

DN-—l,N,nN = [DN—I,I,N,n)vJ .. -;DN—l,nN_hN,nNJT e Ean—l.f)
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Layer 1

zy1 =1 % Dya;

(21)

Toan, = T1 * D1,2,ng
where z; = [$11,---,$1n1] € EfTh’ Dl,2,1 = [D1121;-~')D1,n1,2,1]T € Efnl"f:

Dy 25, =[D11,2,n0)-- '1D1,n1,2,n2]T € Binid

Further, the input state variables of the N-th NSISO layer zn1,...,ZNny are
expressed by (20) and substituted in (19) as follows:

u; = [-’EN—I * DN_1,N,1y-+, EN=1 % DN—I,N,nN] * D i (22)

On the basis of the commutativity of the operator ‘*’ and its block-wise influence, the
following substitutions can be made:

T
Dy_iNg * DN = [DN—l,l,N,Im . -,DN—I,nN_l,N,k] oDy,

. , T
= C;V——I,N,k = [C}V—l,l,N,ki Cey CN—l’nN_l’N'k] € Ef"N—Lf, k=1,n (23)

Therefore the control variable u;, ¢ = 1, m can be expressed by

i = [mN_l,...,xN_l] * [Cfv_l,N,l,---,C}'v_l,N,nN]T (24)

where the input vector of state variables of the (N — 1)-th layer is taken nxy times.

By successive substitution of the input vectors of state variables of the other
NSISO layers, the following expression is obtained:

X . T X
U; = [:cl,...,xl] * [Ci,N,l,--:,Ci,N,ng...nN] ) 1= 1:m (25)

Analogously to the SISO case, the control variable u;, i = 1, m is obtained as an
explicit function of the input vector of state variables of the first layer. However, this
vector is taken n,---ny times which is due to the implicit accountancy of the state
vectors of the other layers. The notation ns---nxy here means that the dimensions
of the input vectors of all layers from the 2-nd to the n-th one are multiplied by one
another.

Theorem 3. The control law (2) of the multivariable system (1) is partially decompo-
sable into N NSISO layers in the form (18) if all the state variables are represented
by normal fuzzy sets and the following conditions hold for all the elements of the uni-
versal set ut, t =1, f of at least one control variable u;, i € [1,m] and for at least
one permutation P¥, w € [1,z]:

g =Lne, s=1,f<rjy, j=1LN, j#w, ¢=1nj, s=1f (26)
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cist q= 1)nZU1) w1, WN € [LN]: pE [1,712"'111\]], s = 1).f§ci5t

wWiqwNp’ WiqWNJ? (27)
qzlynwl) W1,’WN€[1,N], jzl,”z---”N, j?ép:'s:]‘)f
Rwl:Q-i = C:;th,wN.p’ wy, wN € [LN]x g=1ny, p€ [1a nag-- ‘Tl] (28)

Proof. The four lower indices of the relations Cful’q’wN’p, wi,wy € [I,N], ¢ =
1,ny,, p €[1L,ny---ny], i = 1, m in (28) have the following meanings: w; denotes
the first layer in the permutation for which the decomposability conditions hold, ¢ is
the index of the corresponding state variable in this layer, wy denotes the last layer
in the same permutation and p stands for the set of ‘¢’ relations which are dominant
with respect to the control variable u;. The upper index 7 is the index of this control

variable.

It is supposed that conditions (26)—(28) hold. In accordance with Definition 4, it
will be necessary to compare the fuzzy membership values of control variables in (2)
and (25). For this purpose, the control law (25) is presented in the following way:

na-nn [ 01
ul = ﬂ "ﬂ (IL'?Q o Clvq,N,p)‘l ) it=1,m (29)

p=1 Lq:l

where z; = [z11,...,Z1n,] is the input vector of state variables of the first layer
in the considered permutation. It is proved in (Gegov, 1994) that when conditions
(26)-(27) hold, the relations Ry, q: and C%, oy p w1, wN € [1,N], ¢ =1,n4,, p€
[1,n3---nn], ¢ = 1,m are dominant with respect to u;, ¢ € [1,m] in the control
laws (2) and (25) in accordance with Definition 1. In this case, the control law (29)
is reduced to the expression )

ni
ui =) (fflq OCi,q,N,p)’ p€lling--ony], i=1m (30)
g=1

which is an equivalent unilayer form of (13) and is shown schematically in Fig. 5.

____________________________________

Fig. 5. Equivalent unilayer presentation: the NSISO case.
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At the same time, the relations Ry,q and C}u qunpr WHUN € [1,N], ¢ =
1,ny,, P € [l,ny---ny], i = 1,m are equal when condltlon (28) holds. It is evident
in this case that the fuzzy membership values of control variables in (2) and (25)
will overlap in a linguistic sense according to Definition 4 and therefore the proof is
completed. |

Definition 5. The control law (2) is fully decomposable into N NSISO layers in the
form (13) if the fuzzy membership values of all the control varlables u;, 1=1,m in
both cases overlap in a linguistic sense.

Proposition 4. The control law (2) is fully decomposable into N NSISO layers
in the form (13) if there exist ‘m’ sels of ‘q’ fuzzy relations R;q, 7 = 1,N, ¢ =
1,nj, i=1,m such that each of them is dominant with respect to each control variable
u;, 1= 1,m.

Theorem 4. The control law (2) of the multivariable system (1) is fully decompo-
sable into N NSISO layers in the form (13) if all the state variables are represented
by normal fuzzy sels and conditions (26)-(28) hold for all the elements of the uni-
versal set uf, t = 1, f of all the control variables u;, i = 1,m and for at least one
permutatzon P“’, w € [1,z].

T

The proof of Theorem 4 is similar to the proof of Theorem 3 and for this reason it is
omitted.

4. Control Algorithms

On the basis of the theoretical results of Section 3, two control algorithms are pre-
sented below. The first algorithm refers to systems decomposed into SISO layers,
and the other — to systems, decomposed into NSISO layers. The algorithms can be
implemented by a fully decentralized computational structure where each unit calcu-
lates only the i-th control variable u;, i = 1, m. Two stages are distinguished: off-
line and on-line.

Both algorithms require an extensive search with respect to permutations of
state variables. However, this is carried out in the off-line stage and therefore is not
a great disadvantage. If the search turns out to be unsuccessful after testing all the
permutations, the original control law is applied in the on-line stage instead of the
multilayer one.

4.1. SISO Layers

The block-diagram of the control algorithm is presented in Fig. 6.

4.2, NSISO Layers

The block-diagram of the control algorithm is presented in Fig. 7.
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OFF-LINE
Form the linguistic control rules (1)
Calculate the relations Rj;, j=1,..,n, 1=1,...,m by (3)
|
Choose an arbitrary permutation Py, v € [1, N!]
Calculate D;_1;, 7=2,..,N and Dy, t=1,...,m for Ppv
yes no
Check if conditions (10)—(11) hold
1
Calculate Dy, i, v1 €[1,N], 1 =1,...,m by (12)
J
'
S NEE A Check if all PY, v=1,..., N! are tested no
ON-LINE

|

Measure the subset of states z,,, v € [1, N]

I

Calculate the controls u;, i=1,...,m by (12)

L

l

Measure all states ;, 1=1,...,m

:

Calculate the controls u;, i=1,...,m by (2)

{
Apply all u;, 1=1,...,m to the system

Fig. 6. Block-diagram of the control algorithm: the SISO case.
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OFF-LINE

Form the linguistic control rules (1)

!

Calculate the relations Rj;, j=1,...,n, t =1,...,m by (3)

{

Choose an arbitrary permutation Py, w € [1, z]

Calculate Dj_1,s5,4, J=2,..,N, s=1,...,n;-1, ¢ =1,..,n;,
Dnysi, s=1,..,nn, i=1,...,m and Ci,q,wn,p,
wi,wn €[, N], ¢=1,...,n4,, p=1,n2 -+ ny for P’

yes no
Check if conditions (26)—(28) hold

|
yes no

— Check if all P, v =1,...,z are tested

ON-LINE

l

Measure the subset of states Tw, q, w1 € [1, N]

I

Calculate the controls u;, i =1,...,m by (30)

L

l

Measure all states z;, 1 =1,...,.m

I

Calculate the controls u;, i =1,...,m by (2)

{
Apply all u;, i1=1,...,m to the system

Fig. 7. Block-diagram of the control algorithm: the NSISO case.



Multilayer fuzzy control of multivariable systems by passive decomposition 629

5. Numerical Examples

Two numerical examples are presented below for illustration of the theoretical results
from the preceding sections. The first example refers to systems decomposed into
SISO layers, whereas the other one — to systems decomposed into NSISO layers.
The linguistic control rules in both examples can be observed in multi-tank systems,
where the state variables are the liquid levels in each tank and the control variables are
the inflow rates of the liquid in the tanks. These rules are similar to those presented
in (Gupta et al., 1986) where the task of the control system is to maintain the liquid
at a desired level in spite of the presence of disturbing leaks.

The control system usually involves an operator who has an assigned control goal
and performs visual observation of the state and control variables. In addition to that,
it evaluates these variables intuitively and alters manually the system control actions
in order to achieve the assigned control goal.

Example 1. A two-tank system shown in Fig. 8 is considered. One of the tanks can
be filled with liquid through a separate inflow channel while the other tank is only
interconnected. Therefore the corresponding fuzzy control system has two inputs and
one output. The state and control variables can take the following linguistic values:
S —small, M - - medium, B - big. These values are presented by:

§=1[1.0,05,05], M=1]05,10,05], B=][0.5,0.5,1.0] (31)

|

Uy ——»

Fig. 8. A two-tank fuzzy control system: the SISO case.

The system is described by the following linguistic rules:

If zyy=M and z201) =M Then wuq)=B

(32)
If zy0=B and =z33 =B Then uye) =M

The corresponding fuzzy relations in the control law (2) are calculated via (3) as
follows:

0.5 0.5 0.5
Ru:Rzl:(MﬂB)U(BﬂM): 05 05 1.0 (33)
0.5 1.0 05
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The system should be decomposed into two SISO layers, each of them with one
input state variable. In this case, the correspodding relations are calculated as follows:

0.5 05 05 ]
DLQ:(MHM)U(BOB): 05 1.0 0.5 (34)
0.5 05 1.0
[ 05 05 05 ]
Dyi=(MnB)u(BNM)=]| 05 05 10
0.5 1.0 0.5
0.5 05 0.5
Di1=Dis0Dy1=1| 05 05 1.0 (35)
0.5 1.0 0.5

It is evident from (33) and (35) that conditions (10)—(11) hold and therefore
system (32) may be fully decomposed into two SISO subsystems.

To verify the above result, it is supposed that the linguistic values of the state
variables are 1 = M and x5 = M. The calculation of the linguistic values of the
control variable u; by the original and multilayer control laws (2) and (12) leads to
the following overlapping results:

uy = (M o Rn) n (M 0 R21) - [0.5, 0.5, 1.0] =B (36)

up=MoDy, = [0.5, 0.5, 1.0] =B ' (37)

Example 2. A four-tank system shown in Fig. 9 is considered. One of the tanks can
be filled with liquid through a separate inflow channel while the other three tanks
are only interconnected. Therefore the corresponding fuzzy control system has four
inputs and one output. The state and control variables can take the same linguistic
values as in Example 1 and are also expressed by (31).

1 L0100

| | |

Fig. 9. A four-tank fuzzy control system: the NSISO case.
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The system is described by the following linguistic rules:

If zyqy=5 and z31) =S and z30)=S5 and z4)=S Then wyy=M (38)
If Ti2) = M and Ty(2) = M and z32) = M and Ty =M Then uyz) =S

The corresponding fuzzy relations in the control law (2) are calculated via (3) as
follows:

05 1.0 0.5
R11:R21:R31:R41:(SnM)U(MﬂS>: 1.0 05 05 [(39)
0.5 05 0.5

The system should be decomposed into two NSISO layers, each of them with two
input state variables. Thus the following substitutions are made:

11 =21, X12 =22, X221 =3, T22=7T4
Ri11 = Ry, Ri21 = Ra1, R = Ra1, R = Ra (40)

The corresponding relations are calculated as follows:

) 1.0 05 0.5
Di121=Dip21=Di122=Digaz= (505>U(MHM) =105 1.0 05 [(4])
0.5 05 0.5
0.5 1.0 0.5
Dyi=Daza=(SnM)u(MnS)=| 10 05 05 (42)
0.5 05 0.5

Further, the following notation and transformations are introduced:

T = [1611,1012], L2 = [1821,9322}

T T
U = Tg * [D2,1,1;D2,2,1] = [3?21,9822] * [D2,1,1,D2,2,1]

T T
Ty = Ty * [D1,1,2,1,D1,2,2,1] = {1‘11,1312] * [D1,1,2,1,D1,2,2,1]

T T
Typ = Iy * [D1,1,2,2,D1,2,2,2] = [IK11,$12] * [D1,1,2,2,D1 2,2 2]

14314,

T T
up = <{$11,1‘12} * [D1,1,2,1,D1,2,2,1] ) [1?11,1712] * [D1,1,2,2,D1,2,2,2] )

T
* [D2,1,1> D2,2,1]
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D2

_ 1 Al
10D211=C1 121, D1,2210D21,1=C1 39,

14314,y 4y 4y

Dy

144

_ ! — 1l
20D291=C1122D12220D221=C1325 (43)

1414,

The above relations and the corresponding multilayer control law are obtained in the
following form:

0.5 1.0 0.5
011,1,2,1 = C'11,2,2,1 = C11,1,2,2 = 011,2,2,2 =] 10 05 05 (44)
0.5 0.5 0.5
1 1 1 1 T
Uy = [l’llx5"12:‘l’11:‘”12] * [01,1,2,1,61,2,2,1101,1,2,2:C1,2,2,2] (45)

It is evident from (39) and (44) that conditions (26)—(28) hold and therefore
system (38) may be fully decomposed into two NSISO subsystems.

 To verify the above result, it is supposed that the linguistic values of the state
variables are z; = M, i = 1,4. The calculation of the linguistic values of the control
variable u; by the original and multilayer control laws (2) and (25) leads to the
following overlapping results:

ui = (M ° Rm) n (M ° Rm) n (M 0 Rm) n (M : Rm)
=[1.0,05,05] =S (46)

= (M o 011,1,2,1) n (M o 011,2,2,1) =[1.0,05,05] =S (47)

6. Analysis of Results

The proposed method of multilayer fuzzy control by passive decomposition reduces the
number of fuzzy relations in the on-line control laws. For systems fully decomposable
into N SISO layers, there is only one relation for the calculation of each control
variable. At the same time, the corresponding number of relations in the original
control law (2) is n. Analogously, for systems fully decomposable into N NSISO
layers, there are n; relations for the calculation of each control variable and this
number is usually much smaller than n.

The reduction is based on the use of a subset of state variables, leading to a
unilayer solution by taking into account implicitly the other variables. As a result, the
amount of on-line computations is reduced. Another advantage of the method is the
reduction of on-line measurements due to the partial use of state variables. Therefore
the method facilitates the real-time measurement and control implementation.

The method is suitable for multivariable systems and is based on partial or full
decomposition of the system into layers. Such decomposition can be achieved only
if appropriate conditions are fulfilled. However, it may be possible to expand the
range of fulfilment of these conditions by a suitable choice of the fuzzy membership
functions by fuzzification.



Multilayer fuzzy control of multivariable systems by passive decomposition 633

Acknowledgement

The author wishes like to thank the Alexander von Humboldt Foundation from Ger-
many for financial support.

References

Baboshin N. and Naryshkin D. (1990): On identification of multidimensional fuzzy systems.
— Fuzzy Sets and Systems, v.35, pp.325-331.

Burke M. and Rattan K. (1993): A multi-layered motion controller for a mobile robot
implemented with fuzzy logic. — Proc. American Control Conference, San Francisco,
USA, v.3, pp.2248-2251.

De Silva C. and MacFarlane A. (1989): Knowledge-based control approach for robotic ma-
nipulators. — Int. J. Control, v.50, No.1, pp.249-273.

Driankov D., Hellendoorn H. and Reinfrank M. (1993): An Introduction to Fuzzy Control.
— Heidelberg: Springer-Verlag.

Gegov A. (1994): Multilevel intelligent fuzzy control of oversaturated urban traffic networks.
— Int. J. Systems Science, v.25, No.6, pp.967-978.
Gegov A. and Frank P. (1994): Decentralized fuzzy control of multivariable systems by
passive decomposition. — Intelligent Systems Engineering, v.3, No.4, pp.194-200.
Gupta M., Kiszka J. and Trojan G. (1986): Multivariable structure of fuzzy control systems.
— IEEE Trans. Systems, Man and Cybernetics, v.16, No.5, pp.638-655.

Harris C., Moore C. and Brown M. (1993): Intelligent Control: Aspects of Fuzzy Logic and
Neural Nets. — London: World Scientific Publishers.

Jamshidi M. (1983): Large Scale Systems: Modelling and Control. — Amsterdam: North
Holland.

Koczy L. and Hirota K. (1993): Modular rule bases in fuzzy control. — Proc. European
Congress Fuzzy and Intelligent Technologies, Aachen, Germany, v.2, pp.606-610.
Kosko B. (1992): Neural Networks and Fuzzy Systems. — Englewood Cliffs: Prentice Hall.
Lee C. (1990): Fuzzy logic in control systems: fuzzy logic controller, part II. — IEEE Trans.

Systems, Man and Cybernetics, v.20, No.2, pp.419-435.
Palm R., Reinfrank M. and Storjohann K. (1993): Towards second generation application
of fuzzy control. — Proc. IFAC World Congress, Sidney, Australia, v.5, pp.549-552.
Pedrycz W. (1993): Fuzzy Control and Fuzzy Systems. — New York: John Wiley & Sons.
Raju G., Zhou J. and Kisner R. (1992): Hierarchical fuzzy control. — Int. J. Control, v.54,
No.5, pp.1201-1216.
Sustal J. (1993): On the equivalence of some fuzzy-rule control system.;. — Proc. European
Congress Fuzzy and Intelligent Technologies, Aachen, Germany, v.3, pp.1474-1477.

Titli A. (1992): Facing up to complex problems by introducing fuzzy logic in control. —
Proc. IFAC/TFORS/IMACS Symp. Large Scale Systems: Theory and Applications,
Beijing, China, v.1, pp.202-206.

Zimmermann H. (1991): Fuzzy Sets Theory and Its Applications. — Boston: Kluwer
Academic Publishers.

Received: May 9, 1995
Revised: August 14, 1995





