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METHODS FOR COMPUTATION OF SOLUTIONS TO
REGULAR DISCRETE-TIME LINEAR SYSTEMS

TabpEUSZ KACZOREK*

Two new methods for the computation of solutions to regular discrete-time
linear systems are presented. The first of them is an extension of the Dias-
Mesquista method for regular discrete-time linear systems. The other is based

" on an expansion in a series of the inverse matrix [Ez — A]™!. The methods
are compared with the Weierstrass-Kronecker decomposition method and the
Drazin inverse method. Relationships between the coefficient matrices of the
four methods are established. A new mixed method is presented.

1. Introduction

Generalised (descriptor, singular) continuous-time and discrete-time linear systems
have been considered in many papers and books (see References). An interesting
survey of regular (singular) linear systems has been given by Lewis (1986).

Consider a discrete-time linear system described by the equation
Ez;yy = Az; + Bu;, 1=0,1, .. (1)

where z; € IR™ is the local semistate vector, u; € IR™ is the input vector and
E, A, B are real matrices of appropriate dimensions. It is assumed that detE = 0
and

det[Ez — A] £ 0 | 2)

for some z € C (the field of complex numbers).

System (1) is called regular if (2) holds and it is called standard if E is equal
to the identity matrix. It is well-known (Aplevich, 1991; Campbell, 1976; Dai, 1989;
Gantmacher, 1959; Kaczorek, 1993; Lewis, 1986; Wonham, 1979) that if (2) holds,
then eqn. (1) has a unique solution for any input sequence {u;} and admissible initial
conditions zg.

Four different methods of finding the solution z; to (1) will be presented and a
comparative study of them will be given. First, the method based on the Weierstrass-
Kronecker decomposition of the regular pencil [Ez — A] will be presented. Next,
the method based on the Drazin inverse (Campbell et al., 1976; Campbell, 1980;
Gantmacher, 1959; Kaczorek, 1993) will be considered. The third method will be an
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extension for discrete-time linear systems of the method given by Dias and Mesquista

(1990). The fourth method will be based on expansion in a series of the inverse matrix
[Ez — AL

2. Weierstrass-Kronecker Decomposition Method

It is well-known (Aplevich, 1991; Gantmacher, 1959; Kaczorek, 1993) that if (2) holds,
then there exist non-singular matrices P,Q € IR?*™ such that

Iﬂlz—Al 0

PlEz - 4@ = 0 Nz-—1,

(3)

where I; is the k x k identity matrix, n; is the degree of det [Ez— A], A; € R*1X™
and N € IR"2*"2 (ny = n—n;) is a nilpotent matrix with index g¢,i.e. N9=1 # 0
and N7 =0.

There exist several methods for computing the matrices P and @ (Aplevich,
1991; Dai, 1989; Gantmacher, 1959; Kaczorek, 1993; Lewis, 1986). Among them one
which is worth recommending is as follows. Let z; be the i-th root of det[Ez— A} = 0
and

m; := dim Ker[Ez; — A] (4)

where Ker denotes the kernel (null space).
Compute the eigenvectors v}j defined by

[Ezi — Alv; =0 for j=1,.,m; (5)
and next vfj‘"l from
[Ez — 1‘1]’05?*'1 = —Ev,l“j for k>1 (6)

Let Mmoo := dim kerE = n — rank E. Compute the infinite eigenvectors v,; defined
by

Ev,; =0 for j=1,..,myx )
and next v’;o“;-l from
EofE! = Adk; for k>1 (8)

Arrange the eigenvectors as the columns of the matrices
Q=[of ok,],  Pl=[Bok adk 9)
Using (5)-(8) it is easy to check that

In,z— A 0

[Ez— A] [vz"”j vléoj} = [E“fi A”’;Oi] [ 0 Nz-1
. n2

] (10)
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Premultiplying (10) by P = Ecm x:\w&._ ' we obtain (3) with P, Q defined by (9).

Premultiplying (1) by P, defining
= Q tay, dimz! =ny, dim z? = n,

and using (3) we obtain

Hw._vu ”\wwﬁ.w..*lm::“ s“DMHw

and
Zathaw.*.mm:: 1=0,1,.
where
W = PB, By €R™*™ B, cRM2x™
2

The solutions z}, am to (11) and (12) are respectively given by

i—1
z} = Alzl + M bwLTHmHEn
k=0
and
qg—1
2 kn
T, = — m N mw:m+\n
k=0

Therefore the solution z; to (1) is given by

. i-1
I AiQuzo + Y ATFTIBLuy
z; = @ -1 k=0
I»Mo N*Byuiy
where Q-1 = MH , Q1 €IRM1x7n,
2

(11)

(12)

(13)

(14)

(15)

From (13) and (14) it follows that the set of admissible initial conditions z} and

z3 is given by

Sures 1= fme ®1Im [By, NBs,..., N1=1B,] W

(16)

where Im denotes the image (range). The method will be illustrated by two examples

with a non-singular and singular matrix A.
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Example 1. Consider eqn. (1) with

1
0|, B=|0 (17)
0
In this case
detfEz—A]l=| 0 2—-1 0 {=1-2z=0

and ny =1, ng =2, 2y =1, my = dim ker[Ez; — A] = 1.

Using (5), (7) and (8) we obtain

0 0 -1 o] [0 ]

[EZl-—A]”Ul: 0 0 O v©y=0, v = 1.1, Evy=
-1 0 0 LO- _0_
100 [ 0] [ 1]

Evy=10 1 0 |va=0, va=1 0|, Avs=

0 0
and

1 0 1
Fvz = 01 0 v3:Av2: 01, vz= 01, A”Ua: 0

o
o
[u—

Then from (9) and (3) we get

0 01
Q=[vivavs)=|1 0 0|, P~ !=[Ev,Avq, Avs] =
010

o = O
o O =
—_ O
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and
(001 0 ][z=1 0o =110 0 1
PEz—AQ=|1 0 -1 0 z-1 0 100
00 1 -1 0 0 01 0
[2-1 0 o
= 0 -1 =z
0 0 -1
Therefore
01 B 0
A;=1 N= , q=2, 1 =PB = 0
0 0 B,
1
and from (15) we have
0 0 1 Hm — Ui
T = 1 0 0 —Ujq] = HW 1= Owu_;... :,mv
010 —U; —Ui41
Example 2. Consider eqn. (1) with
1 00 10 1 1
E=}10 10|, A= 01 0t, B=1]0 (19)
0 0 0 -1 0 -1 1
In this case
z—1 0 -1
det[Ez—Al=| 0 2z-1 0 |=2(z-1)=0
1 0 0
and n; =2, ny=1,21=1, 20=0, my = dimker [Ez; — A] = 1.
In a similar way as in Example 1 we compute
0 0 -1 0 -1
v = 11, Evu=]1 |, ﬁ@Nm I\SSH 0 -1 0 v =0
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V2 = 0 ) Evy = 0

-1 0
0 0 1
E‘l)s = 0 0 U3 = 0) v3 = 0 ) AUS = 0
000 1 -1

and
0 1 0
Q=[vvzvs]=|1 0 , P l=[Evi,Evy,Avs]= |1 0 0

=
I
—_
o
|
—

From (9) and (3) we have

0 0 z—1 0 -1 0
PEz-AlQ=|1 0 1 0 z—1 0 1 0
0 -1 1 0 1 0 -1 1
z—1 0 0
= 0 z 0
0 0 -1
Therefore
1 0 B 0
1= , N=0, g=1, 'l|=PB=| -2
0 0 B,
-1
and from (15) we obtain
0 1 0 a 2ui_1
zi=|1 0 0 Qui_1 | = a (20)
0 -1 1 U; U; — 2ui_1

where a is any real number (a is equal to the first component of z} = [z20210]7, T
denotes the transposition).

Using (16) it is easy to check that the set of admissible initial conditions z in
this case is given by

Seo = Q{IR™ @ Tm[By, NBy, .., N9 B] } = IR (21)
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3. Drazin Inverse Method

The smallest non-negative integer ¢ is called the index of A if rank A? = rank A9+! -
A matrix AP is called the Drazin inverse of a square matrix if: 1) AAP = AD 4,

ii) APAADP = AP iii) AP A9+l = A9, where q is the index of A (Campbell et al.,

1976; Kaczorek, 1993). The Drazin inverse AP of a square matrix A always exists

and is unique. If detA # 0, then AP = A~ where A~! is the classical inverse

of A. There exist several methods for computing AP of A (Campbell et al., 1976;

Kaczorek, 1993). Two of them will be presented here.

The first method is based on the factorisation VM of A? (Kaczorek, 1993). Let
A€IR**™ and

k»a”a\NS\H“ a\mE;xwu \g.nﬁmH_Wax: Awwv

where kerV = {0} and MTM = I,, r = rank A?. The Drazin inverse of A is given
by (Kaczorek, 1993)

AP = v[MT AV~ MT (23)

Example 3. Find the Drazin inverse of the matrix

O =

(24)

S = O
o O O

=

The index of (24) is equal to ¢ =1 since r = rank E2 = 2 and by (22) we have

1
2 0 100
E=VvMT for V= 0 1|, MT=
) 010
-1 0
Using (23) we obtain
EP = VIMTEV]"1MT
3 O - -1 Lo o 2 0 0
=] 0 1]||1* =0 10 (25)
. 0 1 010
-1 0 -2 00

The second method is based on the following alhorithm (Campbell and Meyer,
1979):

Step 1. Set Sy = I, and compute recursively S; = ASj_1 + Bn_jln, Brn—j =
Iwu..S, [AS;-1] (tr denotes the trace) until some S; =0 but S;_; # 0.
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Step 2. Let k be a number such that B,_x # 0 and Bp_k-1 = fn—k-2= ... =
Bn-i-1= 0.

Step 3. Let | :=n—k and compute Sl
Step 4. Compute

(=
AP = ——ﬁ,+—1A'5L+_11 (26)
1

Example 4. Using the above algorithm compute ED for (24).

-1 0 0
Step 1. ﬁz:—trE:—%, SleS()-i—In,Bz:E-I-I;;(—g-): 0 —%— 0 )
~L o =3
2 2
) ) 0 0
ﬂ1:—§tr[E51]:§, Sy=ES1+1I,51=1]0 01,
1 1
. 2 2
Bo = —gtr [ES2] = 0.
Step 2. k=2
1 00
Step3. I=n—-k=1 and Sy=5i=|0 1 0 (27)
5 0 2
1 1
Step 4. Using (26) and (27) we obtain
=D g (=1
EP = —FE'St) =~ ES}
1 1
3 00 1 00 2 00
1
:("I')? 0 1 0 0 of=|0 10
2
-0 0 20 2 -2 0 0

If (2) holds, then there exists a scalar ¢ € € such that
det [Ec— A] #0
and we may find

E:=[Ec— A]"'E and A:=[Ec—-A]"'A (28)
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It is easy to show that EA = AE and ker ANker E = {0} (Campbell et al., 1976;
Kaczorek, 1993).
Premultiplying (1) by [Ec— A]™! and using (28) we obtain

MHS.+H HNHﬂ.n_uw.z? 1=0,1,... (29)
where
B = E&I\:Lm (30)

The solution z; to (29) (and also to (1)) is given by (Campbell et al., 1976; Kaczorek,
1993)

i—1
z;= (B A)E Evo+ Y E (B A)~+1Bu,
k=0

g-1
HEE" - 1) Y (A" )" A" Buiy (31)
k=0

where ¢ is the index of E(E).
The set of admissible initial conditions zp is given by

.m,uwa = Haﬁmovmf:._m.m Awwv
where

(In — %@X@.[\»&#Nuw. for k=0,1,...q—1
Hy = — (33)
EE for k=g¢

Example 5. Find the solution z; to (1) with (19).
Choosing ¢ = 2 and using (28) and (30) we obtain

1 0 -1 101
[Ec—Al=101 0 |, [Ec—A"'=] 0 1 0
1 0 1 -+ 0 4
and
100
E:=[Ec—A"'E=| 0 1 0
-1 00 .
0 0 0 1
A=[Ec—-A""A=| 0 1 0o |, B=[Ec—A"'B=| 0
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Taking into account the result of Example 3 and that

0 000
2 =AZ%B=| o |, BPA=FE2"=]0 1 0
-1 00 0
1 00
EEC=| 0 1 0
100
from (31) we obtain
o001 00
zi=|0 10 0 1 0|z
000 100
- i—k—1
i 0 0 0
+ 1 01 Uk
k=01 _9 0 00
k
0 0 0 L. l0o o000 0
+1 0 0 0 |[[D]o1o0 0 | wigs
-1 0 -1 k=010 0 0 -1
2u;_g
= a (34)
u; — 2ui_q

where a is any real number (a is the second component of zo).

Through (22) and (33) the set of admissible initial conditions is given by

an = Im[Ho, H1]

0 1 0
:Im[(In—ﬁD)ZDF,ﬁD]:Im 0 0 1|=R3 (35
1 -1 0

Note that (34) and (35) are the same as (20) and (21), respectively.
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4. Extension of the Dias and Mesquista Method for
Discrete-Time Systems

Without loss of generality it is assumed that

I, A A B
E= 0 , A=V 0 p=| ™ (36)
0 0 Az Ay By

where r = rank E.

Consider the family of (A, E)-invariant subspaces defined by (Armentano, 1984;
Dias and Mesquista, 1990; Kaczorek, 1993; Wonham, 1979)

Z = AN”\WNHQNWNQE:W (37)

The supremal element Z* := sup Z can be computed in a finite number of steps
# < n by the algorithm

Zx H\wluﬁmmwluv, k=1,..,n Zy=IR"
Z* =2y =Zun
where A7'Z; :={z€IR": Az ¢ Zi}. (38)

Let the columns of V' form a basis for 2*, Z* = ImV and

p
z; =Vz + M hws+w Awwv

k=—1i

where 2;, Ly and p will be defined later. Substituting (39) and (36) into (1) we
obtain

Vizigr = [A1 Ao]V 2 + Q\r As]lLo + By —[I, Shlv u;

p
+3 (A1 Az L - (1, O_SLV Uitk — [ 0] Lp i po
k=1

+ M AT? ALy —[I, BhLTHv Uik + [A1 A2]L_sup (40)
k=1

0= Tww \»»?\NM + A_&w \»\L.ﬁo + .muv Ug

+ M Q\»w \Ev Lruigr + Mu?»m Aq]L_pui_p (41)
k=1

k=1
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“where

Vi

Va

V.=

}, VieR™*!,  I=dim2* (42)

It can be easily shown that | = deg det[Ez — A] < 7.

Define Q := [ gl ], 0, e R*", Q, e RU=Dx7 such that det Q@ # 0
1
and »
o ] (43)
0
Premultiplying (40) by @ and using (43) we obtain
ziy1 = Arz;, Ay =Q A AV (44)
if
Q,[A1 A3]V2z =0 for an arbitrary z; (45)
[A1 Ag)Lo + By — [ 0]L_1 = 0 (46)
[A1 A2]Ly — [I, 0]Lg—1 =0 for k=1,..,p (47)
[AvA)L_g — [ 0)L_g—1=0 for k=1,..i—1 (48)
[1,0]L, =0, [AyAs]L_;=0 (49)

since detQ # 0.
Note that (41) is satisfied if

[As A4]V2z; =0 for an arbitrary z; (50)
[As A4]Lo+ By =0 (51)
[As A4]Lx =0 for k=1,..,p (562)
[As A4]L_x =0 for k=1,..,1i (53)

In a similar way as in (Dias and Mesquista, 1990) it can be shown that

Q2[A1 A]

V=0 54
AaAs (54)

since Vz; € Z*. Therefore (45) and (50) are satisfied for an arbitrary z;.
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Two cases will be considered for det A # 0 and det A = 0.

Casedet A # 0.
It will be shown that if detA # 0, then it can be assumed in (39) that ¥ = —i = 0.
Assuming k = —i =0 and L_; =0 from (46) and (51) we obtain

Lo=-A"1B (55)
Next from (47), (49), and (52) we have

Ly =A'ELi_1, k=1,..p (56)
and

EL, =0 (57)

Using (55) and (56) we may compute Ly, L1, ..., L, and the procedure stops when (57)
is satisfied.

The solution z; of (44) has the form
zi = HNO ~ (58)
Substitution of (58) into (39) for k= —i =0 yields
_ P
v =VAzo+ Y Letik (59)
k=0

Therefore if det A # 0, then the solution z; to (1) with (36) is given by (59).

Remark. Note that if rank A = rank[A, B] and rank[A;, As] = 7, it can be also
assumed that k = —7 =0 1n Aw@v“ since the equations ALy = —B and ALy = EL;_,
have solutions Lg and Li for £k =1, ..., p.

Example 6. Find the solution z; to (1) with (17).
Using (38) we obtain

-1

1 01 10 0 0
Zy=A(ER)=|0 1 0 m|{o 1||=Im|o 1
1 0 0 0 0 10

0 0

Zy = NHA@_NHV =Im 11, Zs “NHA@NNV =1Im 1
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and
° ° 0 Q 0 1
et [t e[t [g) 2
0 0 2
From (55), (56), and (57) we have

-1

10 1 -1
Lo=—-A'B=-{0 1 0 ol=1] o
10 0 1 0

-1
101] [ -1 0
Li=AELy=|0 1 0 0o |=1| o
100 0 -1

and FL; =0,p=1.

0
— 1 1
- Using (59) we obtain Ay = Q141 A5]V = [01] [ 0 ] 1| =1 and

010
) 1 0 -1 0 —U;
z; = szllo + Z Liviyp =1 1 |20+ | 0 |uws+| 0 |uig1= 20 (60)
k=0 0 -1 —uip1

Note that (60) agrees with (18).

Case detA=0.
Note that if (2) holds, then for (36) the matrix [A3 A4] has a full row rank and
from (51) we have '

AT
L0:—|: ;
A4

AT
+ In~[ 2
( A7

where K is an arbitrary matrix.

The matrix K; is chosen so that [I, 0]Lo = 0. If there exists K; such that
[I. 0]Lo = 0, then p = 0. Next, from (46) we may compute

I
L_lzl i
0

[A3A’§ + A4A:£]—1B2

[AsA + A4Af]_l[A3A4]> K, (61)

([Al As]Lo + 31) +

0 0
: ] K, (62)
0 In-r

[
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The matrix K, is chosen so that [A; A2]L_; = 0. If there exists K3 such that
T&p \ww”_hlw = D“ ﬁumﬂ 1= 1.

Combining the equations
@mg\r \wmu_hw - ﬂNﬂ O_H\wluv = Ov k= Hu P
Q,([A1 A2)L_g — [I; 0]L_g-1) = 0, k=1,..,i-1

with (52) and (53), respectively we obtain

HLy = ELg_1, k=1,..p (63)
and
HL_y =FEL_g, k=1,..,i-1 (64)
where
.= QA1 A) _ Q, 0 A
| A3y 0 In-r
(65)
_ @ o ],_[@ma
| 0 I, 0 0

In a similar way as in (Dias and Mesquista, 1990) it can be shown that matrix (65)
has a full row rank. Therefore from (63),(64) we have

Ly = HRELi_1, k=1,...,p (66)
and

L_y=HREL_y_;, k=1,..i-1 (67)
where

Hg:= HT'[HHT]?

The Moore-Penrose generalized inverse H9 can also be used (Dias and Mesquista,
1990). Using (66), (67) we may compute Li(L_x) for k=1,...,p(k=1,...,s—1).
The algorithm stops when (49) is satisfied.

Example 7. Find the solution z; to (1) with(19).

Using (38) we obtain

-1

1 0 1 1 0 1 0
Z=A(ER)=| 0 1 0 Im|o0 1||=Im|o0 1
1 0 -1 00 1 0



650 ' T. Kaczorek

1 0
Zy=A(EZ)=Im| 0 1
-1 0
and
1 0 1 0
Z*=Im| 0 1 V=f 0 1 v=| 1% g=g.=| "
- T o1 | Tlo 1
-1 0 -1 0
From (61) we have
05 0 —-0.5 k11 05(1 + k11— klg)
1
Lo = 5 0 + 0 1 0 klZ = k12
1 —05 0 05 k13 05(1 - kll + IC13)

and

k =
01 0 ?

1 0 0] 0.5(14 k1 — k3) |:0:|
05(1— k1 +k’3)

[, 0]Lo = [
gives ky = —1, ky = k3 = 0. Hence

0
Lo=1{0 and p=20
1

Using (62) we obtain

1 0 0 0 00 ka1 2
1 0 1 1
L,=1]101 0 [+ +10 0 0 kao | = 0
010 0
0 0 1 0 01 kos ko3

and

1 0 1
[A1 Ag]L_l = 0 =0
0 1 0
k23

gives kg3 = —2.
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Hence

2
L= 0 and t=1
-2

Thus from (39) we obtain

1 0 i
0
— 0 0 z
z; =VAz+ MU Lyuipr = 0 1 0 1 1o
z
k=—1 ~1 0 20
2 0 wﬁu.iw
+ 0 Ju-a+| 0 |u= 220 (68)
-2 1 U; — MS.IH

Note that (68) agrees with (20).

5. Method of Expansion in a Series
Let X(z) be the z-transform of z; defined by

X(z) = MU 2z (69)

Using the z-transformation eqn. (1) can be written in the form
[Ez — A]X(2) = 2Ezo + BU(2) (70)

where U(z) is the z-transform of wu;.
From (70) we have

X(z) =[Ez— A" '2Ezo + [Ez — A]7'BU(2)z (71)

Note that if the degree of det[Ez—A] is less than rank F, then the matrix [Ez— A]~!
may be improper and it can be decomposed into a polynomial part P(z) and a strictly
proper part Typ(2) ,

[Ez — A]7! = P(2) + Tip(2) (72)

where

P(z) = MU P2 (73)
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Top(2z) = ET,'Z_(H'l) (74)
=0

" p<rank E — deg det[Ez — A]

Substituting (72)-(74) into (71) we obtain

14 0 p [e]
X(z) = Y PiBzoz*' + 3 TiBzoz™' + )  PBZU(2)+ ) T;Bz¢*VU(z) (75)

i=0 i=0 1=0 i=0

The inverse z-transformation of (75) yields

P i-1
t; = T; Fxg + E PyBujyx + ETkBui—k—l i>0 (76)
k=0 k=0

Note that all terms with positive powers z of (75) have been neglected since we are
interested in the solution for i > 0. Therefore the solution ; to (1) is given by (76).

Example 8. Find the solution z; to eqn. (1) with (19).

In this case

z—1 0 -1
[EZ - A]_l = 0 z—1 0
1 0 1
[ 0 z~1
= 0 (=171 0 = Py+ Typ(2)
—z71 0 1-2z1
where
0 0 O z_l 0 z—l -
Po=10 0 0|, Tplz)= 0 (z — 1)1 0 — ZTkZ—(k+1)
0 01 —z‘l 0 ___z—l k=0
1 01 0 00
To=|1 0 1 0|, Tx=(0 10 for k=1,2,..
-1 0 1 0 00
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Using (76) we obtain
0 -1
z; =T Exo + MU.SQ:IH + MUH»@:TTH
k=0 k=0
0 0 2 M:s.lH
=z [+ |0 |u+]| 0 |u_1= T20
0 1 -2 u; — 2ui—1
This result agrees with the previous ones.
6. Comparison of Methods
Solution (15) may be written in the form
AQ, [ 4k, ik 0
;= ro + U — U; 77
Q| CWO@ . wmozﬁ w (77)
A comparison of (77) with (31) yields
[ Ak D D
Q Ho@ = (E"AFE"E, kE=0,1,. (78)
[ AkB D Dy
Q Ho ' | = E°E°A)FE, k=0,1, (79)
0 ——D\ ~D\ ;D=
=(I-EE )(EA YA B, k=0,1,.. 80
Q| yeg, | = - FEEA) (50)
From (78)—(80) for k = 0 we have
Q Qv | _ F, o| P | =2"F
0 0
. (81)
Q = (I-EE")A"B
B,
Knowing E, @b.lmn. 2% and @ we may find from (81) @i, B; and B».
From a comparison of (77) and (39) with (58) we obtain
Ak -
o| 4% zo=VArz, k=0,1,. (82)

0



654 T. Kaczorek

k-1
Q Alle]:Lk, k=0,1,..—i (83)
Q Y k=0,1..,p=qg—1 (84)
NEg, | =T =0,1..,p=9¢

From (82) for k£ = 0 we have

ImQ[ %1 ] =ImV (85)
A comparison of (31) and (39) with (58) yields

(B A E  Ezo = VA 20, k=0,1,.. (86)

EP(E°A 1B = L, k=—1,..—i (87)

(I, - EE°YEE YA B = Ly, k=0,1,..,p=q—1 (88)

From a comparison of (77) and (76) it follows that

o

Q 1Q1 =T,E, k=0,1,.. (89)

[ A%B

Q 101 =T.B, k=-1,..,—i (90)
0

Q NEB, = —P;B, k=0,1,..,p=q—1 (91)

Similarly, from a comparison of (76) and (39) with (58) we obtain

TeEzo = VA, 20 (92)
Ly =T B, k=-1,...,—1 (93)
Lk:-—-PkB, k:o,l,...,p:q—l (94)

Note that from the above comparisons we may find new formulae for the solution
z; to (1). For example, using (92) and (76) we may obtain the solution in the form

. g—1 i—1
zi=VAz0+ Y PeBuksr+ Y TeBui_g_y (95)
k=0 k=0

where V, A1, Py and T are defined by (38), (44), and (73)—(74), respectively.
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7. Concluding Remarks

An extension for regular discrete-time linear systems of the Dias and Mesquista me-
thod (Dias and Mesquista, 1990) has been given. In (Kaczorek, 1995) it has been
shown that the Dias and Mesquista method should be modified by adding an additio-
nal term containing an integral for regular continuous-time linear systems. A method
based on the expansion in a series of the inverse matrix [Ez — A]~! has been pro-
posed. These two new methods have been compared with two well-known methods
based on the Weierstrass-Kronecker decomposition and on the Drazin inverse. The
methods have been illustrated by numerical examples with a non-singular and sin-
gular matrix A. Relationships between the coefficient matrices of the four methods
have been established. Moreover, a new mixed method of finding the solution (95) to
eqn. (1) has been presented.
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