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THE NECESSARY AND SUFFICIENT CONDITIONS FOR
THE INTEGRAL OF A MULTIVALUED MAP
TO BE A POLYGON

AuMmED BOUSSOUAR*, O. ARINO*, S. GAUTIER*

Let F be a multivalued map from I := [a,}] into IR? defined by F(t) =
{h(), ()}, where f and h are continuous maps from I into IR?. The aim of
this paper is to find the necessary and sufficient conditions on the mappings f
and h for an integral of F' to be a convex polygon.

1. Introduction

In this paper, we deal with the question: when the integral of a multivalued map is
a polyhedron. More precisely, let us consider a measurable multivalued map (from
now on, we will abbreviate it as a multi) F from an interval I of IR into IR™ with

polyhedral values. The integral / F(t) dt, as defined by Aumann, is a set consisting of
the integrals of integrable selectiogs of F. In general, this integral is not a polyhedron
when F(t) is a polyhedron for each t € I. For example, if G is the multi from [0, 27]
into IR? defined by G(t) = [0, 1](cos(t),sin(t)), then the integral - G(t)dt is the
ball 2B, where B is the ball with centre 0 and radius 1 in IR2. ’

To the best of our knowledge, the problem of determining the geometric shape of
the integral has not been considered yet. What we propose here is a first contribution
in this direction. We will limit ourselves to the case n = 2 and the multi taken
to be a segment for each ¢t € I. This situation can be reduced to the case when
F(t) ={0, f(t)} for each t € I. The integral of F is a convex set defined by

a

C:{/a(t)f(t) dt:a el (b)), Oga(t)gl}

(see Aubin and Frankowska, 1990).

b
Thus, C is the image through the map o — / a(t) f(t) dt of a convex set.

One can ask about conditions on f under which we can assert that C is a polygon.
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We will show that the necessary and sufficient condition for this property to hold

is that {ﬁ, F@) # 0} is a finite set or, in other words, the function f should

take only a finite number of directions. A few remarks on the applicability of such
results are given in the concluding section of the paper.

2. Preliminaries

We will denote by {-,-) the usual inner product in IR™ and by ||-|| the associated
norm. Let A be a subset of IR®. We will denote by x4 the characteristic function of
A and by o(-, A) its support function (see Hormander, 1954): Vz € IR*,o(z, A) =
sup {{(z,a) : a € A}.

Definition 1. (Coxeter, 1962; 1963; Valentin, 1992) Let E be a vector space.
A zonotope Z is the Minkowski sum of a finite number of many segments of E.

Definition 2. (Aubin and Frankowska, 1990; Castaing and Valadier, 1977; Clarke,
1981) Let F be a measurable multi from I := [a,b] C IR into the closed subsets
of IR™. According to Aumann’s definition, the intégral of F' over I is the subset

denoted by /F(t) dt and defined as
I

{/ f(t)dt : f is an integrable selection of F}
I

We will recall a general result which will play an important role in our later
considerations.

Let F be the multi from I = [a,b] C IR into the non-empty closed subsets
of IR™, measurable and integrably bounded (i.e. there exists an integrable function
k : I —IR* such that for all y € F(t) we have ||y|| < k(2)).

Proposition 1. (Aubin and Frankowska, 1990; Castaing and Valadier, 1977; Clarke,
1981) Under the above assumptions, we have:

a) The integral of F' is convez and compact.
b) For each ¢ € IR™, a(:c,/F(t) dt) = /a(x,F(t)) dt.
I I

c) ./IF(t) dt = -/Ico F(t)dt, where co F' is the convez hull of F.

Remark 1. Proposition 1 remains true if the Lebesgue measure on I is replaced by
a non-atomic finite positive measure space (7, ). Such a space admits a bounded
measurable function m : T'— IR such that, for each 5 in T, theset {t € T : m(t) =
m(to)} has p-measure zero (see Clarke, 1983).

Proposition 2. Let M and N be two convexr subsets of IR®. Then M + N 1is
convez and each extremal point z of M+ N can be written as a sum of two extreme
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points of M and N, respectively. Moreover, the décompositz'on of © as a sum of an
element of M and an element of N is unique.

Proof. The convexity of M + N is obvious. Let = be an extreme point of M + N.
Let a € M, b € N be such that « = a + b. We show first that a is an extreme
point of M; the same will be true for b. If a is not an extreme point, then we
can write it in the form a = Aa; + (1 — A)az, 0 < XA < 1,4y, az € M. Hence
z = Xay +b0) +(1—A)(az +0b). As a1 +b, az+b are in M + N, this yields a
contradiction.

We will now show that the decomposition is unique. Suppose there are two
decompositions, z = a + b = a’ + ¥’. Then, for each t €]0,1[, we have = (ta+
(I1=1t)a") + (tb+ (1 — t)b'). If (a,b) # (a’,b'), then either ta + (1 —t)a’ is not an
extreme point of M or tb+ (1 —¢)d’ is not an extreme point of N, which contradicts
what we have just proved. ]

3. The Main Result

Let 1 be a non-atomic finite positive measure on I, where I = [a,b] C IR.

3.1. Sufficient Condition

Proposition 3. Let F : I 3 IR? be a multi defined by F(t) = {h(t), f()}, where f
and h are continuous maps from I into IR?. Suppose that p(E) > 0, where E = {t:
f(t) — h(t) # 0}. Moreover, suppose that there ezist a finite family V = {e1,...,en}
of IR? and a denumerable measurable partition (I;), j=1,..,q,1 < ¢ < 0o, of E,
such that

Vi<j<g de€V, ft) —h(t) €Re forall tel;

Then /F(s) du(s) is a polygon.
I

Proof. We can assume without loss of generality that h = 0, since

[ {110} dute) = [{o.56) =)} auo) + [ o) aut)

Let us write f(t) = gj(t)e for t € I; with g;(t) €IR and e € V. Then

J

/ F(s)du(s) = {/ a(s) f(s)du(s) :a € L', 0 < a(s) < 1}
I; j
is a segment. Let

In; ={tel: f(t) = gj(®)em;},  Ti= |J Im;, mj €{L,...,n}

m;=k
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Iy

Then / F (s) du(s) is a segment and /~ F(s)dp(s) is a countable sum of seg-
I, :

ments which have the same direction. Since p (f;) = Z 7] (Imj) < p(I) and

m;=k -

F(s)du(s) is a segment. Ta-

~

/F(s) dp(s) is integrably bounded, it follows that /
I Iy

king into account the fact that the integral /F(s) dp(s) is a finite sum of segments
I

/~ F(s)dp(s), we conclude from Proposition 2, that the integral /F(s) du(s) is a
I I

convex polygon which has at most 2™ vertices, since k < n. ]

P

Theorem 1. Let F : I = IR? be a multi defined by F (t) = ZFi (), where F; (t) =
i=1

0,f;(®)] forall t €I and f; : I — IR? is a continuous map for each i. Suppose

that there ezist a finite family V = {e1,...,en} C IR? and a denumerable measurable

partition (I;), j=1,...,q9, 1 < ¢ < oo, of I, such that:

Vi=1,.,p,V1<j<q,IeeV, Vtel;, fi(t) €EIRe

Then the integral /F(t) du (t) is a zonotope.
I

Proof. We apply Proposition 3 to each of the multis F;. We thus get that
/F,—(s) du(s) is a polygon. But in the proof of the same proposition, it is shown
I

that each integral /Fi(s) du(s) is a finite sum of segments, that is, a zonotope.
I

Hence /F(s) du(s) is a zonotope, as a finite sum of zonotopes. [
I

Remark 2. The conclusion of Theorem 1 holds in a more general situation. Namely,
we may consider any finite measured space (7,7, u) instead of I and any Banach
space instead of IR?, assuming that the mappings f; are p- integrable and g is finite.

4. The Necessary Condition

Definition 3. Let P be a convex polygon of IR? with n vertices. By the ordered
pair for P we mean any family {(zi);<;<nt1> (ei)1<z‘<n+1) such that z; is one of

arbitrarily chosen vertices of P, z;41 is the vertex which follows z; when moving along

the polygon counterclockwise, with z,,1 = 21, and e; is the unit vector perpendicular

- . , e
to the vector z;z;y1, i.e. Angle (ei, ZiZirl) = 5

Theorem 2. Let F : I IR? be a multi defined by F(t) = {h(t), f(t)}, where
f and h are continuous maps from I into IR?. Suppose that p(E) > 0, where
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E=1{t: f(t)—h(t) #0} and /F(s) du(s) is a polygon with n vertices. Then there
I

ezist a finite family V = {a; : 1 <i<p}, with p < n, of R? and a denumerable
measurable partition (I;), j=1,...,q, 1 < ¢ < oo, of E, such that

V1<j<gq,3eeV, f(t) - h(t) € Re forall te
Theorem 2 will be a consequence of the proposition and lemma which follow.
Proposition 4. Let F : I 7} IR? be a multi defined by F(t) = {0, f(t)}, where f is
a continuous map from I into IRZ. Suppose that the integral P = /F(s) du(s) 1s
I
a polygon with n vertices. Let ((z;), (e;)) be an ordered pair for P. Then

Viel, <f(t),6,’)(f(t),€,‘+1)20, t=1,..,n

Proof. Let us denote by D;, i = 1,...,n, the line segment from z; to zi+1 (2n41 = 21).
Thus

zi € D;_1 N D; (DO = Dn) (1)

Then the equation of D; is (e;, z) = o(e;, P),z € IR2. We conclude from Proposi-
tion 1 that

o(ei, P) = a(e,-,/IF(t) dp(t)) = _/I.U(ei,F(t)) du(t)

Having in mind the fact that z; is a vertex of P, we have

% G/IF(t)dp(t), i=1,...n

Hence, by Proposition 1,

ne[mem

From Definition 2, we obtain

= [ o) uo (@)

for a function g; which is an integrable selection of ¢ = co F'(t), i.e. gi(t) € co F(t)
for a.e. ¢ € I. Then we can write g;(t) = o;(t)f(¢t) for all ¢t € I where o; is a
measurable function such that 0 < a4(¢) < 1.

Let Ai(t) = (ei, f(t)) forall t € I, i = 1,...,n. Set I' = {t € I : A;(t) > 0},
R={tel:A;(t)=0}, I7 ={te: Ait) < 0}. We will prove that

0 ae if tel
oi(t) =
1 ae if te I,-+
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Since z; € D;, it follows that {(e;, z;) = o(e;, P). Thus

(e [0 au0) = [ o (e, F®) du) = [ max{o,(es, 100 } dutt)

This yields

[ (max(o, es, SO)) = (es,060) due) = 0 (3)

I

We know that g¢;(t) = a;(t)f(t). Substituting this into (3) we obtain

/I (max{Ai(t), 0} - ai(t)Ai(t)) du(t) =0

The above relation is equivalent to

[t au) = [ max{ 40,0} a0 = [ 4020
which is the same as

/ RACOLTOR / A0 ) = / A 8u(0)
Consequently, ‘

/ (1) a0 ) = / 04 340

In this equality, the right-hand side is non-positive while the other is non-negative.
Hence both are equal to zero. Therefore we obtain / (1= a;(t)) Ai(t)dp(t) = 0
-

and a;(t)Ai(t) du(t) = 0, from which we deduce that
I~

(1 - ai(t))Ai(t) =0 aeon I

(4)
a;(t)A:(t) =0 a.e.on I~
Consequently,
1 ae.on I
a,—t = : 5
®) { 0 ae on I ®)

From (1) we have z; € D;_y, and so (e;—1, z) = o(e;, P). We may now continue in
the same fashion to obtain

(1 - ai(t)) A;_1(t)=0 a.e.on It
a;(t)Ai—1(t) =0 a.e.on I,
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We observe that the sets I, I7, I? are disjoint and their union is the whole inter-

1 ae. on If
val I. By using Proposition 4, we get o;(t) = aeon & Thus,
0 ae.on I
Aic1(t)=0 ae.on I, NIF
Ai1(t)=0 ae.on ' NI~
from which it may be concluded that
Ai()Ai—1(¢) >0 ae. on I, i=1,...,n (6)

Since the A;’s are continuous, property (6) holds everywhere on I. We deduce that
Vtel, (f(t),e)(f(t),ei—1) >0, i=1,...,n (7D

Lemmal. Let F : ] = [a,8] =5 IR? be a multi defined by F(t) = {0, f(t)}, where f is
continuous. Suppose that the integral P = [ F(s)du(s) is a polygon with n vertices.

I
Let ((2i),(ei)) be an ordered pair for P. Let J be a subinterval of 1. Assume that
f(t) # 0 for each t € J. Then there ezists a vector e;, € {e; :i = 1, ...,n} such that
(f(t),ei,) =0 for every t € J.

Proof. Let P, be a half-plane limited by a straight line A perpendicular to the
vector f(t), which contains f(¢). Let Q;, i =1,...,4, be the octants determined by
f(t) and A (see Fig. 1.)

Py

Q2 81

€1

_ 0

Qs Qs
A

Fig. 1.

Suppose that none of the vectors of the family (e;) is perpendicular to f(2). We
choose the ordered pair so that e; is the first vector following the vector f(t) when
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moving counterclockwise. Then e; belongs either to @y or to @2, 1.e. e; cannot live
neither in Qs nor in Q4. Otherwise, the angle (en,e1) between e, and e, counted
in the trigonometric orientation, would be larger than =, which is impossible in the
case of a convex polygon. '

We consider each of these two situations separately:
1) e1 € Ql-
Suppose that ej,...,em-1 € @1, 1 < m < n —1. Then either e, € Q2 or
em € Qs because the angle (em—1,€m) is less than 7 (since the polygon is con-
vex). It follows that (f({),em—1) and (f(t),em) have opposite signs and we obtain
(£(t), em-1){f(t),em) < 0. This contradicts (7) and, in consequence, there exists an
ip such that (f(t),e;,) =0.

11) e1 € Q».
In this case, Q; contains a vector e;, and so e, € Q4. Therefore (f(t),e1) and

(F(t),en) are of opposite signs, i.e. (f(t),en)(f(t), e1) < 0. This contradicts (7) and
consequently there exists an iy such that (f(t),e;,) = 0.

It remains to prove that e;, does not depend on t. Let us take J; =
{teJ:(f(t),ei) =0}, i =1,...,n. The sets J; are closed and yield a finite par-
tition of the interval J. On account of the fact that J is a connected set, we have
Ji = J or J; = 0. Consequently, there exists an iy such that J;;, = J. Then
(f(t),ei,) =0 for each t € J. ]

Proof of Theorem 2. We can suppose without loss of generality that h =0, since
[ {16100} aute) = [ {056~ 1o} dute) + [ ) ancs)
I I I

Let P = /F(s) dp(s) be a polygon with n vertices. Let ((2i),(e;)) be an ordered
I
pair for P. Write B = (€:),<;<pn-

Let us denote by E a set of points where f is not equal to zero. Then E is an
open set and we can write it as a union of at most denumerably many open intervals
(I7). In view of Lemma 1 we have f (t) € IRa; for each ¢ € I;, where a; is a vector
in IR? perpendicular to one of the vectors of B. The family of a; can be reduced to
at most n distinct vectors. ]

P
Theorem 3. Let F : I 5 IR? be a mulli defined by F (t) = EF,- (t), where F; (t) =
i=1

[0,f; )] forall t € I and f; : I — IR? is a continuous map for each i. Suppose
that /F(t) dt is a zonotope. Then there exists a finite family V = {e1,...,en}
I

of IR? and a denumerable measurable partition (I;), j = 1,..,q, 1 < ¢ < o0,
of 1, such that

Vi=1,..,p,V1<j<gq,IeeV,Vtel, fi(t) ERe
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Lemma 2. Let A and B be two convez compact subsets of IR*. If C = A+ B is
a polyhedron, then A and B are polyhedrons.

Proof. Let A and B be two convex, compact subsets of IR*. Assume that C is a
polyhedron with n vertices 2;, 1 < ¢ < n. According to Proposition 2, each vertex
z; € C can be written in a unique way as a sum a; + b;, where a; (resp. b;) is an
extreme point of A (resp. B). Denoting by P4 (resp. Pp) closed convex hull of the
points {a; : 1 <i < n} (resp. {bi : 1< i< n}), we have C = A+ B. We also have
C=Ps+ B =A+ Pg. Weclaim that B= Pg and A = P4. Assuming that this is
not true, say B # Pg, we select z € B\ Pg. For each a € P4, we have z +a € C.

n
Therefore, for each 1 < j < n, there exits a family (X;;), Ai; >0, ZA;’J =1 such
i=1

that ¢+ a; = Y Aij (a;i +b;).
i=1

n
For each family (pj);¢;<nr #i 20, Zuj =1, we have

j=1

z+ Z,ujaj = ZZ#j)\i,jai + EZﬂindbi
j=1

j=1i=1 j=1i=1

We will obtain a contradiction if we can determine (u;) so that, for each i,

n
M = Z KA
Jj=1 '

In fact, with such a choice, we have ¢ € Pg.

The existence of u = (y;) follows as a consequence of the Perron-Frobenius
theorem (Horn and Johnson, 1985; Th.8.3.1, p.503) on positive matrices. The matrix
A = (X;;) is non-negative and e = (1,...,1) is a left fixed point of A. Therefore
the spectral radius of A, r =7 (A), is greater than or equal to one and is associated
with a positive eigenvector p. Multiplying both sides of the equality Ay = ru by e,
we obtain ey = reu. From ep > 0, we conclude that r» = 1, and so g = Ay, which
is the desired property. |

Proof of Theorem 3. For each i =1,...,p, /F,(s) du(s) is a convex compact subset
I

P
and, since by assumption /F(s) du(s) = E/F,(s) du(s) is a polygon, in view
I i=1 Y1 V

of Lemma 2 each /F,-(s) du(s) is a polygon. Therefore, for each %, there exists a

finite family V; of vectors and a denumerable measurable partition (J; ;) such that,
for each k& € IN, there exists an e € V; with the property that f; () € IRe for each
teJi;. .
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P
Define V = |J V; and consider the partition (I;) of I obtained by taking all

i=1

P
the possible subsets of the form [ J; . Then we obtain
i=1
kEEN

Vi,i=1,---,p, l€IN,3eeV, Vte, fi(t) €EIRe

5. Numerical Examples

We will now illustrate our results with a few examples. We choose the same interval
I =[0,1.8], the step size for integration 0.02 and a multi of the form

p)= {07} = {00,090}

where g : I — IR. As usual, the notation [-] corresponds to the integer part and
X4 (-) corresponds to the characteristic function of the set A.

Example 1. (Fig. 2) g (t) = [t/2). Then f(t) — h(t) = (1,0) for each t € [0,1.8]
and there is only one direction. In this case, the integral is a segment.

Example 2. (Fig. 3) ¢(¢t) = [t]. Then

F(t) = h(t) = xp11 () (1,0) + xp1,1.8 (1) (1, 1)

The multi takes two independent directions. Therefore the integral is a parallelogram.

o
&
|

Lttt b r e by

IIII|I|||[l|||‘||ll]l||||
—0.50 0.00 0.50 1900 1.50 200

Fig. 2.
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1.00 —
0.50 —
0.00 —
B I O
-0.50 0.00 .50 1.00 1.50 2,00
Fig. 3.

Example 3. (Fig. 4) g(t) = [3t/2]. Then
f@)—h@)= X[o,2[ (1) (1,0) + X[z,s[ () (1, 1) + X[s,1.8) (D) (1,2)

In this case, there are three directions. The integral is a polygon with eight vertices.

1.50 —
Q.50 —
T T T T I T[T T T[T T 7771
-0.50 0.00 Q.50 1.00 1.50 2.00
Fig. 4.

Example 4. (Fig. 5) ¢(t) = [7t]. Then

FE) =) = 3 X[ 0 (L) + Xpaz,1. () (1,12)
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14.50
N
|

9.50 —

4.50 —

O T T T T T I T[T T T[T [TTT1T]
-0.50 0.00 Q.50 1.00 1.50 2.00

Fig. 5.

In this case, there are thirteen directions. The integral is a polygon which has at most

213

6.

vertices.

Conclusion

The problem we considered here belongs to the category of inverse ones, that is,
based on some known properties of the solutions to an equation, the objective is to
reconstruct its coefficients. Obviously, the result obtained in this paper is partial. We
want to give two examples which illustrate potential interest in our result.

1)

Let F(t) = {0, f(t)} be amulti. Then the integral of F is a convex subset which
may have nearly any shape. It may be desirable to approximate this integral.
Polygonal approximations are the most natural. For such approximations to be
useful, they should correspond to approximations of the multi. Our result shows
that the only multis whose integrals constitute polygons are of the type f(t) =

m

z gi(t)ei, where g; : I — IR, and in fact it also shows how to derive the multi
i=1

from the integral.

We consider a control system described by the vector differential equation (in IR?)

dz
5= Az (t) + B(t)u(?) (8)

with fixed initial data z (0) = zo. The vector z = :1:1) will always be two-
T2

dimensional, A and B are 2 x 2-matrix-valued continuous functions components,

uz
strained to lie in the set U = {u€R?2:0<u; <1, 1= 1,2}. Let X () be a

u . . .
and u = ( 1) is a measurable vector-valued function with values u(t) con-
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fundamental matrix solution of the homogeneous system z (t) = A (t) z (¢). Then,
for any admissible control u, the solution of (8) is given by

z(tiu)=X({t)zo+ X (t)/X‘1 (s) B(s)u(s) ds
0

Define Y (s) = X~ (5) B(s) := ( i (s) iz (o) ) and f; (s) = ( 1 (5) )

y21 (8)  y22(s) Y21 (s)
f2(s) = ( b1z (5) ) Then

Y22 (5)
t t
z(tu)=X@) | zo+ /u1 (s) f1(s) ds+ /Ug (s) f2(s) ds
0 0
Let the multis F; and F, be defined by Fi(t) = {0,f1(t)} and Fp(¢) =
{0, f2(t)}. Then, for each T > 0, the attainableset A(T) = {z(T,u):u€ U} is
given by
T T
A(T) = X (2) xo+/F1 (5) ds+/F2(s) ds
0 0

The necessary and sufficient condition for A (T") to be a polygon is that f; and f,
verify the conditions of Theorem 1.
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