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OPTIMAL TRAJECTORY DESIGN FOR THE
IDENTIFICATION OF ROBOT AND LOAD DYNAMICS'

KrzyszTor KOZLOWSKI*, PiorR DUTKIEWICZ*

In this paper, we discuss the issue of the optimal trajectory design for the
purpose of identification of the inertial and load parameters of a robot. Two
dynamical models have been introduced: differential and integral; both of them
can be used to estimate the robot dynamic parameters in which they appear to
be linear. Functions associated with the parameters are highly non-linear which
in general involve joint positions, velocities and accelerations. A standard sequ-
ential least-squares technique can be used to estimate the unknown parameters.
"This method requires an information matrix which has to be inverted. For par-
ticular joint signals this matrix is singular. In this paper, we propose to optimize
the condition number of this matrix in both formulations: differential and in-
tegral. This work illustrates the difficulty of maintaining persistent excitation
during the experimental identification of robot and load dynamic parameters.

1. Introduction

Experimental identification of robot and load dynamic parameters is an important
problem in model-based robot dynamics algorithms. Robot and load dynamic pa-
rameters, namely: mass, centre of mass, inertia tensor, and friction parameters for
each link robot, appear to be constant coefficients or linear combinations of constant
coeflicients in the dynamic model of a robot. Due to this property, any least-squares
technique can be used for the purpose of identification. Unfortunately, experimental
identification is not as simple as it looks at first sight. Robot dynamic equations
are functions of joint positions, velocities, and accelerations. The information matrix
which appears in the least-squares scheme depends on these quantities and cannot be
easily inverted. Its inversion depends on the shape of the joint positions, velocities,
and acceleration assuming that the model considered is canonical. Canonical models
are expressed in terms of a set of base parameters which are linearly independent.
As shown in the paper, in order to design the optimal trajectory for the purpose of
identification of the base inertial parameters a systematic approach has to be imple-
mented. A trial and error method of choosing the optimal trajectory does not always
give good results. In this paper, we try to overcome this difficulty for differential and
integral models for both robot and load dynamic parameters.
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Robot dynamic models can be derived based on the Newton-Euler (Dutkiewicz
et al., 1993a) or Lagrangian formalism (Kozlowski, 1992). It is well-known that both
approaches lead to the same dynamic model. Generally, as it was mentioned above,
we can consider differential or integral models. The first ones are the same as the
standard equations of motion for robot dynamics. This model can be written in the
following compact form (Kozlowski and Dutkiewicz, 1995):

T:D(q,q,'q')X-{-Tf (1)

where ¢, q,q, are the vectors of generalized positions, velocities, and accelerations,
respectively. The quantity D is an observation matrix which depends on signals
q,q,q, T is the vector of actuating torques at the joints, X is the vector of inertial
parameters, and 77 is the vector of friction torques at the jeints. The friction torques
depend on the generalized positions, velocities, direction of rotation, temperature, and
other factors which are very difficult to describe in the analytical form (Dutkiewicz
et al., 1993b; Lu et al., 1993; Seeger and Leonhard, 1989; Seeger, 1991).

It is assumed that the model described by eqn. (1) is canonical, which means that
the vector of X parameters consists of the minimum number of parameters which
are combinations of the link inertial parameters (namely mass, and first and second
moments of the individual links). Integral models are derived based on the energy
theorem which states that the work of the forces which are applied to the system,
and are not derived from a potential, is equal to the change of the total energy of the
system, thus (Gautier et al., 1994; 1995; Priifer et al., 1994; Willems, 1972):

to ta
/ rTq‘dt:d(q,q)TX+/ mfgdt (2)

tl tl

where d (q, q) is an observation vector which depends on the generalized positions and
velocities, the integral on the left-hand side of eqn. (2) represents the total energy
which goes to the system, the integral on the right-hand side represents the total
energy lost in friction phenomena, and ¢; and t; represent two distinct time mo-
ments at which the total energy of the system is calculated. It is also assumed that
the model represented by eqn. (2) is canonical. Note that both the differential and
integral models have the same set of the minimum number of the inertial parameters
which are a combination of the inertial parameters of the individual links. In both
representations it is assumed that the friction torques 7; are represented in the com-
pact form and we do not look for the friction coefficients which appear in the friction
model but rather for the friction torques in general.

It is usually difficult to measure the friction torques for both differential and
integral models. Seeger (1991) proposed a method to measure the friction torques
for a class of geared robots, taking PUMA 560 robot as an example. For the same
class of robots but described by an integral model Kozlowski and Dutkiewicz (1995)
proposed a method to measure the friction torques.

Generally speaking, friction models are difficult to identify. This is due to the
fact that the friction torque depends on many parameters, e.g. the temperature,
direction of rotation, etc. Besides, the friction torque is non-linear with respect to
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some parameters. Researches usually introduce two friction coeflicients: Coulomb
and viscous, but in many practical situations we have to deal with more friction
parameters. In spite of that, taking corresponding g,¢,q functions associated with
friction coefficients, we have found that they are becoming linearly dependent for
a wide class of trajectories. This greatly complicates the situation. Integrating d
functions over very short time intervals improves the situation but still the results are
prone to be linearly dependent. In such cases, a necessary condition for identification
is not satisfied, and we are not dealing with the canonical model with respect to
friction coefficients. Therefore, in order to avoid such a situation, we propose to
measure the friction torque directly and separate it in eqn. (2) as an individual term.

So far only a few experimental studies on off-line robot dynamics estimation
have been analysed in the robotics literature (cf. e.g. Atkeson et al., 1986; Caccavale
and Chiacchio, 1994a; 1994b; Dutkiewicz et al., 1993b; Lu et al., 1993; Presse and
Gautier, 1991; Schaefers et al., 1994; Szynkiewicz et al., 1990; van der Linden and van
der Weiden, 1994). This is because most of the industrial robots do not have position,
velocity, acceleration, and force and torque sensors which are necessary to perform
the identification experiments. Robots usually are equipped with position sensors. In
order to get velocity and acceleration signals one can differentiate these signals, but
this leads to some numerical errors. Not many papers are devoted to the identification
of load parameters (namely: mass, centre of mass, and six parameters of the inertia
tensor). Some results can be found in (Atkeson et al., 1986) and (Dutkiewicz et al.,
1993a). In order to carry out these experiments, the robot has to be equipped with a
force and torque sensor.

Some remarks concerning a comparison of the differential and integral models
can be found in the work done by Priifer et al. (1994). In this paper, we extend
these results by considering the design of the optimal trajectory for both types of
models. Generally, one can notice that the differential model is richer in information
since all equations for the generalized torques are present. In the case of the integral
model (energy model), we deal only with one scalar equation. Because of that, the
optimal trajectory design for the integral model is crucial. It has been noticed that the
identification results in the case of the integral model appear to be not very sensitive
to filtering measurements because of its natural low-pass filter behaviour. Comparing
both models from the measurement point of view one can notice that in the case of
the integral model the acceleration signals are not required. In order to avoid the
acceleration signals in the differential model one can integrate the differential model
but it is not preferred because an integrator is an infinite-gain filter at zero frequency
(Lu et al., 1993). This means that large errors can result from small low-frequency
errors such as offsets. To overcome this shortcoming, a low-pass filter with unit gain at
zero frequency can be applied to the differential model (cf. Lu et al., 1993; Schaefers
et al.,, 1994). In this paper, we rather focus our attention on the optimal trajectory
design for both models, under discussion.

Different criteria can be used to optimize the input trajectory for the identifica-
tion experiment. Exciting signals for single-input single-output linear systems were
considered by Marrels et al. (1987). They proposed to maximize for comparison a mi-
nimum singular value, condition number and determinant of the information matrix.



674 K. Kozlowski and P. Dutkiewicz

The same criteria can be used for non-linear systems but one has to be careful with
generalization of the results for linear systems. The first considerations on finding
exciting trajectories for the identification of the dynamic parameters of a robot were
given by Armstrong (1989). He suggested to minimize the condition number (Klema
and Laub, 1980) or the reciprocal of the minimum singular value of the information
matrix. Vandanjon et al. (1995) proposed the minimization of the Frobenius condi-
tion number of the information matrix. A comparison of different criteria of exciting
trajectories for robot identification were considered by Presse and Gautier (1993),
Gautier and Khalil (1992) or Presse and Gautier (1991). They proposed a criterion
which takes into account a priori information about the measurement vector and a
priori knowledge of the solution. Most of the authors propose to use minimization of
the condition number of the information matrix as a criterion of the exciting trajec-
tories for robot identification. Due to lack of a priori information mentioned above
we have decided to use the condition number as a criterion. We have implemented
this criterion for both integral and differential models. Both models are considered
for robot parameter identification. For load identification we have used the diffe-
rential model with the appropriate optimization scheme. The optimization scheme
follows that presented by Armstrong (1989) with the extension to the integral model.
Some preliminary results obtained by the authors are presented in Dutkiewicz and
Kozlowski (1994).

The paper is organized as follows. In Section 2 we review the least-squares
technique for dynamic parameter identification. In the next section we describe the
optimization procedure. Design of the exciting trajectories for the IRp-6 robot for the
purpose of robot and load dynamic parameters is presented in Section 4. Identification
of the inertial parameters with exciting trajectories is discussed in Section 5. The last
section presents concluding remarks.

2. Identification Scheme

In this section, we review the least-squares method. It is assumed that differential and
integral models can be used. In both situations the standard least-squares method
can be used. We try to keep the considerations in this section to be general and
applicable to many situations in the process of identification in the area of robotics.

Now recall eqns. (1) and (2). Equation (1) is written in the vector form. For
comparison, eqn. (2) is a single one. The quantity D in eqn. (1) is a matrix function
which depends on joint positions, velocities, and accelerations and d depends only on
joint positions and velocities. These circumstances do not impose restrictions on the
proposed identification method. As was mentioned, in both formulations we have the
same vector of inertial parameters to be estimated. It is assumed that the number of
parameters is minimal, so the model is canonical. These parameters are combinations
of the inertial parameters of individual links. Note that in eqn. (1) the parameters X
appear in each equation of the joint torque for individual links. It may happen that
some functions associated with the elements of the vector X are zero in equations
for the joint torques.

From now on, we will assume that we take only one equation from the set of
equations for joint torques. For the integral model we have by definition only one
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equation. Notice that this is not a limitation because in the process of identification
we have to take many equations at discrete time constant anyway, in order to minimize
the estimation error. We can choose either all the joint torques or only some of them
or only one. We have to remember that the functions associated with the vector of
parameters are different in each equation for the torque. The i-th equation can be
written as follows:

-1 =07 (0,4,4) X +w 3)

In the last equations, ®; is a vector of the basic functions for the arbitrary i-th
joint torque, which in general depends on joint positions, velocities and accelerations.
In the sequel, we will omit the arguments ¢,q,¢. In eqn. (3), w; represents the
observation error. The quantity 74; is a precomputed friction torque (cf. Kozlowski
and Dutkiewicz, 1995).

The least-squares method applied to eqn. (3) leads to the minimization of the
mean-squared observation error

2
X = rr;}n [T,‘ — T = @?X} (4)
The solution to this problem is given by

X = ((I)i q);-r)—lq)i (T,‘ - Tfi) (5)

Assuming that we collect K equations of type (3) discretized with a sampling time
AT, we write the solution to eqn. (4) in the recurrence form as follows:

Rit1 = Ri + Pt Gi(bAT) [1i(BAT) - 77,(kAT) - ST (kAT) %] (6)

-1
Pip1= Py — (1 + 3T (kAT) P, tI)i(kAT)) Py ®;(kAT)OT (kAT)P,  (7)

where

-1
k

Pe= | ) ®(jAT)®;(FAT) - (8)

j=1

is the information matrix. In the process of calculation this matrix has to be inverted,
so 1t has to be non-singular. The information matrix depends on the measured signals,
joint positions, velocities, and accelerations. These signals are usually noisy. It is
difficult to extract the noise signals as one additive noise signal in eqn. (3) due to
the fact that the basic functions are highly non-linear. Therefore w; in eqn. (3)
represents rather the measurement error associated with the torque measurements.
Several simulation experiments were run (cf. Kozlowski, 1992), assuming that different
signals were corrupted by Gaussian noise with known characteristics. The simulation
results showed that the least-squares method is robust and handles this situation very
well. In most cases the estimates of the parameters were unbiased.
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Based on these observations one can notice that the trajectory chosen has to
be such that the information matrix can be inverted. The requirement for sufficient
excitation is well-known from the identification literature and can be formulated as
follows:

k+p
Ja,8>0Wk: of <Y :(AT)ST (JAT) < I (9)
i=k

where I is the identity matrix. Equation (9) says that the information matrix is
positive definite over each sufficiently long portion of the trajectory. This requirement
is stronger: o must be not only positive, it must be reasonable large.

3. Optimization Procedure

In this section, we recall results presented by Armstrong (1989) who suggested to mini-
mize the condition number of the information matrix. Some authors call this matrix
Persistent Excitation one. This is a typical non-linear path optimization problem
(Bryson and Ho, 1975). The cost function, as suggested by Armstrong (1989), is
most naturally started at the end of trajectory. This condition cannot be evaluated
knowing only the terminal manipulator state; it is necessary to know each of the
Py matrix elements which are products of the basis functions — the elements of the
vector ®;. The cost function to be optimized is written as

J = F(Pg) = ZJ (kAT) (10)

where F' may be the condition number or may be the reciprocal of the minimum

singular value of the Px matrix (cost function), and J(kAT) is a cost function

evaluated at the stage k. Now we apply an algorithm similar to that of Bryson and
o (1975). First we calculate the differential of the cost function J

dJ = Z Za Z Z Z(m chT d®;, (kAT) (11)

where Pp,,, stands for the mn-th element of the matrix Py, i is the current number
of the vector of basis functions in general, and r is the current number of basis
functions (R is the total number of basis functions). Assuming that the upper index
of summation in eqn. (8) is equal to K (which is consistent with the assumption that
we calculate the cost function at the end of the trajectory), the partial derivatives of
the elements P, are given by

0 for r £ m,n
1
OPmn ) K ®;n (EAT) for r=m 12
0%, (kAT) %@im(kAT) for r=n
K
l,(pim(chT) for r = m=n
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Finally, d®;,(kAT) in eqn. (11) stands for the differential of the r-th basis function
at the point kAT.

The Hamiltonian, which will be minimized by a gradient search, is formed by
adjoining the Lagrange multipliers to the cost function J(kAT), giving (Bryson and
Ho, 1975)

H(RAT) = J(kAT) + X [(k + 1)AT| f(kAT) (13)

where f is a discrete-time function which depends in general on joint positions,
velocities and accelerations at the discrete time (kAT). If we denote by X = [g, ¢]
the vector of joint position and velocities, then f in the discrete time can be written
as follows:

F(RAT) = f[X(kAT), §(kAT)] (14)

In the optimization, the trajectory is specified as a sequence of accelerations q- At
the beginning of the optimization procedure an initial trajectory is specified and then
the following calculations are performed

AK) =0
s - e van
T

In the above expressions m stands for the number of iterations over the whole tra-
Jectory (assuming that one iteration consists of sweeping the trajectory through all
discrete time points K).

To complete the solution we have to specify the function f:
7+ DAT| = AX(KAT) + Bi(kAT) (16)

where A and B are matrices which depend on AT and AT? (Dutkiewicz and
Kozlowski, 1994). From the last expression the partial derivatives with respect to
X(kAT) and §(kAT) can easily be calculated. Coefficients of the gain p.,, which is a
diagonal matrix, are chosen by observing the differential d Pk, which in the calculation
procedure is approximated by APg. All the partial derivatives which cannot be
calculated directly are calculated numerically. In the case of the integral model, the
state vector represents positions, and the control vector represents velocities.

4. Numerical Results

In (Dutkiewicz et al., 1993a) we showed experimental results for the dynamic and load
parameters identification of the IRp-6 robot. We identified inertial parameters of the
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robot by making use of the integral model. It was not possible to estimate all the
inertial parameters in one experiment (by inputting one test trajectory for all joints).
These difficulties were caused by linearly dependent basis functions for certain regions
and because it was not possible to move all the joints very fast. Therefore we decided
to move one joint at a time while keeping the others idle. Then we moved two joints
with constant velocities. Combining the results obtained from different movements it
was possible to identify all the inertial parameters. Next we applied the differential
model for the purpose of identification. The results were almost the same.

To improve the accuracy of the identified parameters we ran a program which
calculats optimal trajectories according to the scheme presented in Section 3. First,
we implemented differential model calculations for all the joints of the IRp-6 robot.
The initial value of the condition number for a test trajectory was 10'%. After 90
iterations the condition number was 10!3. The optimization procedure for these
iterations took about 20 hours on a PC/486 computer (the programs were written
in Pascal). Generally speaking, for three joints of the IRp-6 robot, the optimiza-
tion procedure did not produce satisfactory results. Next we considered eqn. (3) for
1 = 1. We assumed that the starting trajectories were spline polynomials for the first
and second joints and the cosine function for the third joint. The initial value of
the condition number was 1.910% |, and after 88 iterations its value was about 88.
The optimal trajectory was calculated at 300 points. Coefficients p., which appear
in eqn. (15) were chosen as the reciprocal of the maximum value of the Lagrange

coefficients A. The results of the optimization procedure are shown in Figs. 1, 2,
and 3.

Next we performed numerical calculations for the integral model. In that case
we made use of the Mathematica package (Wolfram, 1992) and ran all programs on
‘a PC. The results for three joints were not satisfactory. Therefore we carried out
several experiments moving only one joint while keeping the other joints idle.

For numerical experiments we used eqn. (2). Moving only the second joint while
not actuating the first and second joints, and assuming a cosine input trajectory for
the second joint we got the initial value of the condition number of about 3000. After
about 23 iterations this value changed to 500. The starting and optimal trajectories
in this case are shown in Figs. 4, 5 and 6.

Note that in the case of the integral model we did not neglect the friction coef-
ficients in eqn. (2). Most of the authors (e.g. Priifer et al., 1994) neglect the friction
coefficients both in the identification scheme and in the optimization procedure. The
friction coeflicients cause linear dependence on the parameters which was discussed
in Section 3.

Finally, we performed numerical calculations for optimal trajectories for load
identification. Here we developed a software package written in C++ language by
making use of object-oriented programming techniques. In that case we carried out
several numerical experiments by making use of different initial trajectories. We tried
spline polynomial trajectories, cosine, and many others. It was more difficult to find
a good trajectory due to the fact that for load identification we had to choose five
joint positions g;. The problem is larger in size and takes more computation time.
Generally speaking it is more difficult to identify the load parameters due to the
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fact that joint positions, velocities, and accelerations are very much limited for the
IRp-6 robot. The best results were obtained by using the following joint positions
(from which joint accelerations required as the input trajectories for the optimization
procedure can easily be calculated, cf. eqn. (15)):

g1 =12 - 0.7cos(0.47 + 1.7a) + 0.8sin(0.17 + 0.8a)

g2 =4+ 1.8cos(0.47 4 1.7a) + 1.3cos(0.17 + 0.3c)

g3 = 8+ cos(0.457 + 1.4a) + 0.4sin(0.47 + 0.4@) + 0.7sin(0.87 + 0.6a)
s = —13 — 1.2sin(0.457 + 1.7a) + 1.8cos(0.157 + 0.7)

gs = —9 + 2.6c0s(0.157 + 2«) — 1.1sin(0.457 + 0.2a)

where o =27i/(K —1), K =200, i=0,1,..., K — 1.

The initial value of the condition number for the above set of trajectories
was 90830 and after 40 iterations it fell to about 3000. Starting from this point
it was not possible to improve the condition number. For each trajectory we calcula-
ted 200 points with the sampling interval At = 32ms. The optimization procedure
took about 60 hours of computation time on a PC/486 computer. The numerical
results are shown in Figs. 7, 8, 9, 10, and 11.

Finally, we can say that the optimization procedure gave good results. The exci-
ting trajectories were implemented for the identification of robot inertial parameters
which is shown in the next section.

5. Experimental Results

In this section, we present experimental results of an identification of the inertial para-
meters of the IRp-6 robot. These results were reported by Dutkiewicz et al. (1993a).
The trajectories were chosen in an intuitive way. Nevertheless the results were good
in the sense that the computed and predicted torques matched well. We implemented
exciting trajectories obtained in Section 4 for the purpose of identification. We tried
both' differential and integral models. Here we present only the results for one joint
for the integral model. The integral model is of interest particularly because of its
friction coefficients. Some authors (Priifer et al., 1994) claim that it is difficult to
identify the friction coefficients due to the fact that they easily become linearly de-
pendent in the identification process. We observed that this was not necessarily the
case. Using eqn. (2) and moving only the first joint we got the following aggregated
parameters and the corresponding d functions

1.
X1 = L+ Ia,ln% + Iogz + Igyy,. dl = .iqf
X2 = Flc, d2 = /Iélldt

X3 = Fyy, d3=/(ﬁdt
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where Fj. and Fy, denote the Coulomb and velocity-dependent friction coefficients,
respectively. Here we did not precompute the friction torque, because we wanted
to check the quality of the identification with exciting trajectories. Fortunately, by
moving different IRp-6 joints, we were able to identity all the mass and friction pa-
rameters and none of them was involved in two separate movements. This made it
possible to avoid the accumulated errors during the identification sequential process

(cf. Gautier and Presse, 1991). The identification results are respectively shown in
Figs. 12, 13, and 14.

Fromthe curves presented in Figs. 12, 13, and 14 one can notice that the estimates
are stable by making use of the exciting trajectories. The values of the friction coef-
ficients are very close to the precomputed friction coefficients obtained by Kozlowski
and Dutkiewicz (1995). This validates the exciting trajectories for the purpose of
identification of inertial parameters. The results for the other joints were of a similar
nature.



684 K. Kozlowski and P. Dutkiewicz

8

| predicted
M Ml measured

/2]
i
6.00 7.50

-60
0.

tis]

Fig. 12. Mass parameter identification with optimal and non-optimal trajectories
for the first joint.

88
ol Mmoo
) i -—— predicted
‘m Mu‘ —_— z\reeasurod
— ¥
2 \
Z s N 1
E e oo
i (
p|
I AN
/", i i
b W
-22
0.00 1.50 300 4.50 6.00 7.50

tls]

Fig. 13. Coulomb parameter identification with optimal and non-optimal trajecto-
' ries for the first joint.

7
° 0 ) ‘M‘n . ‘W"‘MM
{ ,
.5. 2 &
|:’ :\‘ I kY,
ﬁ A Ni Ak ‘II
74 W et -- predioted
! measured
46
0.00 150 300 4.50 €00 7.50

tis]

Fig. 14. Velocity friction parameter identification with optimal and non-optimal
trajectories for the first joint.



Optimal trajectory design for the identification of robot and ... 685

6. Concluding Remarks

In this study, we presented exciting trajectories for dynamic robot and load parame-
ters identification experiments. As a criterion we used minimization of the condition
number of the information matrix. We applied this criterion to several identifica-
tion problems in robotics. We used it in two models: differential and integral. We
compared the results with those existing in the robotics literature. For the integral
model we tried the short and long integrals discussed by Priifer et al. (1994). Exciting
trajectories are very important for the integral model due to a loss of information in
this model in comparison with the differential one. Therefore we performed several
numerical experiments particularly for this model for both robot and load dynamic
parameters identification. A trial and error method in choosing an exciting trajectory
does not always give good results. This phenomenon was observed in the process of
load identification. Some initial trajectories were chosen close to the optimal ones; for
example, we chose some trajectories with the initial condition number as low as 181
and it was not possible to improve it by the optimization procedure. The numerical
results were successfully verified by the experimental results with an IRp-6 industrial
robot.
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