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ON THE EXISTENCE OF NASH EQUILIBRIUM
IN A NON-COOPERATIVE, N-PERSON, LINEAR
DIFFERENTIAL GAMES WITH MEASURES
AS COEFFICIENTS

OLEG A. MALAFYEEV*, ZpzistaAw WYDERKA**

In this paper, the existence of e-equilibrium in the sense of Nash for linear
differential games with measures as coefficients and with fixed time duration
is studied. The strategies of the players are understood in a sense similar to
Varaiya-Lin strategies. Two cases of payoffs are considered: payoffs dependent
on the whole trajectories and terminal payoffs.

1. Introduction

This paper is devoted to the study of the existence of Nash e-equilibrium for linear
differential games of fixed time duration with measures as coefficients. In such ga-
mes the trajectories are functions of locally bounded variation, which are piecewise
continuous only (i.e. not necessarily continuous).

At first, some facts from the theory of linear differential equations with measures
as coefficients are presented without proofs.

The main component of the paper consists of two parts. In the first part, the
payoff functions depend on the whole trajectories, whereas in the other, the terminal
payoffs are considered. The existence of e-equilibrium is proved in both games by con-
struction of their multistep and discrete approximations being games with complete
information. The strategies in the original games and in their approximations are
understood in a sense similar to the Varaiya-Lin strategies (Varaiya and Lin, 1969).

This paper generalizes some results included in the papers (Malafyeev, 1974;
1978; 1979; Wyderka and Malafyeev, 1985; 1986; Zaremba, 1982; 1983), where two-
person games were studied, and in the papers (Malafyeev, 1980; 1982; Wyderka and
Malafyeev, 1991; Zaremba, 1982; 1983), to the case when the coefficients of linear
differential equations describing the dynamics of the game are measures. It is also
related to the paper (Wyderka and Malafyeev, 1991). Similar problems for games
with dynamics described by the generalized dynamical systems were studied e.g. in
(Elliott and Kalton, 1972; Malafyeev, 1974; 1978).
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2. Linear Differential Equations with Measures as Coefficients

Here and subsequently, BVj,.(a,b) denotes the space of all the right-continuous func-
tions of locally bounded variation in some open interval (a,b). We write A(-) = dA(")
for the Lebesgue-Stieltjes measure generated by a function A(-) € BVi,c(a,b). Let us
consider the following linear differential equation

= A(t)z + f(t), z(to) = o, r€IR", te€(a,b) (1)
and the corresponding homogeneous equation
z = AQ)z, z(to) = zo, r€IR*, te€(a,b) (2)

where the elements of the matrix A(-) are measures and the free term f(-) belongs
to L}, (a,b).

loc
By the solution of eqn. (1) we mean a function z(-) € BVioc(a,b) which satisfies
the following Lebesgue-Stieltjes integral equation:

2(t) = 20 + / dA(s)a(s) + f f(s)ds, L€ (to,b) 3)

or, in the homogeneous case,

2(t) = 20 + / dA(s)o(s), € (to,b) (4)

d
Here and subsequently, the integral / dA(s)h(s) stands for the integral
¢ .

dA(s)h(s).
(c,d]
By the Lebesgue decomposition theorem, the measure A(-) may be expressed as

Al) = A(t) + i Crb(t — ti)

k=1

where A(-) = dA(-) is the continuous part of the measure A(), ie. A() €
BVioe(a,b) N C%a,b) is a continuous function of locally bounded variation, Ci are
some n x n real matrices and é(-) denotes Dirac’s delta measure.

We will make the following assumptions:

Hi) The sequence {tx} of atomic points of the measure A(-) is ordered: a <ty <
t1 < ...< 1ty < ...< b and the unique accumulation point of this sequence
may be b.

Hy) det (E—Cr)#0 for k=1,2,...; E is the identity matrix.
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Under the above hypotheses, eqn. (1) has the unique solution z(-) € BVic(a,b) and
the following Cauchy formula holds:

z(t) = ¢(t)zo + ¢(¢) / ¢~ 1(s)f(s)ds (5)

where ¢(:) € BVioc(a,b) denotes the fundamental matrix of system (2), normed
at to.

The auxilliary equation
&= A(t)z, 2(to) = xo (6)
has the solution
#(1) = ¢(eo,  ($(to) = ) (7)

such that 2(-) € BVi,c(a,b) N C%a,b).

Let us denote by s (resp. by e) the value (resp. the jump) of the solution z()
of eqn. (2) at tx. The following formulae hold:

(E - Ck)sk = é(tk)é_l(tk—l)sk—l, k=1,2,..., sg==xo (8)
Sk :(E—Ck)_ll'(tk_), k=1,2,... (9)
€k =(E—Ck)_1Cka:(tk_), k=1,2,... (10)

In each interval [t;_),1;), the solution z(-) of eqn. (1) is a continuous function
which may be written as

2(t) = ¢ (tr-1)sk-1, 1€ [t ta) (11)
Moreover, if A(-) = 0, then this solution is a piecewise constant function:
z(t) = sk-1, t € [te-1,tx)

The solution of eqn. (1) may be rewritten as

z(t) = p()¢~ (to)zo + Y (1)~ (tr)erH(t — i)
k:itp <t
where H(-) denotes the Heaviside function. If we compute all ¢; as functions of z
(by (8) and (10)), and next eliminate z, outside the bracket, we obtain construction
of the matrix ¢(-).

Summarizing, the solution z(-) of eqn. (1) is a piecewise continuous function of
locally bounded variation (therefore z(-) is bounded), which depends continuously
on the initial data (to, o).

Now let us assume that the free term in (1) contains the control parameter wu(-),
i.e. consider the equation

z=Alt)z+ f(t,u), =z(to)==z9, =z €ER*, uelR™, te€(a,b) (12)
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We make the following assumptions:

C1) The elements of the matrix A(:) are measures for which the hypotheses H;
and H, are fulfilled.

Cs) The function f(-,-) is of the Caratheodory type, i.e. f(:,u) is measurable and
f(t,-) is continuous.

Cs) The set of admissible controls
U= {u() : (a,b) = U() : u(-) is measurable }

where U(t) is a non-empty, compact set for all ¢ € (a,b) and the multifunction
t — U(t) is measurable, i.e. for any closed subset D C IR™ the set {t € (a,b):
U(t)ND # @} is measurable.

C4) There exists a measurable vector function u(-) € L}, (a,b) such that for every
u(-)elU, |filt,u(®))] < pi(t) for t € (a,b),ae.i=1,...,n.

Let us fix T' >ty and consider the attainable set K(T,U) for system (12) at the time
moment T

T
K(T,U) = §(T) |20 + / =1 (5)f(5,U(s)) ds (13)

where the last integral is understood in the sense of Aumann (1965). In (Wyderka,
1980) the following properties of the attainable set were proved.

Theorem 1. K(T,U) is a non-empty, compact and conver set in IR", which con-
tinuously depends on xo and the attainability multifunction T — K(T,U) is con-
tinuous from the right in the Hausdorff metric op, i.e. if T, — T, Tn > T, then
oa(K(Tn,U),K(T,U)) — 0. More precisely, if T # ty (for k = 1,2,...), then
K(T,U) is continuous at T ||

For a deeper discussion we refer the Reader to (Wyderka, 1989; 1994).

3. Differential Games with Payoffs Dependent on the Whole
Trajectories

Let us consider a differential game of n players, {1,...,n} = I, in which the dynamics
of the i-th player is described by the system of differential equations

z; = Ai(t)iﬂi + fi(t, ui), .’L','(to) = .’13?, z; € IR™
. (14)
u;(t) € U;(t) C IR™, iel, tto€(a,b)

where the matrices A;(-) are measures.

Let us assume that, for all 7 € I, the measures A;(-), the functions f;(-,-) and
the set U;(t) satisfy all the assumptions of Section 2.
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At each time instant ¢ € (a,b), all the players know the initial instant ¢, and
the final instant T from (a, b), all the positions {x;(t)};es and the dynamics of the
game. At time T, each player obtains the payoff

Hi(z1(), ... za()), €1 (15)

where ;(-) is the trajectory of the system (14) which was realized in the game process
by the i-th player (i € I) and H;(‘), ¢ € I, are given, continuous functionals. The
aim of each player is maximization of his payoff. The equilibrium is understood in
the sense of Nash (see e.g. Vorobiov, 1984).

It is assumed that the players choose their strategies as similar in spirit to those
in the sense of Varaiya-Lin (see e.g. Varailya and Lin, 1967; 1969; Zaremba, 1982;
1983). Let us denote by 7; = {t},...,t¥} the set of all atomic points of the measure
A;i(+) in the interval [¢o,7] and set

T:UT,:
i€l

Let us fix some finite partition o : {to < t; <tz < ... <ty = T} of the interval
[to,T] with the diameter ¢ = maxg[ty — tg—1] such that 7 C & and denote by
Fi(2?,T) the set of all trajectories z;(-) of the system (14) on [to,T]. Moreover,
some permutation P = {41,...,i,} of the players’ set I is also fixed.

By the strategy of the i-th player in the auxilliary game I'%(zo,T—%o) we mean
a non-anticipating operator qﬁf;,z- of the type

b I () = Xser Fi() — Fi(")
with the following property: if z¥,? € Fy*(-) are such that
Ty (1) = :‘:(T) for 7€ [to,te], u <1
and
z;, (1) = 2, (1) for 7€ [to,tk~1], 4> k=1,...,N
then

qs;’,i(x:(‘r)) = ¢g’,i(x;’(T)) for € [toxtk]: k= 15 ey N

(The next partition ¢’ is obtained from ¢ by division of each subinterval [t;, ;1]
into two equal parts). Let Lpf;'i be the set of all strategies for the i-th player. It
is clear that each situation ¢% = (¢‘15,,1-1,...,¢’15,’in) € ¢} = ieﬂpﬁ,ﬂ- determines
uniquely a trajectory z7(¢%) in the game T'4(-) as its outcome (see Varaiya and
Lin, 1967; 1969; Zaremba, 1982; 1983). The payoffs in the auxilliary game I'%(.) are
now defined in a natural way by (15).
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Lemma 1. In the game T'%(.), there exists an e-Nash-equilibrium for every e >

. . . . — — 5 . .
0, i.e. there exists such a situation qﬁjg = (¢i’,iu---a¢P,i,.) for which the following
inequalities hold:

—8 —6 ) —6
Hil(¢P) 2 Hil(¢P,i,1 caey ¢g),ip ceey ¢P,in) —£

forall iy €1 and for ¢5; # 37;,“-

Proof. The procedure is similar to that of the Zermelo theorem for finite positional ga-
mes with complete information, because T'4(:) is a game with complete information.
The proof of the Zermelo theorem may be found in (Parthasarathy and Raghavan,
1971, Thm. 2.5.1) in the case of two-person, finite games and may be simply genera-
lized for n-person games. Next the transfinite induction must be used. ]

Lemma 2. For a sufficiently small n > 0 there exists an operator II; , : Fi() —
F;(\), i €I, such that if

zi, 2’ € Fi(*), (1) =z/(7) for 7 € [to,1]

then
Iy (2:)(7) = i () (7) for 7€ [to,t+1]
and
e'(n) == sup |l&; — L y(xi)lli — 0
zi€Fi() n—0

where || - ||; denotes the norm in the space BV ([0,T) : IR") — see e.g. (Natanson,

1974).

Proof. The proof is based on the following facts:

a) All trajectories are piecewise-continuous functions of bounded variation which
depend continuously on the initial condition z;(tx) = z¥ in the interval [tx,tr41),
independently of whether #; is or is not an atomic point of the measure A;(-),

b) BV([0,T],IR™) is a Banach space and Fj(-) is a compact set in this space. (It
is essential that the jump points for every trajectory z;(-) € F;(-) are the same.)

For example, as II; ,(-) we may simply choose a translation operator along the
trajectory of (14). [ |

A simple consequence of Lemma 2 is the following result.

Lemma 3. For every strategy qﬁ%’i such that i@ # iy, Hi,6(¢g3’i) s a strategy of
the i-th player in the game I‘f,(i)(‘-), where P(i) = (i,Pi—1) and P;_; denotes a
permutation of the set I\ {i}. Moreover,

sup  [|¢d(2F) — i s(65.) ()|l < €'(6) — 0
¢5P,iEV’}6=',i 60
TIEFT(Y)
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and if §; < b3, then ‘Pﬁnl,i 2 9"16731(2'),1 2 Qoﬁ’i(i)ai'

The following lemma, is quite obvious.

Lemma 4. Let a non-cooperative, n-person game in the normal form

M= {I{pi'Yer, {Hilier}

be the image of a game

Ty = {I, {pi}ier, {Hz'}iel}
under some epimorphism
a:(ala--'ran)a Olz'390i—’90il: i€l

such that |Hi(¢) = H,'(¢)| < € for every ¢; € a7 (¢:i). If there ezists an
e-equilibrium situation in the game Ty, then in the game Tpg: there exists a
2e-equilibrium sttuation.

Proof.. The proof follows immediately from the definition of the e-equilibrium and
from the assumptions of the lemma. [ ]

Let us consider now the game

T = {1 = Tslebber, {Kidier}

where P is a permutation of the set I and the payoff K; for the i-th player in the
situation

¢ =(41,....9%) € 9" : Xier !

is defined in the usual way by (15) as a function of the trajectory z(¢°) of the game
in the situation ¢® with the use of the function H;(-) — see (15). From Lemmas 2
to 4 we have as a corollary the following result.

Lemma 5. For every ¢ > 0 there is a 6§ > 0 such that in the game T9(.) the

e-equilibrium situation exists and this situation is the image of the same situation for

the game T4(-) under the operator Il = (i) 5,00, iy 5) s 05 — 0% |

To return to the differential game of fixed duration, we define this game in the
normal form:

L(z°, T —t0) = {I:{‘Pi}iEI» {Ei}z‘el}

The strategy ¢; of the i-th player is the pair (6, 4’%(;‘) ;) and the payoff for the i-th
- player in the situation ¢ = (¢1,...,¢n) is equal to

E,((b) = H,' (m;(qbi,‘(l)’l, ce ey ¢§’1En),n))
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where z7(-) = (21(-),...,za(:)) is the vector of the players’ trajectories, which is an
outcome of the situation (¢§;(i) ;)ier. From Lemma 5 and from the definition of the

game I'(-) we obtain the following result.

Theorem 2. For every ¢ > 0 in the game T'(-) there exists an e-equilibrium situation
in the class of non-anticipating strategies. |

4. Differential Games with Terminal Payoffs

In this section, we study differential games with the same dynamics as previously, but
now the payoffs are terminal: at a fixed instant T > ¢y the i-th player obtains

Gi(z1(T),...,z.(T))

where Gj(-) is a continuous, real function defined on the product X;e;Ki(T,U;) of
the attainable sets and z(T") = (z1(T),...,zn(T)) are the right ends at T of all the
trajectories of systems (14) which were realized in the game process. The equilibrium
is understood in the sense of Nash, too. The dynamics of the game is described
by eqns. (14) and all the previous conditions concerning A;(-), fi(-,-), and Uf; are
assumed to be fulfilled. The information accessible to each player is also the same as
previously.

The strategies are now defined in a slightly different way. Let us introduce the
set 7 as above, the initial partition ¢ C 7 with diameter § > 0 (next partitions
are constructed as in the previous game) and some permutation P of the set I; the
symbols F;(z?,T), F1(-) have the same sense as in Section 3.

By the strategy of the i-th player we mean a non-anticipating operator
% ; : F¥(:) — F;(-) such that if z*,z*' € F*(-), z;,(t;) = z;,/(t;) for j=1,...,k,
P, 1 3 [AN) 1 \")
k<N, 44 <i andif

z;, (t;) = 23, (t5) for 7=1,...,k—=1, k<N, >
then
Ypi(zi(r) = ¥hi(zi(r))  for 7€ [tio1,ti]

Let us denote by \Ilf,,z. the set of all strategies of the i-th player and define the
n-person multistep game with terminal payoff in the normal form:

T5(z°, T —to) = {I, {95 Yier, {Gi’,i}ief}

where Gfg,i() 1s constructed in the usual way based on the original payoff func-

tion G;(-). The trajectory in the game I'p(-) is constructed in the same way as the
game I'4(-), namely, as an outcome of the situation ($pirs-- s 1/)‘15,’1-“). In contrast to
the previous game, the operators II; 5 for i € I will be fixed.

We can now state the analogue of Lemma 3.
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Lemma 6. For every strategy ¢f,l such that ¢ # 1y, the image H,"(s(l/i%’i) s a sira-
tegy of the i-th player (in the game FP(Z () ) from the set \IIP( i = Vi, Moreover,

Sup, [1¥p,(27) = Wis (s (=1)]ls < €'(6) — 0

€Y
I ()
and WP, DUP ) DVE, if 61<8. W

(The corresponding lemmas, analogous to Lemmas 1, 4 and 5 may be formulated
in a similar way and therefore are omitted.)

The original differential game with the terminal payoff T'(z°, T — to) in the class
of non-anticipating strategies is now defined in the following way. The strategy ;
of the i-th player is the pair (6,,¢P(z) ;) and the payoff for the i-th player in the

situation 9 = (¢1,...,%y,) is equal to

Gi(¥) = G (a(Wisy 1+ ¥y .0))

where z(-) is the trajectory of the game which is the outcome of the situation 1.

From definition of the game f(), using a method similar to that used in the
previous section we obtain the following result.

Theorem 3. For every € > 0 in the game f() there exists an e-equilibrium situation
in the class of non-anticipating strategies. |

Remark. For the approximation I'%(-) of the game T(-) the following reccurence
relations of dynamic programming hold in the equilibrium situation:

va,l(ff,(:co,T)) = valP [ val(ff;(zl, T - tl))]

val(I‘ (zN-1 T.— tn— 1)) _valPG( O(T))

Here the operator val’W(-) denotes the vector of the payoffs for all the players
ordered by the permutation P in the game with the payoff vector function W() in
the equilibrium situation, in which each player chooses the alternative maximizing his
payoft.

5. Example

In this section, we illustrate our main results by one example concerning a three-
person differential game in a one-dimensional state space with terminal payofls. Let
us consider three one-dimensional control systems which describe the dynamics of the
game:

=126(t—- 1)z +u, z(0)=0, —-1<u<3 (X)
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y=-6(t—1.5)y+v, y(0)=4, —-4<v<0
z2=1256(t—1.9)z+ w, 2(0)=-2, 0<w<5

for t € [0,2].

The payoff functions are given, respectively, by
He (2(2),3(2), 2(2)) = [2(2) - ()
7, (5(2),52),22)) = v®) -4
H, (2(2), 1(2),2(2)) = |o(2) - ()] +|y(2) - =(2)]

Each player tends to maximize his payoff.

(Y)
(2)

The emission zones of the systems under consideration are bounded by the fol-

lowing curves:

—t for t<1
(L’_l(t) =
6—1 for t>1
3t for t<1
z3(t) =
=) {3t—18 for ¢>1
y_a(t) =3 -3¢ for t€]0,2]
) = 4 for t<1.5
A B for t>1.5
-2 for t<1.9
Zo(t) =
0.8 for t>1.9
5t —2 for t<1.9
z5(t) =
5t — 17 for t>1.9

Therefore the corresponding attainable sets are as follows:

Ko(2) = [-12,4], K,(2) =[-3,4], K.(2)=][-7,0.8]

For the above problem there exists Nash equilibrium (not only an e-equilibrium)

point. The optimal (programmed) strategies are given by

() =3, () = -3, w(-)=0
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They steer the corresponding systems to the following optimal final states:
Z(2) = -12, 7(2) = -3, z(2)=0.8

Computation of this Nash equilibrium point is straightforward using the geome-
tric approach. In fact, we note that it is possible to calculate the attainable sets for
the corresponding players (for details see (Wyderka, 1994)).

Moreover, the above problem may simply be treated as a hierarchical optimal
control one with three dynamical systems and with vector-valued performance index.
Indeed, the problem of the (Y)-player is simply an optimal control one consisting
in maximization of the reach. The problem of the (X)-player may be studied as
another problem of optimal control, namely that of maximization of the final distance
to the (V). Finally, the (Z)-player maximizes the sum of the distances to (X) and
to (Y). As is easy to prove, the corresponding optimal final states satisfy these three
inequalities which define the Nash equilibrium point.

This example also illustrates some “pathological” situations we meet in con-
trol problems for linear systems with measures as coefficients. For example, if the
(X)-player tends to maximization of the final distance from the (Y)-player, he must
come nearly to (Y') within the initial time interval.

6. Conclusions

In the paper, the existence of Nash e-equilibrium point for n-person differential games
has been proved. The payoffs dependent on the whole trajectories and the terminal
ones have been considered. The paper generalizes some well-known results to the case
of the games with discontinuous trajectories and with more than two players. Unfor-
tunately, the proof of the existence theorems gives no information about computing
Nash e-equilibrium situations.

The presented example illustrates some “pathological” situations which are “nor-
mal” in the study of control or game problems for linear systems with measures as
coefficients rather than the method of proving the main theorems, which (in our
opinion) is impossible due to the non-constructivity of these proofs.

Such differential game models may be employed in the analysis of situations in a
port, when a few ships (e.g. merchantmen or fishing boats) are to go to the jetty with
maximal safety, or similar situations in an airport or on the aircraft carrier. Unfor-
tunately, the models are described by differential equations with smooth, continuous
or integrable coefficients.

Differential systems with measures as coefficients describe some practical pro-
blems, among others, in radiation of electrical or magnetical waves in two different
media with a common part of boundary (Friedmann, 1956), in classical (Dzyra and
Ishchuk, 1976) or quantum mechanics (Babikov, 1968; Gotfried, 1966) or in optimiza-
tion of cosmic manoeuvres (Ivashkin, 1975); this last domain of possible applications
with a great number of participants is close to the problems studied in this paper.
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