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TEMPORAL REPRESENTATION OF WHITE NOISE

MaRek KOZIEN*

A signal being a model of white noise in the time domain is proposed. It
has the form of an infinite sequence of Dirac’s impulses with random, Poisson-
distributed distances between them. Then, the influence of two parameters,
existing during a realization, on the form of the two-sided power spectral density
is discussed. These quantities are the length of impulses and the average distance
between them. Finally, the form of the power spectral density for a signal being
a realization of white noise in the time domain, performed on the basis of the
presented definition, is shown.

1. Introduction

In the analysis and simulation of real mechanical systems, when the frequency spec-
trum of excitations is not known in detail, a signal of white noise type is often used.
For example, while designing a new vehicle, the frequency spectrum of excitations is
known only after a prototype is made. Moreover, for slowly varying processes the
power spectral density is “almost” constant with respect to frequency. Therefore the
modelling of such a signal by white noise seems to be a sufficiently good approxima-
tion, which radically simplifies the analysis.

A characteristic property of white noise is the same energy for each frequency.
Therefore its whole energy is infinite. One of the main disadvantages of this signal is
only its frequency representation. Consequently, in applications of white noise to the
description of excitations during the analysis of system vibrations, these excitations
could not be defined in the time domain. But in some applications it is useful to
make an analysis in such a domain. Thus the question about a possibility of defining
of a new signal which could be a temporal representation of white noise arises. This
signal should be defined in such a way that its frequency characteristics are the same
(or very similar) to those for white noise.

Lyon (1975) introduces an “alternative time domain definition of white noise as
a series of impulses of strength =a, occuring randomly in time”. But he does not
define such a signal in more detail.

Roberts (1965) defines a discrete process, called the shot noise, being some sequ-
ence of impulses, which can be in the limit case a temporal representation of white
noise. Such a discrete process has a non-stationary character, because the strength
of impulses and the average distance between impulses can vary in the time domain.
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Then he applies this signal in the analysis of the response of a linear vibration sys-
tem having a single degree of freedom to random impulse excitation. The problem
of the response of dynamical systems to the excitations in the form of a sequence of
impulses is analysed, among others, by Tylikowski and Marowski (1986), Iwankiewicz
and Nielsen (1992), Sniady (1989) Gladysz and Sniady (1992). The signal of
Poisson’s sequence of impulses is discussed by Murzewski (1993). The papers (Gladysz
and Sniady, 1992; Snlady, 1989) contain a bibliography connected with the problem
of the response of dynamical systems to the excitation in the form of a sequence of
impulses.

Levin (1966) discusses a few different signals of the form of impulses randomly
occuring in time and characterized by random parameters (amplitudes, distances
between impulses, shapes of impulses). Some of them are discussed by Solodownikow
(1964), too.

In the present paper, some aspects of the proposed model of the white noise
signal are discussed. This model is a sequence of impulses. It has a stationary
character, because the strength of impulses and the average distance between impulses
are constant in the time domain.

The following notation regarding the characteristics of the signal £(t) is adopted
in the analysis: £ denotes the expected value in the time domain, R, stands for the
autocorrelation function, and S¢ is the two-sided power-spectral dens1ty function.

2. Modelling White Noise in the Time Domain
2.1. Definition of White Noise

By white noise we mean a stationary, random, Gaussian-distributed signal ¢ps cha-
racterized by the parameters given by

Z_l;; =0, REBS(T) = Né(T)’ Sst(w) =N, N>0 (1)

Szabatin (1990) states that it is “the most ‘random’ among all the continuous signals
with continuous time”. Due to its form, this signal has not any direct temporal
representation.

2.2. Definition of the Poisson Series of Dirac’s Impulses

Let us consider a sequence of points, randomly distributed in the time domain. We
call it the Poisson series. Szabatin (1990) states that this series “is characterized
by the highest ‘randomness’ among all the series with randomly distributed points”.
If A denotes the density of distribution of the points on the time axis, then the
random variable 7 describing the distance between randomly distributed points has
exponential distribution and its probability density is given by

fo=Ae M H(®) 2)

where H(t) is the Heaviside function.
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Let {t; : i =0, £1, £2, ...} denote Poisson’s series of points (in practice its
realization), with constant density A. We define the signal épg; in the form below,
called the Poisson series of Dirac’s impulses with unit strength:

+o00
Epsi(t)= D 6(t—t:) 3)

i=—00

It is characterized by the values of the following characteristic quantities (Szabatin,
1990):

€psr = ’\: REPSI(T) =\ -+ ’\6(7-): SEPSI(w) = 27(/\25(00) +A (4)

2.3. Temporal Representation of White Noise

Let us define, by the Poisson series of Dirac’s impulses and a binary symmetric random
variable v, a new signal &{wpn: in the form

Ewnt = v E€psr (5)

which is the proposed temporal representation of white noise. Here 7 is the variable
taking two values +1 and -1 with the same probability 1/2. Because ¥ = 0 and
2 =1, the values of parameters of éwpy; are as follows:

£(t) =7 €psi(t) =7 Epsi(t) =0 (6)

Rewne(t1,t2) =7 Epsr(t) v €psi(ta)

(7)

=72 €psi(t1) Epsi(tz) = Reps,(t1,12)

Finally, the signal defined in (5), discontinuous in the time domain, is characterized
by

fWNt =0, REWN!(T) =\ + ’\6(T)> SEWNt (w) = 27"’\26(“’) + A (8)

On account of close values of the characteristic quantities for the white-noise
signal (1) and for the modified Poisson series of Dirac’s impulses (6), (7) (there is a
difference only for the power spectral density function for the zero value), it seems
to us that the signal defined in (5) can be considered as a temporal representation of
white noise. But the new signal is not of Gaussian type. Therefore the representation
is valid in the sense of correlation theory.

An example of the real signal generated on the basis of the above definition is
given in Appendix.
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3. Real Form of White Noise in the Time Domain
3.1. Introductory Remarks

The proposed model of white noise is characterized by two quantities used for its
description in the time domain: the average distance between impulses At and the
strength of each impulses. In practice, two parameters are included in the quantity
of the average distance between impulses: the time of realization 7; and the number
of impulses Linp. The presented characteristic quantities are valid for Ty — oo
and Limp — 00 in such a way that Tj/Limp — At. It should be noted that it is not
possible to generate this signal in real conditions. Two reasons yield this fact. The
first of them is a finite time of its realization and the other is the impossibility of
realization of the Dirac’s impulse.

The strength of Dirac’s impulses, denoted by P, can be introduced using a
periodic sequence of rectangular impulses with amplitude A and time of realization r.
The periodic sequence of Dirac’s impulses can be interpreted as the limit of the
rectangular sequences of impulses as 7 — 0, where the strength of impulses has the
value of P = Ar. Thus, physically, the strength of Dirac’s impulses has a character
of the impulse of the quantity describing the amplitude of a rectangular impulse
(dimensionally [P] = [A][r], where [-] is the dimension of the given quantity).

3.2. Fourier Series Expansion of Periodic Series of Rectangular Impulses

Let us consider a signal, denoted by f(), in the form of a series of rectangular
impulses with amplitude A, duration 7 and period T' (see Fig. 1a). The exponential
Fourier series expansion of this signal takes the form

f@) = Z F, efnwot (9)

n=-oo

where wo = 27/7 and

Fo= Al sin(nm %)
T nrg

(10)

Therefore the amplitude spectrum of this signal consists of spectral lines with the
values Fy, occuring at the points with circular frequencies w = 0, fwg, +2wq, ... .
The form of the spectrum envelope of the signal F(w) and its normalized quantity
F(w) are related by the following relationship:

T sin(%w) T
Flw)=Az B AT (W) (11)
— —

F(w)

The amplitude envelope of the signal under consideration is the function |F(w)| whose
plot is shown in Fig. 1b.
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Fig. 1. Periodic stream of rectangular impulses (Ozimek, 1985):
a% form of the signal,
b

amplitude envelope for the exponential Fourier series (d-= 7).

It should be noted that as 7 — 0 (i.e. for the signal consisting of periodic Dirac’s
impulses), the amplitude envelope tends to a constant value (|F(w)| — AZ) and the
normalized amplitude envelope tends to one (|F(w)| — 1).

3.3. Influence of Average Distance Between Impulses

Finite duration of a signal realization in the time domain means in practice a finite
time of realization 7} and a finite number of impulses Liy, when the condition
At = Limp/T} is satisfied. The following question arises: how does the value of
the average distance between impulses influence the frequency characteristics of the
signal, e.g. the two-sided power spectral density? In the case of a realization of finite
duration this question takes the following form: how do the time of realization and
the number of impulses influence the two-sided power spectral density?

Let us consider first (Levin, 1966; Solodownikow, 1964) a signal in the form of
a sequence of rectangular impulses with a constant amplitude A, length 7 and random
distances between impulses. We write At for the average time of impulse repetition,
and &ty for the deviation of the k-th distance between the adjacent impulses subject
to the condition 6t = 0. Let fs; be the probability density of the random variable §t.
If x denotes the random variable with probability density f,, then its characteristic
function Wy (jw) is defined by the following relationship (Solodownikow, 1964):

W, (jw) = / f () vt dt (12)
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The two-sided power spectral density of the signal under analysis is given by
(Levin, 1966; Solodownikow, 1964)

s(w) = B 17

+IW5,¢ ]w 2203 ( 27rlc)]

W) [1 = Wa(jw)
(13)

where |F(jw)| is the normalized amplitude spectrum envelope of the sequence of
rectangular impulses with amplitude A and length 7, periodically repeated with
period T (see (11), Fig. 1b).

In the case of the signal considered, the random variable 6§t is defined by the
following relationship:

6t =n— At o (19)
where 7 is a random variable describing the distance between the points with expo-
nential distribution (see Section 2.2, A = 1/At), and At has a character of a deter-

ministic quantity. Because the probability density of the deterministic quantity At
satisfies

fai(t) = 6(t — At) (15)

the probability density of the random variable 7 takes the form (2), so their charac-
teristic functions are of the form

A2 ny Aw
M tw? TNt

Wa(jw) = e 9284, W,(jw) = (16)

It is known (Solodownikow, 1964) that the characteristic function of the sum of two
independent random variables is the product of their characteristic functions. Hence
the characteristic function of the random variable §t, according to (14) is calculated
based on the relationship Ws;(jw) = W, (jw)/Wa:(jw), and the square of its modulus
is of the form

22

2 _
[Wii(w)|* = Mt o?

(17)

To determine the signal which is a temporal representation of white noise (that
1s to say, the sequence of Dirac’s impulses defined in Section 2.3) let us take the limit
as 7 — 0. Then Ar — P. In this case the amplitude envelope tends to a constant
value (|F'(w)] — P/At, see Section 3.2 for T = At). After some calculations, the
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two-sided power spectral density of this signal can be written down as the sum of the
components S (jw) and S3(jw) as follows:

Su(iw) =L
AT Tt (wA)?
P2 Sl(j1w ) > 21k (18)
+£At)2 1+ (wAL2 o k:z_:m 6w - A7)
sa(w) )
- $a(jw)

The component S)(jw) of the two-sided power spectral density has a continuous
character in the frequency domain, whereas the component S2(jw) 1s a sequence
of pulses of strength s3(w) occuring at the points of the circular frequencies w =
0, 27 /AL, 4w /At, ... .

At this moment, two common conventions of graphic representation of the am-
plitude spectrum should be discussed. These are distributional and classic (based on
the complex Fourier series expansion of a signal). The Dirac’s impulse of strength
27| X| at the point kwg in the distributional representation corresponds to a pulse

of strength |Xj| occuring at the same frequency point for the classic representation
(Szabatin, 1990).

Two measures of errors are introduced for estimating the difference between
the two-sided power spectral density functions for two signals: the theoretical one
(in the form (8) but for the strength of impulses P), and the real one. The first
error coefficient (the relative one), denoted by eg1(w), describes a deviation of the
continuous component of the real signal S;(jw) from the corresponding component
of the theoretical signal, i.e. P?/At, through the following relationship:

2

AT Sl jw 1
esi(w) = P ) - 1+ (wAt)? (19)

The other error coefficient (the relative one) is connected with the component
Sa(jw). It is denoted by es2(w) and defined as follows:
Sz(w) g . 1 1

£ 2 2 1+ (wAt)?

esa(w) = (20)

The value of the error coefficient answers the following question: how big is the
strength of impulses divided by the distance between impulses in the frequency domain

(this is done by multiplying the whole expression by At/27) in comparison with
a constant value for the two-sided power spectral density of the theoretical signal?

The form of the two-sided power spectral density of the real signal is approaching
the form of the same function for the theoretical signal when the error coefficients
es1(w) and es2(w) attain small values. Taking into account the fact that es2(w) =
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es1(w)/2m (see (19), (20)), it is sufficient to analyse only the dependence of eg;(w)
on the parameters At and w.

Equation (19) describes the relationship between the circular frequency w, the
average distance between impulses At and the error coefficient eg;(w) for a realiza-
tion of a signal infinite in the time domain. In practice, the time of realization is finite
and the average distance between impulses At is equal to its value Ty divided by the
number of impulses Liy,. When we assume a sufficiently large number of impulses
or a sufficiently long time of realization, it is possible, by applying relationship (19),
to estimate the value of the circular frequency above which the frequency response
of the real signal is close to the same characteristic for the theoretical signal, in the
sense of the assumed error coefficient e51(w) and its value. For such an interpretation
relationship (19) which includes four quantities (¢s1(w), Tk, Limp, w) can be used to
estimate the value of one of them when the values of the others are given. But during
calculations of the parameters of the real signal by applying the relationship mentio-
ned above one should remember the fundamental assumptions (T, — oo, Limp — o0

in such a way that 7} /Limp — At). These include the requirement of taking not too
small numbers of impulses.

The error coefficient €51(w) as a function of circular frequency is shown in Fig. 2.
The distance between the impulses At changes in such a way that the time of reali-

zation of the signal takes the constant value T} = 0.25 s, and the number of impulses
has the following four values Liynp = 50,100, 250, 500.

0.20 — ‘
—f I| \ \
H \
0.15 \\ \
l: \\ \
@ 0.10 ; s N
.‘ . N
i ! . -
. . -
0.05 \ _ L5
- i Limg=100
] \\"*- [l -t Limp=250
0.00 LI B R e oy oy o o e o e s == Limp=500
0.00 5000.00 10000.00

w [rad/s]

Fig. 2. Error coefficient es1(w) v. frequency for signals with the same numbers
of impulses and the same time of realization.

3.4. Influence of Non-Zero Time of Realization of Dirac’s Impulses

Let us consider a signal (infinite in the time domain) in the form of a sequence
of Dirac’s impulses defined in Section 2.3. For realization, an impulse has a finite
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length and finite strength. Hence, to estimate of the influence of finite length of the
impulse on the two-sided power spectral density, it is possible to use this function for
a signal in the form of a sequence of rectangular impulses with a randomly varying
distance between them as considered in the previous section. It follows from this form
that the impulse length affects the normalized amplitude envelope |F(w)| defined
in Section 3.2. Based on the analysis of the form of the envelope it is possible to
determine the highest circular frequency wy,q; below which (ie. for w € [0,wmaz])
the real realization of a signal with impulse length 7 is valid for the assumed error
coefficient €;(w). If the impulse length tends to zero (7 — 0), then the normalized
amplitude envelope reaches one (|F(w)| — 1).

Let us assume that w < 27/7. This means that we consider the frequency
range from zero to the value for which the normalized amplitude envelope reaches for
the first time the zero value. Then we define the mesure of the difference between
the envelope obtained for the signal with non-zero length and the envelope for the
sequence of Dirac’s impulses (the straight line with the ordinate value AP/T), in the
following form:

|F(mas) = AF| _

g = T
AF

(21)

sin(Zwmax) 3 1'
%wmax
After some manipulation, we obtain a non-linear equation for the product Tw,az
with parameter ¢; in the form
T

Ewmaz:(l - 51') - Sin(%wmaa:) =0 (22)

It is possible to estimate the value of the product Tw,g, from the relationship
TWmag = 2 \/6\/5 (23)

when the Maclaurin series expansion is applied, taking into account only the first two
terms.

Numerical calculations show that it is possible to apply the approximate relation-
ship (23) to estimate the value of the product 7w,,;; when the value of €; 1s known.
Comparison of the exact and approximate values of the product Twpaz, made for
some values of the error coefficient ¢;, is shown in Table 1.

Tab. 1. Exact and approximate (from the Maclaurin series) values of Twmaz
for some values of error coeflicient e;

e VALUE OF Twimas
EXACT | APPROXIMATE
0.01 | 0.490636 0.489898
0.05 | 1.103822 1.095445
0.10 | 1.573366 1.549193

0.20 | 2.262205 2.190890
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Fig. 3. Influence of the impulse length ¥ on the maximum frequency wmax for
the assumed values of error coefficients e;.

By the exact value we mean the value calculated based on the non-linear equation (22),
subject to the condition that the values Zwmaz(1 —¢;) and sin(Zwmaz) are equal
with the precision of 14 significant digits. By the approximate value we mean the

exact value calculated based on the approximate relationship (23).

Therefore, to choose the parameters of a signal, from the point of view of the
non-zero length of the realized impulses it is necessary to assume arbitrarily a value
of the error coefficient ¢;. Then, based on the exact relationship (22) or, as it seems
to us good enough, on the approximate relationship (23), the value of the product
TWmar is obtained. Based on this value and assuming the impulse length 7, it is
possible to estimate the upper circular frequency limit w;,.,. When the value of
the product Twmgae is known, it is alternatively -possible to estimate the maximum
impulse length 7,4, for the assumed circular frequency band (by the assumed upper
circular frequency limit wpqg).

The relationships between the impulse length 7 and the upper frequency limit
wWmaz for four values of the error coefficient ¢; = 0.01, 0.05, 0.1 and 0.2, calculated
based on the exact equation (22), are shown in Fig. 3.

4. Final Remarks

A stationary temporal representation of white noise is proposed in the paper. The
representation is valid in the sense of correlation theory. The fact that white noise
is of infinite energy appears in its temporal representation by the infinite time of
realization. The temporal representation is defined by two quantities: the strength of
impulses and the average distance between impulses. Because of the stationarity of
the signal, these quantities are constant in time. The estimation of the influence of the
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average distance between impulses and the time of realization of Dirac’s impulses on
the form of the two-sided power spectral density has been carried out by introducing
error coefficients. The real realization of the temporal representation of white noise
is not infinite in the time domain, so the estimation of the average distance between
the impulses is in practice the estimation of the time of realization and the number
of impulses, whose values, taken arbitrarily, should be large enough.

Some remarks result from the analysis. The first one refers to the average distance
between impulses. If its value is large, then the two-sided power spectral density of
the signal approaches the form of the same function for white noise, starting from low
frequencies. The second remark is connected with the length of impulses (the time of
realization of the impulses). This quantity has an important influence on the form of
the two-sided power spectral density and its value should be as small as possible.

We hope that the analysis presented here facilitates the modelling of the signal
defined in the time domain characterized approximately by the same energy for each
frequency. It should be noted once again that the two-sided power spectral density for
the proposed temporal representation of white noise in the form (8) is theoretically
valid only as Ty — co and Linp — 00, in such a way that Tk /Limp — At.
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Appendix

An Example of the Real Signal Generated on the Basis
of the Definition Given in the Paper

Based on the definition of the temporal representation of white noise discussed in the
paper, a new signal, finite in the time-domain and piecewise constant, has been ge-
nerated. The amplitude strength for each time segment whose length is not constant
and equal to a randomly varying distance between impulses is equal to the value of
a single impulse divided by the distance between the appropriate adjacent impulses.
The following values of the signal parameters have been assumed: the time of reali-
zation Ty = 2.5107! s, and the average distance between impulses T = 2.51073 s,
the strength of impulses P = 1. The form of the signal defined in this way is shown
in Fig. 4. The values of the signal are not zero for small values of time variable, as it
appears in Fig. 4, but are only small in comparison with their maximum value in the
considered range.

[
1,345
signal | i
| 1 || -
B o o o e o e e I Y |
a T 1e80d

Fig. 4. Form of the real signal.



Temporal representation of white noise 715

The power spectral density of this signal, shown in Fig. 5, has been determined
by the Blackman-Tukey method (assuming the value of the relative standard error
er as equal to 0.1)(Bendat and Piersol, 1976) The calculations have been carried out
with the use of the program SPECTRA v.3.1 from the package CADEX©~

Such a new signal (of continuous form in the time domain) was required by the
applied package.

I
3294.3 \

PSD | J

N A N T N N T |
. frequency 200409

Fig. 5. Power spectral density for the signal shown in Fig. 4.
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