Appl. Math. and Comp. Sci., 1995, vol.5, No.4, 717-742

UNIVERSAL DATA COMPRESSION BASED
ON APPROXIMATE STRING MATCHING

ILAN SADEH*t

Two practical source coding schemes based on approximate string matching are
proposed. Onmeis an approximate fixed-length string matching data compression
combined with a block-coder based on the empirical distribution, and the other
is an LZ-type quasi-parsing method by approximate string matching. A lemma
on approximate string matching, which is an extension of the Kac Lemma, is
proved. It is shown, based on the lemma, that the former deterministic algorithm
converts the stationary and ergodic source, u, into an output process v. On
the assumption that v is a stationary process, after the scheme has run for the
infinite time, it is shown that the optimal compression ratio R(D) is achieved.
This reduces the problem of the universal lossy coder to the proof of stationarity
of the output process v in the proposed algorithm. A similar result holds for the
latter algorithm in the limit of the long database size, which is the suffix of the
infinite database generated by the former algorithm. The duality between the
two algorithms is proved. The performance of the two algorithms and their sub-
optimal versions are evaluated. The main advantages of the proposed methods
are the asymptotic sequential behaviour of the encoder and the simplicity of the
decoder.

1. Introduction

Approximate string matching is a technique with considerable theoretical merits and
a practical promise. Our major motivation comes from data compression theory,
although we believe that our results might have a wide range of applications in pattern
recognition theory, artificial intelligence, biological research and, in particular, the
Genome Project. Its algorithmic complexity and data structure were studied by
Landau and Vishkin (1986), Galil and Giancarlo (1988) and Storer (1990). However,
we focus our attention on a probabilistic aspect of the problem, i.e. universal source
coding.

Universal source coding algorithms that achieve the theoretical bound R(D) are
still unknown. Such algorithms may be useful in image and voice compression, medical
applications and DNA sequences compression. In our context, the most appropriate
application is in multimedia, where voice and images are transmitted on the same

* Department of Electrical and Electronics Engineering, Center for Technological Education and
Research, Holon, Affiliated with Tel Aviv University, P.O.Box 305, Holon, 58102 Israel,
e-mail: sade@math.tau.ac.il

t Department of Math. and Computer Sciences, Ben-Gurion University, Beer Sheva 84120, Israel,
e-mail: sade@ivory.bgu.ac.il

718 I. Sadeh

channels and the decoder in the universal receiver must be cheap. Consequently,
bandwidth reduction and cheap decoding procedures are the necessary first step to
bring multimedia closer to reality.

The crucial point is to choose a compression method which is universal for all
image sources and realizable. We believe the algorithms described below are the best
fitting for such an application. However, MPEG (see (Le Gall, 1991) for details) has
chosen a different technology based on DCT (Discrete Cosine Transform) to compress
the data rate and a cascaded two-dimensional variable length coding scheme. We
think that our algorithms are superior to this strange combination of old technologies,
which has no theoretical proof of optimality. Video coding is a promising application
because almost surely there is an approximate “string” matching between a two-
dimensional block in the current frame and a block in the previous frames in the
spatial neighbourhood. Moreover, our methods are performed in such a way that
the encoding and decoding procedures do not have to wait until the whole frame is
transmitted. In this sense, it is suitable for ATM networks.

The first practical universal source coding were proposed by Lempel and Ziv
(1977; 1978) for the compression of sequences by a lossless encoder. Their algorithms
are based on a parsing procedure which creates a new phrase as soon as a prefix of the
still unparsed part of the string differs from all preceding phrases. A fast implemen-
tation was given by Welch (1984). The asymptotic behaviour of this implementation
through suffix trees was studied by Szpankowski (1993). A suffix tree construction
algorithm was presented by McCreight (1976) and a simple algorithm for sorting the
suffixes of a string was given by Manber and Myers (1993). Digital search trees were
used in (Jacquet and Szpankowski, 1995) to obtain second-order properties of the LZ
parsing scheme. The LZ parsing algorithms play a crucial role in such applications
as efficient transmission of data (Lempel and Ziv, 1977; 1978), estimation of entropy
(Ziv, 1978), discriminating between information sources (Gilbert and Kadota, 1992),
testing randomness, estimating the statistical model of individual sequences (Plotnik
et al., 1992), etc. '

Berger (1971), Blahut (1987), Gray (1975), Ornstein and Shields (1990), Sadeh
(1995) and others proved the existence of optimal codes subject to a fidelity criterion.
These works vary in the assumptions on the class of sources, the fidelity criterion and
the type of convergence of the rates to the rate distortion function R(D). In most
cases, the construction of a code involves the following step: given a block of source
symbols, find that code in an exponentially large class of codes, which performs best
for this block. This task is prohibitively complex even for modest codebook sizes and
makes these schemes impractical for implementation. Most of the schemes postulate
that an a prior: distribution of the source or some statistical information are known
at both ends of the data link. Such postulates are inappropriate in the design of a
universal machine.

We assume that the source process is ergodic and stationary. Its statistics is
unknown, but we assume that the infinite time has elapsed since the beginning. So,
actually, our convergence proofs are based on the fact that the source statistics is
already known in the encoder but unknown in the decoder. We propose two practical
source coding schemes based on approximate string matching. The first one is an

Universal data compression based on approximate string matching 719

approximate fixed length string matching data compression method combined with
a block coder based on the empirical distribution and the other is an LZ-type quasi
parsing method by approximate string matching. The output process, which is a
database, is also assumed to be stationary and ergodic. This assumption is expla-
ined and an informal proof is given. It is shown that in the former algorithm the
compression rate converges to the theoretical bound R(D) as the string length tends
to infinity. We note that the decoding algorithm is very simple. The encoding algo-
rithm is exponential at the beginning, but it is implementable. As time elapses, the
encoding algorithm tends to be asymptotically linear with respect to the size of the
database string. The algorithm of Wyner and Ziv (1989) is obtained as a special case
of no distortion, i.e. D =0.

A similar result holds for the latter algorithm in the limit of the long database
generated by the former one. The algorithm of Lempel and Ziv is obtained as a special
case of no distortion for the quasi parsing method by approximate string matching.

We adopt the terminology and some of the reasoning of Wyner and Ziv (1989),
and Ornstein and Weiss (1993) in their work concerning lossless algorithms.

There is some literature on the probabilistic analysis of problems
of approximate pattern matching (Arratia and Waterman, 1989; Arratia
et al, 1990; Luczak and Szpankowski, 1995; Sadeh, 1993a; Steinberg and Gutman,
1993). In particular, we would like to mention two references related to probabilistic
analysis of pattern matching in the context of computer sciences (Knuth, 1981) and
combinatorial probability (Pittel, 1985). The papers (Arratia and Waterman, 1989)
and (Arratia et al., 1990) explore the properties of the length of the longest substring
that can be approximately recopied in context of genetics and biological research.

The paper is organized as follows. Section 2 is devoted to the principal lemma of
approximate string matching, the extension of Kac’s Lemma (Kac, 1947) and its new
proof. Section 3 deals with the description and proof of convergence in probability -
of the algorithms. The section includes definitions and theorems about the duality of
the minimal first repetition event and the longest first new block event, as well as the
limits theorems. In Section 4 we give a short summary.

2. The Principal Lemma of Approximate String Matching

We present an extension of Kac’s Lemma (Kac, 1947), based on ideas of L.H. Ozarow
and A.D. Wyner as presented in the paper of Wyner and Ziv (1989).

Consider a finite valued stationary infinite sequence v defined on an alphabet
V. Let v’ denote a sample sequence between positions i, j in the sequence v. Let B
be a set of strings of length / taken from the space of all possible strings of length ,
defined on V, i.e. B C V! such that Pr(B) > 0. We denote by Y, a string of
length ! starting from position n, ¥, = v2*=1 and we say that two strings Y,, Y,
are approximately matched with respect to B if Y,, € B, Y,, € B. We denote the
conditional probability that an approximate match with respect to B occurs for the
first time at step k, by

Qk(B):Pr{YkEB; Y; ¢ B; 1§j§k—1[YOEB} (1)

720 I. Sadeh

The average recurrence time assigned to B is defined by

u(B) =Y kQu(B) Co (2)
k=1
The event that in the realizations of v we can find members of B, is

A:{YnEB for some n, ——oo<n<oo}

Lemma 1. (The Eziended Kac Lemma) Under the above assumptions,

Pr{A} = Pr {Yo € B}u(B) (3)
In particular, for stationary ergodic processes, we have

1 =Pr{Yo € B}u(B) = Pr{B}u(B) 4)
Proof. We slice the event A as follows:

A+:{Yn€B for some n, O§n<oo}

A_ :{YneB for some n, —oo<n§—1}

Then
A=A _UA; = A A+ ALAS + ATAL
where + denotes the disjoint union. We first show that
Prf{ajac}=pr{a34_} =0
Intuitively, it is clear that in the (.ergodic case, in any time slot of infinite length an

event must occur. However, for the general non-ergodic case, if the event A, occurs,
then there is a smallest j > 0 such that Y; € B. Thus

Pr(A+Ac_):iPr{Yn¢B, —00< n < J; Y,-eB}
j=0 .

But since the sequence {Y¥,} is stationary, the summand does not depend on j
and therefore it must vanish. Similarly, Pr {4, 42 } = Pr{454_} = 0.

Universal data compression based on approximate string matching 721

Now, if the two events A, and A_ occur, there must be the smallest j > 0
such that Y; € B, and the smallest k¥ > 0 such that Y_, € B. Thus

o0 00

Pr() =Pr(A+A-) =Y N Pr{Va ¢ B, ~k+1<n<j; Y4€B; Y; € B}
k=1j=0

{YkeB}Pr{Y ¢B, —k+l<n<j; Y eBYkeB}

v (1€ 5}

NgERANgE
nmgmms

£
1}

1j

where the last step follows from the stationarity of Y,. For k > 1, Q; (B) appears
in the last summation exactly i times, i.e. for (j, k) in (0,4),(1,i—1),...,(i —1,1).
Thus

Pr(4) = Pr{Y; € B}iiQi(B) =pr{¥e B}u(B)

In particular, for stationary ergodic sources, we have,

1= Pr{Y; € B}u(B) = Pr{B}u(B)

3. Algorithms and Convergence to R(D)
3.1. Definitions

Consider an ergodic and stationary finite valued source u, defined on a finite alpha-
bet U. Let u denote a sample sequence or a block in the sequence u. The sequence

uZ; is our data base.

Definition 1. We define L,(u) to be the first index such that the string up...urp_
is not a substring of the database u~}. Thatis,for n =1,2,... Ln (1) is the smallest
integer L > 0 such that

ug Tt EuIptTl L<m<n

L,,(u):inf(L>0: ug“l y-mtLl-1 Lgmgn)

—-—m 1]

Definition 2. The random variable N;(#) for { > 0 is the smallest integer N > I
such that

-1 -

_ —-1-N
uy = u_y

In other words,

Ni(@) =inf(N > 1:uf ™t = o3 N)

722 I. Sadeh

Given alphabets U and V', a distortion measure is any function d: [Ux V| —
IR*. The function d measures the distortion (cost, penalty, loss etc.) suffers each
time when the source produces letters u € U and the letters v € V are presented
to the user. Usually, the range of d is finite and without loss of generality we may
assume that, for all &, min; d(ug,v;) = 0.

Let p;(%;7) denote the average value of the ‘per letter’ distortions for the letters
that comprise the block 4, that is

§|
=

N[P—i

1 .
Z (5)

We omit the subscript . The pair (@x;%) denotes the letters at the k-th position
at the source and the user, respectively. The distortion is assumed to be memoryless,
that is, independent of the neighbouring letters.

Definition 3. For each sample sequence % of length [, taken from the sequence wu,
we define the set

D-Ball(a {|puv)<D}

We generalize Definitions 1, 2 to the lossy case by using the sequence vZ1 as our

data base.

Definition 4. For each sample sequence @ we define the random variable

DL, (a,v=}) = ﬁ:p(n;’%%D Ln(9,v7)

In other words, using the sequence v-! as our data base, we continue the sequence
Ug, U1,until there is no string ¥ of length L, in the D-Ball surrounding the
string % = up...ur—1 such that 7 is a substring of the database v ,11 We define
DL, (a,v>}) = L.

Definition 5. For each sample sequence u we define the random variable

DNI('E,'U:%;) - H:p(gltiTl;l<D NI(! _k

In other words, we choose all the strings of length ! taken from V' that are neighbours
of ”0 = ii. From this ensemble we select the string v with the smallest N;(v, v:,lc).
The selected ¥ is the element in D-Ball(2) with minimal first repetition.

Universal data compression based on approximate string matching 723

3.2. Duality Lemma

We present the duality between the two random variables of Definitions 4 and 5.
In what follows we will prove that this duality implies that between the proposed
algorithms.

Lemma 2. (Duality Lemma) For each sample sequence 4, for every database v:,t,
and for any positive integers n < k and [< n,

{DNi(@,v7}) > n} = {DLa(a,vzl) <1} (6)
Proof. For given positive integers n, [,

{pwia, > n} = { min Moo, > 0

- {V'D p(a,7) <D, Ni(v)> n}
As in (Wyner and Ziv, 1989), for positive integers n, I,
{N:(f),v:}c) > n} = {vé‘l £v2lmm I<m< n} = {Ln(‘,v:,l,) < l}
Thus
{DN,(a,v:;) > n} = {Va o(i,7) < D, Ln(d) < 1}

= ﬁ:p(mi_‘,%))(sp L,(v) < l} = {DLn(ﬁ,v:,ll) < l}

3.3. Approximate Fixed-Length String Matching Data Compression

The following scheme is actually based on two machines that work in parallel; one is
an approximate string matching and the other is a blockcoder that generates on-line
a Codebook. At the beginning most of the codewords are created via blockcoding,
and after a sufficient period of time the approximate string matchings dominates
the scheme. More and more approximate string matchings occur as the size of the
database increases, and then the machine becomes sequential. As the Codebook is
gradually constructed, the optimal acceptable partition is also created and updated
as the empirical source distribution goes closer to the exact source distribution. In
this algorithm we do not need to send the entire Codebook as in blockcoding. We
transmit only the necessary codewords that comprise the database for string matching.
In comparison with blockcoding this reduces the traffic in the channel thus rendering
the algorithm feasible. Since the decoder adds a new string from either the database
or the input to this database, its complexity is very low. A typical application is a
multimedia system that requires image compression, where the transmitter can afford
an expensive computer but the television sets must be cheap and therefore should be
based on decoders of low complexity.

724 L. Sadeh

Let [be a fixed integer known for all terminals (the encoder and decoder). The
sequence ug,uy,...,u;—1 is a new block. The data compression scheme is as follows.
Assume that the encoder and decoder have the same database, v_, ...v_1, defined
on the alphabet V which has been produced in previous steps. Without loss of
generality, we assume that the initial database is empty.

We assume that the encoder has an algorithm that constructs on-line a codebook
based on observations of a sufficiently long prefix of source symbols. Such a construc-
tion is the “bootstrap” stage of our algorithm. We do not require this huge Codebook
to be transmitted to the decoder. We only require the encoder to transmit to the de-
coder only the necessary codewords and that these codewords comprise the database
at both sides of the channel. Furthermore, the decoding procedures are very simple
and can be very easily implemented. Recall that blockcoding requires the same com-
putational power at both sides of the channel, or transmission of the huge Codebook
to the decoder. We will show that asymptotically, as [— oo, the compression ratio of
this algorithm converges to R(D). The most appropriate encoding algorithm is that
finding first the optimal acceptable partition in the sense of the minimal /-th order
induced entropy on codewords, and next choosing the most probable codewords to
Codebook (Sadeh, 1993a). In the following Theorem 1, we assume (Step 5) that the
[-th order entropy induced on codewords is minimal among all the possible acceptable
partitions. In the sequel, we describe a more practical algorithm based on (Ornstein
and Shields, 1990). Blockcoding algorithms are discussed in (Ornstein and Shields,
1990; Sadeh, 1993b, 1995).

We apply a deterministic partition of the sourceword space. Such a partition,
or a similar one as described in (Ornstein and Shields, 1990; Sadeh, 1993b, 1995),
induces probabilities and the I-th order entropy on the process v, such that the
Codebook set creates the best blockcoding. Optimality is considered with respect
to the minimal error probability and/or the minimum rate. However, it is known
(Ornstein and Shields, 1990; Sadeh, 1995) that the optimal blockcoder induces the
[-th order entropy on the codewords such that it tends to R(D) as | — oo. The
probabilities are induced on the codewords by acceptable partitions. An acceptable
partition of blocklength [is a partition on the space of sourcewords of length ! such
that for all © the associated subset A(7) satisfies A(?) C T(¥) which is the D-Ball
around 7, and that a limit of the induced I-th order entropy limy_,e, Hy(l) exists.

The partition algorithm described and used here assumes a fixed ! and a source
with a known probability structure. The probabilities are obtained according to the
empirical distribution of u in the past. As time elapses, the empirical distribution
converges to the real one. Hence also the induced entropy given an empirical distri-
bution converges to the entropy based on the real source distribution. The details are
included in (Ornstein and Shields, 1990; Sadeh, 1993b, 1995) where it is proved that
such an acceptable partition attains the minimum entropy R(D) as the blocklength
tends to infinity. In general, the blockcoding algorithm applies only to communica-
tions situations in which both the encoder and decoder exactly know the statistics of
the source. Once the sorted lists on both sides are prepared, the transmitted informa-
tion is the index of the selected codeword. However, universal coding means dropping
this assumption and it implies performing the blockcoding only at the encoder size

Universal data compression based on approximate string matching 725

~ and transmitting the selected codeword itself without compression.

For the sake of clarity, we repeat some basics concerning blockcoding. We describe
one algorithm, but it is not crucial to use a specific one because we deal with the
convergence issue. All the optimal acceptable partitions induce the entropy that
converges to R(D).

3.3.1. The Partition Algorithm

We define spheres around all the possible codewords #,
1(5) = {a| o(a,7) < D}

The coding is a deterministic process which maps each sourceword to exactly one
codeword. We construct an algorithm that defines this mapping.

Denote by A(%) the set of sourcewords that are mapped to the codeword .
Clearly, A(7) C T(7). In each step we create the most probable subset which is
mutually exclusive with all the sets that are already selected. Here ©/ denotes the
J-th codeword in the list. The procedure is as follows:

Initialize:
1. Define Y (%) for all the possible codewords.
2. Set m=1.

3. Set A(7) = Y(9) for all v.

Loop:
4. Find an index k, k& > m, which satisfies
—k _ _]'
Pr (A(v)) = ;ria#lcPr (A(v))
5. Swap o™ for ¥*.

6. Update all the remaining subsets
A= A@) - A@)NAGE™), Vi>m

7. Set m=m+1.
8. If m < |V, then goto Loop else stop.

After the algorithm has been executed, all the codewords are sorted such that
to each codeword we assign the set of sourcewords mapped to it. The probability of
each codeword is defined to be the probability of the set of sourcewords assigned to
it. (Actually, the Codebook is constructed in accordance with the empirical source
distribution.) In other words,

Pr(s™) = Pr (A(z“;’"))

726 I Sadeh

Then, the subsets A(?™) form a full partition of the set of all sourcewords. The
following properties are valid:

AF)NAGE™) =0, Vji#m
Pr (A(ij)) > Pr (A(z‘;m)), Vi< m
Pr(#/) > Pr(v™), Vi<m

The “Codebook” set Ci(D,é) is defined as the set of all the codewords whose
probability exceed a threshold p;,

pi = e~ I(B(D)+5)

The Codebook is
Cr= {5|Pr(5) > pt}

and the cardinality of the set is]Cz l: e'". We define a function 6(r,[) such that

5= logpe R(D). Thus the Codebook is defined in terms of § to consist of all the
codewords such that

Ci(D,é) = {ﬁl Pr(?) > exp (—l(R(D) + 6))}

The value 6 = §(I, r) is determined by r (the rate of the Code) such that |Cy(D, 6) l:
e'". Equivalently, we may say that the error event is the event that a D-Ball around a
sourceword % does not contain any word from the selected codebook. In other words,

6.0~ (5 g, P40 <)

Using the definition of p;, we obtain

_ . 1 _
Er(6,D) = {ul ﬁ:p(rz_fl‘lﬁr)lSD-—Tlog Pr(2) - R(D) > 6}
It is known (Ornstein and Shields, 1990; Sadeh, 1993b, 1995) that the error pro-
bability, denoted by P.({,é,D) = Pr {Er}, decays to zero with [for all accepta-

ble partitions that attain asymptotically the entropy R(D) and for the rate that
exceeds R(D).

Now, we present compression schemes that consist of a bootstrapping stage of
blockcoding and approximate string matching.

Universal data compression based on approximate string matching 727

Data Compression Scheme A:

1. Verify readiness of the decoder.
2. Take a string @ = ul! of length 1.

3. If u)~ can be approximately matched up to the tolerance D by a substring of
vZ1, encode it by specifying DN;(@,v”}) to the decoder. Add a bit as a header

flag to indicate that there is a match. Append the string vl S DNI to the database
in the decoder and encoder at the position 0.

4. If not, indicate that there is no match, transmit to the decoder and append the
string vg”l to the database in the encoder and decoder. This is the associated
D-Ball centre, obtained by blockcoding on the current string uf)_l and based
on the accumulated empirical distribution in the past of u. The codeword is
transmitted as it is, without compression.

5. Shift the indices by ! to the appropriate values. Update n to n+I. Repeat the
process from Step 1, with a new string of length ! and a database v_}.

Decompression Scheme A:

1. Handle the coming string according to the “flag”. If the flag indicates “Match”,
copy a substring of v_}, specified by the pointer DN;(ﬂ,'u:,ﬁ), to the decoder
database. Append the string v’__l%j_\,lDN’ to the database in the decoder at the

position 0.

2. If the flag indicates that there is no match, append the string received in the input
buffer at the beginning of the decoder database.

3. Shift the indices by [to the appropriate values. Update n to n + . Repeat the
process from Step 1, with a new input.

The scheme has two modes of operation. If there is an approximate matching,
the database is augmented by a string and concatenated. Otherwise, there is a mode
of “bootstrap” in which the machine appends an optimal blockcoded codeword based
on the empirical distribution of u. Optimal blockcoding algorithms are discussed in
(Ornstein and Shields, 1990; Sadeh, 1993b). One of them can be adopted. However,
there is no compression during that mode of operation. The point is that the generated
database entropy will not asymptotically exceed R(D). After asufficiently long period
of time the probability of no approximate matching (No-Match event) decays to zero.
When the database is sufficiently large, the encoder is Turing’s machine that works
almost surely in the mode of approximate string matching.

Scheme A is universal in the sense that the pre-knowledge of the source distri-
bution is not essential. However, we assume that the machine has already worked
for infinite time. Thus the empirical distribution in the source is the exact distribu-
tion. The decoder does not have to know anything about the source. The encoder
performs an adaptive on-line learning stage when the accumulated empirical source
distribution is learned, but it still works as an on-line machine. The encoder uses
the empirical distribution of the source during the “bootstrap” mode. However, as
time elapses, the generated database is sufficient. The decoder is very simple and it

728 ' 1. Sadeh

does not require any prior knowledge, not even a Codebook. The common database
process v is sufficient. The main advantage of the scheme is the simplicity of the
decoding procedure: copy a string either from the input or from the database. The
complexity lies only in the encoding procedure and, as time elapses, it tends also to
be a Turing machine which performs the approximate string matching and pointing.
We conjecture that it is possible to use a probabilistic method as described in (Alon
and Spencer, 1992) to “guess” the best partition in a faster procedure. Such an al-
gorithm would replace the deterministic partition algorithm such as (Ornstein and
Shields, 1990) in Step 4. It would accelerate the “bootstrap” stage and would bring
the method much closer to real systems.

Scheme A has several advantages over blockcoding algorithms (Ornstein and
Shields, 1990; Sadeh, 1994). The first and most important one is that the pre-
knowledge of the source distribution is not essential at the decoder side. The encoder
can learn the source statistics as an off-line task, otherwise the convergence to R(D)
is slower. The encoder uses on-line the source empirical distribution only during the
“bootstrap” mode and only for a period of time whose length depends on the na-
ture of the source (Markovity or periodicity helps). The machine is asymptotically
Turing’s one. As time elapses, the created database is sufficient and the encoder
tends to be a sequential machine that attains asymptotically the bound R(D). The
decoding procedure is a simple Turing machine: copy a string from either the source
or the database. We conjecture that practically, after a short operating time, it is not
necessary to compute in a compleéx way and to store a large Codebook in the encoder
memory as in a blockcoding procedure. The approximated algorithm, presented later
on and denoted by “Scheme .;i”, can then work successfully.

It is reasonable to assume that the process vZl, is stationary and ergodic, as

explained below. In the terminology of (Gray, 1990), the machine described in Scheme
A is a deterministic channel, or a sequence coder, as defined in Gray (1990). When
Scheme A starts, at the beginning the coder puts out [symbols from the alphabet
V every time it takes in ! symbols from the input alphabet /. Thus the output
is cyclostationary with period I. However, as time elapses, roughly after e/f(D)
time units, the machine scans and, with increasing frequency, finds matching in the
created database. The matching occurs for almost all the strings with probability
that increases to 1. The index of matching with respect to the block length I, i.e.
on the interval 0.../ — 1 is distributed uniformly, for symmetry reasons. Thus the
blocking property disappears gradually and the output process becomes stationary
after infinite time has elapsed.

Consider now the situation after Scheme A has been implemented for infinite
time. Due to ergodicity of the source, all strings with positive measure have already
occurred infinitely often. It follows that the probability of “No Match” is zero and
almost surely all strings of length [in the output v are generated by an assignment
from the process itself. The quantities v have well defined probabilities. Furthermore,
the probabilities do not depend on the location of the strings in the output. Thus
the string matching procedure is actually randomizing the index from where the
assignment is being taken.

Universal data compression based on approximate string matching 729

k n — block k+n—1

lo I b, I3 L ly

*
t e b

+*

Fig. 1. Fixed length assignment.

To understand better the disappearance of cyclostationarity and the onset of
stationarity, we try to explain the property of stationarity in a non-formal exposition.
Consider a block of length n from the position k. We assume that processing v
(the output of Scheme A) started at time t; = —oco. It is clear that the number of
assignments included in the block depends only on n and [, but not on k. Also, the
knowledge of k provides no information for the determination of the matching points
on the prefix of database. Once k and n are given, the matching indices relative to [
(mod/) are random variables defined at the points of the interval [0...]— 1] and are
uniformly distributed with pmf g(prefiz) = g(suffiz) = 1/I. Thus the expression
Pr {v,f"'"_l = 17} is independent of the initial position k for all n and for all 5 € V.

A final property to quantify the behaviour of the coding scheme is that of ergo-
dicity. It is known that a stationary deterministic channel is ergodic (Gray, 1990).
Thus the scheme is ergodic.

Theorem 1. (Limit Theorem A) Given a D-semifaithful database v2
generated by Scheme A from a stationary ergodic process u suppose that vIl s
a stationary and ergodic process. Then, for all § >0,

IEIEOPI{E—I—W—IEM—:—Q—R(D)>ﬂ}=O S

and the average compression ratio atiains the bound R(D).

Proof. The proof consists of five steps. The first step discusses known results on block-
coding, which is in our algorithm a “bootstrap” procedure. Recall that blockcoding
can obtain asymptotically the bound R(D). The second step is an application of the
AEP Theorem (Breiman, 1957) to the lossy case as presented in (Sadeh, 1995). Only
at the third step we study the behaviour of the algorithm after a long period of time.
In the third and fourth step, we show that the average compression ratio does not
exceed the entropy rate of the generated database in probability. In the last step, we
prove that the entropy rate of the database vZ%, is R(D). These results imply (7).

Step 1.

We have already applied a deterministic partition of the sourcewords space. Such
a partition induces probabilities and the [-th order entropy on the process v such
that the Codebook set creates the best blockcoding. We define spheres around all the
possible codewords 7,

1) = {ale(z 9) < D} ®)

730 I. Sadeh

After the algorithm has been executed, all the codewords are sorted such that
to each codeword we assign the set of sourcewords mapped to it. The probability of
each codeword is defined to be the probability of the set of sourcewords assigned to
it. (Actually, the Codebook is constructed in accordance with the empirical source
distribution.) In other words,

Pr(7™) = Pr (A(ﬁ'”)) 9)

Then the subsets A(o™) form a full partition of the set of all the sourcewords. The
“Codebook” set Cj(D, §) is defined as the set of all the codewords whose probabilities
exceed a threshold py,

py = e~ HR(D)+) (10)
The Codebook is
C = {5] Pr(7) > pt} (11)

and the cardinality of the set is 1 G |: e'". We define a function §(r,!) such that

§= —%ﬂ — R(D). Thus the Codebook is defined in terms of § to consist of all the
codewords such that

Cy(D, 6) { | Pr(5) > exp (—I(R(D)+6))} | (12)

The value 6§ = 6(I,7) is determined by r (the rate of the Code) such that |Cz (D,8)|=
. Equivalently, we may say that the error event is the event that a D-Ball around
the sourceword % does not contain any word from the selected codebook, i.e.

Er(6,D) =<4 Pr(v 1
f@0)={d max Pe)<p} 13)
Using the definition of p;, we obtain

Er(6,D) = {l Lin =g ! log Pr(v))> 8} (14)

It is known (Ornstein and Shields, 1990; Sadeh, 1993b, 1994) that the error pro-
bability, denoted by P.(l,6, D) = Pr {E‘r}, decays to zero with [for all accepta-
ble partitions that attain asymptotically the entropy R(D) and for the rate that
exceeds R(D).

Step 2.

Now, we denote by R the entropy rate of the database process v as I — oco. It is
clear that R > R(D). We construct a set [;(D,8) for every ! and a fixed § > 0.

Universal data compression based on approximate string matching 731

We define the code that consists of strings of length ! from the database by using §
as an independent variable:

(D, 6) = {ﬁl Pr(9) > exp (—I(R + 6)) } (15)

The set I';(D,6) consists of all codewords of length ! whose probabilities exceed a
given threshold e~'(A+8) based on the database entropy rate. The new error set is

1
Error(l,6,D) = {ﬁ] U:p(rél,?)lgD 7 logPr(v) — R > (5} (16)
The set Error consists of all sourcewords # for which all the elements in their
D-Ball have probabilities below the threshold. By definition, the probability of the
set E'rror is the same as the measure of the set I'*. But it is known by the Shannon-
McMillan-Breiman Theorem and their successors that the measure of that set tends
to zero as the blocklength [tends to infinity. It turns out (c.f. the AEP Theorem)
(Breiman, 1957) that

lim Pr{Error} =0 (17)

=00

Clearly, we define a set Error® as the “good” sourceword set,

_ . 1 _
R R I W W R P B
Step 3.

At this step, we start by considering the algorithm in Scheme A. For a fixed I, we

have

1ogDN,(a,u:go)_IOgU;p(L—rf%‘guN‘(“)_ . log Ny()

l l E:p(lgl,z')r)lSD l

For convenience we abbreviate the notation and write N;(¥) instead of N;(,vZL).

According to the stationarity assumption and its reasoning, we can consider the
process v as stationary ergodic and we can apply the Extended Kac Lemma (1)-(4).
We identify the set B = D-Ball(z). We fix the blocklength as a specific value I. The
Extended Kac Lemma yields, for all & € U/,

B{ min Ni(3)} Pr {p-Ban(@)} =1 (20)
Following the preceding discussion, the entropy of the database process generated by
Scheme A attains asymptotically a bound R > R(D). Hence each triplet (D,$,1)
defines a partition into two sets on the codeword space as in (15), and into two sets
on the sourceword space as in (16). The stationarity of v guarantees the possibility
of such partitions for every I. Thus, for all % € Error¢(D,$,1), at least one codeword

732 I. Sadeh

in the selected code, © € T, is included in D-Ball(@). Thus, using the definition of
the code in (15), for all @ € Error¢(D,6,1),

Pr {D Ball(z } > exp (— (R+ 5))

Since the database is an asymptotically stationary ergodic process which is observed
after a long period of time, we obtain by (20), for all { and for all & € Error¢(D,é,1),

B, min Ni(5)} < exp (I(R+9)) (21)

The expected value given the set @ € Error(D,$,1) is bounded by the same expres-
sion, 1.e.

E ﬁ:p(nﬁl,iﬁr)ISD NI(E)I u € Error®(D, 4, l)} < exp (I(R+ 5)) (22)

Next, we pick the current string @ of length [from the input process u. We abbreviate
the notation N;(v,vZ%) as Ni(v). Recall Markov’s inequality that states: for every
positive random variable Y, Pr{Y > a} < E(Y))/a. Using Markov’s inequality, (19)
and (22) yield, for 8 > 0,

. log Ni(9) _
—_— > c
Pr {ﬁ:p(lgl’lﬁr)lSD i >R+ 8| ae Error®(s,l, D)}

=Pr { min Ni(9) > exp(l(R + B))I @ € Error®(D, 6, l)}

#:p(7,5)<D (23)
E min _ N;(9)| @€ Error®(D,é,1)
{up(u 7)<D l } < e—’(ﬂ—(ﬂ
exp(I(R + B)) B
We now write, for a fixed blocklength ! and é > 0,
. log Ni(v
>
pef s, T > Rt o)
1 _
=Pr {ﬁ € Error®(D, 6, l)} Pr a:,;(%l,iﬁl)lgD w >R+ ﬁ|ﬁ € Errorc}
log N;(v
+Pr {ﬂ € Error(é, l)} Pr U:p(g&')r)lSD B-gi-—ll@ >R+ ﬁl S Error}
<Pr min log Ni(v) > R+ f|u € Error®(6,D l)} +Pr {Error(é l)}
- 7:p(u,0)<D l - T ’
Using (23), we get
. log Ni(v) —1(8-
P =i > < e HB-0)
o{,, min B 2 Rt ﬁ} <e + P,(1,6,D) (24)

Universal data compression based on approximate string matching 733

We know that the error probability is equal to the probability of the set
[(1, D, 8) = {7] Pr(s) < exp(~I(R +)}

Following the asymptotic equipartition property (AEP) of (Breiman, 1957) and
(Algoet and Cover, 1988), as well as the fact that the database entropy rate is R
and n > e~ (49 we can deduce that this set has the measure that tends to zero as
[— oco. Thus setting § = /2 yields, for all 8> 0,
. . log N;(v

lim Pr min log Ni(v) > R+ﬂ} =0 (25)

l— o0 T:p(1,5)<D l
which guarantees, as shown in the next step, that the average compression ratio does
not exceed in probability the entropy rate of the generated database.

Step 4.

The number of bits required to encode the {—length string % by specifying the pointer
DNi(@,v25,) is log(DNi(,vZ},)) + O(loglog(DNi())) as proved by Elias (1975)
for the pointer. Following (25), we obtain

hm Pr {Compressmn Ratio> R + ﬂ} =0

On the other hand, if Ilim Pr {Compression Ratio < R(D) — ﬁ} > 0 for positive g,

then it is possible to compress the input more than the bound R(D) in contradiction
to the definition of R(D) as a minimum. Thus Scheme A attains a compression ratio
in probability in the range R-R(D). Still we have to show that R = R(D).

Step 5.

Now, we justify that the entropy rate of the stationary database process v=1 is R(D)
as [— co. Suppose that after n input symbols the I-length block-coder attains the
I-th order entropy Ry, ;(D,uZ}) associated to the codewords. We denote by R, the
n-th order entropy of the database. The entropy rate of the database as | — oo is
denoted by R.

We assume that R > R(D). Thus we choose § > 0 and € > 0 satisfying R(D) <
R(D)+6 =R — ¢ < R. Define a pair (I,n) such that n = ' (B(D3+8) = (l(B=¢) Wy,
denote by pn; the probability of the event Approzimate Match of string of length [
in a stationary database of length n. Since we assume stationarity, the probability
of finding the first matching is less than n steps in a long database. This quantity
Pn,i 1s approximately the fraction of strings in the stationary part of the database of
length n generated by string matching mode in Scheme A. Following (3), (4) we can
describe roughly the asymptotic probability of the matching event as follows

lim p,; = lim Pr {ﬂIEU min N;(9,0Z%) < n}
l— 00 l—o0

:p(2,7)<D
. _ _ _ 1
= Il_l}'ng Pr {u[ﬁ:p(rnm%%l) Pr(v —} hrn Pr {v!Pr(v) > ;z-}

— 1 = = —Il(R—¢€)
I_lil’(l)’lo Pr {v|Pr(v) >e } <e

734 I. Sadeh

These equalities are based on the definition of the Match event and AEP (Breiman,
1957). This implies that, as { — oo, the database is constructed by optimal blockco-
ding with probability of at least 1 —«.

Next, we consider the limit as [-— oo of the block-coder output
Ilim Rn (D, uZ}). The induced probability distribution on the codeword space, ba~
— 00

sed on the knowledge of the empirical distribution obtained by the prefix of length n
of the input process u, is denoted by M,,. Suppose that M is the stationary distri-
bution of the process v that asymptotically dominates M,,. (For example, M is the
stationary mean of M,.)

We denote by R;(D) the I[-th order entropy induced on the codewords based on
the exact knowledge of the source distribution, e.g. an infinitely long prefix of u. This
function is dominated by the distribution M. Consider the probability of deviation
of Rni(D,uZ}) from Ry(D). In other words, by using Markov’s inequality,

M{ ~log M, (v§™ 1)>——logM('v +6}

“M{]i\/jl((i,’ 1)2616}<E—ME {}\Af((vél)} =18

Using the assumption on n = ¢/(’(P)+9) we obtain that
lim Mo { Ro (D, uZ}) > R(D)} =0

The entropy of the long database is composed mainly by strings of length | obtained
by blockcoding. Thus we can bound the entropy rate. The main result of Step 5 is
that

‘ n/! log Ni(%,v=% 1)
. 'V " =N(n,l
R= hm R, < 1_1}2) ll_r)n{ i Rini(D, u_k, + 615?3,}1() 5=P(gl,17r)lSD - (n,1) }

where N(n,l) < n is some index on the database. Following (Gray, 1990) and known
results from the calculus, we conclude that

R= Ilim R, = R(D) (26)
After infinite time, we have

hm {Output Entropy} R(D)

After a sufficiently long period of time the “bootstrap” stage has been completed and
the database process tends to be an ergodic and stationary one with entropy R(D).
All rare strings that have some positive probability have already occurred and the
probability of No-Match is zero. Then, the compression ratio is determined only by

Universal data compression based on approximate string matching 735

the approximate string matching mode according to the database entropy. Thus (25)
and (26) yield in probability

Ilim Compression Ratio} = R(D)

The schemes are deterministic assignment processes that convert the stationary
and ergodic source U into an output process V. On the assumption that V is
a stationary process, after the scheme has run for infinite time, it is shown that
the optimal compression ratio R(D) is achieved. This reduces the problem of the
universal lossy coder to the proof of stationarity of the output process V in the
proposed algorithm.

The missing link in the above theory is the proof of the assumption about the
stationarity of the output process of Scheme A. Such a proof will solve, in effect, the
universal lossy coding problem by means of compression of Scheme A. This is still an
open problem, but it is now reduced to a technical (though by no means easy) proof
of stationarity.

Since blockcoding is not practical in reality, we propose the following suboptimal
scheme. It is not guaranteed that the bound will be attained, but it is more practical.
We believe that in practical cases, after a short operating time, this scheme may
successfully replace Scheme A.

Data Compression Scheme A:

1. Verify the readiness of the encoder.

2. Take a string @ = ué‘l of length .

3. 1f ué_l can be approximately matched up to tolerance D by a substring of v_‘_,ll,

then encode and transmit it by specifying DN;(4,v=}). Add a bit as a header flag

to indicate that there is a match. Append the string v’__l%]_leN' to the database
at the position 0.

4. If not, indicate that there is no matching, transmit and append the string vé‘l,
which satisfies p(ul™*,v57!) = 0, to the database in the encoder and the decoder.

9. Update n = n + [. Shift the indices by [to the appropriate values. Repeat the

process from Step 1 with a new string of length I and the database vl

The scheme has two modes of operation. If there is an approximate matching,
the database is augmented by a string and concatenated. Otherwise, the mode of
“bootstrap” appends a zero distorted image of the input string. After a sufficiently
long period of time, the probability of no approximate matching (No-Match event)
decays to zero. When the database is sufficiently large, we have a Turing machine
with infinite memory, that performs an approximate string matching only.

3.4. Quasi Parsing Data Compression

We present an extension of the Lempel-Ziv compression scheme. The machine is
based on a quasi parsing procedure which creates a new phrase as soon as a prefix of

736 I. Sadeh

the still unparsed part of the input sequence u differs from all the substrings in the
database v by more than D per letter. Encoding each input phrase consists of the
pointer N to the last approximately matched string, the string length DL,, and the
last reproducing letter with zero distance from the last input symbol.

Scheme B:

1. Set [= 1.
2. Take the string u{™?

3. If ug_l can be approximately matched up to tolerance D by a substring of vZ1,
then store the pointer N to that substring and increment I. Go to Step 2.

4. If not, append to the data base track the string v 13 N at the position zero

and further, and append the letter v;_1, i.e. the reproducing letter which satisfies
d(ui-1,v—1) = 0. The encoding is done by the pointer to the string vI_"Je,'N, the
length DL, (u) and the last reproducing letter associated to the last source letter.

5. Repeat the process from Step 1, where the database is appended with the chosen
string denoted by v2L=. Shift the indices to adapt to the algorithm. The database
contains now n + DL,(u) reproducing symbols.

This scheme has only one mode of operation and it does not require a block-coder
which is hard to implement. Thus it is more attractive than Scheme A. The entire
processing is repeated each time with the database augmented with the new generated
block vPL» which is also known to the decoder. Note that the scheme is universal
in that the encoder does not have to know or to compute the source statistics to
perform its task. However, it depends on the initial database. There is still an open
question concerning the convergence limit of compression ratio in the general case of
an arbitrary initial database. In practice, the case of no initial database is the most
important one.

Theorem 2. (Limit Theorem B) Let u be a stationary ergodic process defined
on an alphabet U. Assume that there is a suffic v_. taken from the database v},
generated by an encoder-decoder pair as described in Scheme A. At time zero we switch
to Scheme B. If we assume that the scheme preserves stationarity, then for the new

sample sequence u encoded from the input u by Scheme B, we have in probability

lim

logn
27
n—oo DL _n)} ()

Proof. We have

n—oo

o logn oy
m - R(D) +5} =].lm PI‘ {R > DLn(u,U_n)}

We define an integer [such that the pair [, n satisfies

_ logn
" R(D)+6

Universal data compression based on approximate string matching 737

and apply Lemma 2 and Theorem 1, obtaining

n—oo

lim Pr {%% > DLy (,021)} = lim Pr {DM(@,vzL) > n}

THOOP {logDN;§ vZL) S loi;n}

P {logDN;(u vZL)

z > R(D)+6} =0

|
Theorem 3. Let us consider a mazimum average distortion D > 0 and the database

vZl generated by Scheme A. Assuming switching to Scheme B at time zero, the

quasi-parsing data compression scheme attains the bound R(D) in probability.

Proof. The construction procedure of the process v is done in a recursive way. We
consider the first iteration. A new block is appended to the output database track.
The block is exactly defined by the pointer to the interval (——1, ~(n — DLn)), the

length DL, and the last reproducing letter. The pointer requires logn bits, the
length DL, can be encoded (Rodeh et al, 1981) by log DL, + O(loglog DL,) bits
(when the length is large enough) and the last symbol requires at most log(|V] — 1)
bits (since one letter can be excluded) Thus the average number of bits required to
encode the string of length DL, in the scheme is

log(n — DL,) +log DL, +log(|V| - 1) + O(loglog DLy,)
Therefore the number of bits per source symbol with compression is

log(n — DLy,) +log DL, + log(|V| — 1) + O(loglog DL,,)
DL,
__ log(n) + O(log DL, (u))
DL, (%)

(28)

As the database size tends to infinity, we obtain the result of possible compressibility
from (27). Thus, for large n, in probability

1 O(log DL,
i 128+ OB DLn(0,02) _
n—co DL, (@, v=})
The algorithm proceeds with a database with entropy R(D). Thus the compression
ratio attains the bound in probability. |

For practical data compression the dimension of the database must be determined
since the memory is limited. After a while, the database size is held fixed. This
constraint imposes that we are close to R(D) but cannot achieve it. We are interested
in finding the convergence rate of the accepted rate to R(D) as a function of the
database length n.

738) I. Sadeh

Theorem 4. (Convergence Rate Theorem) For ¢ sufficiently large database
generated by Scheme A with size n>> 1, the number of encoded bits per source symbol
in Scheme B is approzimately

Run-ro(kéﬁgf) (29)

Proof. Due to reasoning similar to (28), the number of bits per source symbol is, in
probability,

log(n — DL,,) +log DL, + log(|V| = 1) + O(loglog DL,)
DL,
log(n) + O(log DL(2))
- DL, ()

(30)

As the database size increases, then, following (27),

log(n) + O(log DL.(4,Q)) _ loglogn
DL.(3,Q) ~ R(D) + O(=)

The practical meaning of Theorem 4 is that a large initial database is required to
implement the compression ratio close to R(D). To handle practical design problems
it is not sufficient to know that the performance of the algorithm converges to the
optimum; one should also know something about the finite database performance of
such a machine. Based on (29), we obtain that in order to attain in probability an
accuracy of 0.01 from the limit, one needs a database of approximately 2990 symbols.
To guarantee in probability a compression ratio within the range of 0.1 from the limit,
one needs approximately 264 symbols in the database. Therefore any possibility of
accelerating the convergence is important for practical applications. However, the
practical experience with the Lempel-Ziv algorithm shows a better convergence rate.
Thus we may hope for better convergence rates than the theoretical results. Special
cases where there is prior information and/or there is a Markov property and/or some
kind of periodicity will certainly reduce the size of the initial database and accelerate
the convergence to R(D). '

The experience with asymptotic R(D) algorithms is that, with finite data like
images, they perform rather far from this bound. Pearlman (1994) reports that his
theoretical work with.stationary sources shows that, with source strings of finite
length, the R(D) bound can be approached more closely if the images are first de-
composed into subbands (Padmanabha Rao and Pearlman, 1991). Then the approxi-
mate string matching procedures will be more efficient, given a proper bit allocation.
This also brings the hot topic of wavelets into the mix.

Universal data compression based on approximate string matching 739

4. Conclusions

In this paper, we obtain theorems concerning approximate string matching algorithms
and their relation to the rate distortion function R(D) of a stationary ergodic source.
We use these results to gain insight into our new data-compression schemes. Moreover,
these results give a new and conceptually simple way of estimating the rate distortion
function of an ergodic stationary source with arbitrarily chosen D. The basis for our
theory is the extension of the Kac Lemma to an approximate string matching of a
stationary source. We have also proved an extension to a non-ergodic case. We use
the results for the stationary case for proving the convergence of the algorithms.

We propose two practical source coding schemes based on approximate string
matching. One is an approximate fixed-length string matching data compression,
and the other is a LZ-type quasi parsing method by approximate string matching. It
1s shown in this paper that in the former algorithm the compression rate after infinite
time of operation converges to the theoretical bound of R(D) for ergodic and statio-
nary processes as the average string length tends to infinity. The main advantages
of this algorithm are the asymptotic complexity of the encoder and that it does not
necessitate knowing the exact source distribution at the decoder side. Moreover, the
decoder scheme is a very simple machine. Thus it provides a simple solution for cheap
receivers, whereas the transmitters can afford the costly computation required for the
coding. However, after a period of time when the encoder works as a blockcoder
based on the empirical distribution it tends to be a sequential Turing machine linear
with database size (which is exponential with typical blocklength). However, it is an
on-line implementable machine. The Wiener-Ziv algorithm (1989) is obtained as a
special case for no-distortion. We propose also a sub-optimal practical scheme with-
out using blockcoding and with better complexity characteristics, polynomial with
database from the beginning.

A similar result holds for the latter algorithm in the limit to infinity of an ap-
propriate initial database size taken as a suffix of the database generated by the
former algorithm after infinite time. We evaluate the performance of the algorithm
in practical cases when the database size is finite. In addition to that, we prove some
asymptotic properties concerning the performance of an approximate string matching
algorithms for ergodic stationary sources.

Our algorithms are thought to be the first universal asymptotically sequential
algorithms that attain the bound R(D). But we emphasize that all the results are
obtained after infinite time of operation and based on the accumulated data. It is
still better than blockcoding because we send only the necessary messages and not
all the pre-calculated codebook. Weak points are the slow convergence to R(D), the
Initial complexity of the encoding procedure and the requirement for a good and long
initial database. However, we believe the rate of convergence is faster in practical
cases. In real life there exist properties such as Markovity, periodicity and/or some
a prior: information about the signal. In such cases the algorithm is paving the way
for practical solutions. The most important issues are the asymptotical complexity
of the encoder and that the decoder in both algorithms is very simple. It is based on
copying strings from either a specified location in the database or the input data. In

740 I Sadeh

practice, the low complexity of the decoder is an important advantage. It reduces the
overall price of communications systems. The transmitter can be implemented in a
costly way, but the receivers must be cheap.

Other important properties of the algorithms are as follows:
Optimality is obtained for a general stationary ergodic source.
Optimality is obtained for all memoryless distortion measures.

. Easy adaptation to MultiMedia applications.
. The Lempel Ziv algorithm (CCITT Standard) is recovered as D = 0.

. Realization with relatively low complexity and implementation with a dynamic
dictionary.

St B W N =

6. An appropriate definition of the distortion measure enables us to reduce the in-
formation content of a video/voice record while keeping a minimal visual/audio
distortion.)

7. Sub-optimal tree-structure algorithms are proposed.
8. Noise reduction.

The most common methods for lossy compression are based on predictive coding
(DPCM), transforms (e.g. DFT, DCT, DST, WHT, wavelet, Haar), and vector quan-
tization, with possible hybrid combinations. Most of them lack any general proof of
optimality. Most of them use some kind of MSE criteria or data compression is achie-
ved by coding only “high energy” coeflicients in their transform. Moreover, almost all
of these techniques are not real-time algorithms. All transform coding methods are
performed after the signal (image/speech record) is received and only then transfor-
med and processesed. Thus it is not real-time computation. Our algorithms achieve
almost optimal compression performance with tolerable resources. Another important
property is that our algorithms decompress much faster than they compress.

Acknowledgement

The author wishes to express his gratitude to Prof. Zeev Schuss, Prof. William Pearl-
man and Prof. Benjamin Weiss for many helpful suggestions during the preparation
of the paper. ‘

References

Algoet P.H. and Cover T.M. (1988): A sandwitch proof of the Shannon McMillan Breiman
theorem. — The Annals of Probability, v.16, No.2, pp.899-909.

Alon N. and Spencer J. (1992): The Probabilistic Method. — New York: John Wiley.

Arratia R., Gordon L. and Waterman M. (1990): The Erdos Renyi law in distribution for
coin tossing and sequence matching. — The Annals of Statistics, v.18, pp.539-570.

Arratia R. and Waterman M. (1989): The Erdos Renyi strong law for pattern matching with
given proportion of mismatches. — The Annals of Probability, v.17, pp.1152-1169.

Berger T. (1971): Rate Distortion Theory: A Mathematical Basis for Data Compression.
— New York: Prentice-Hall.

Universal data compression based on approximate string matching 741

Blahut R.E. (1987): Principles and Practice of Information Theory. — New York: Addison-
Wesley Publishing Co.

Breiman L. (1957): The individual ergodic theorem of information theory. — Annals on
Math. Stat., v.28, pp.809-811.

Elias P. (1975): Universal codeword sets and representations of the integers. — IEEE Trans.
Inform. Th., v.IT-21, pp.194-203.

Galil Z. and Giancarlo R. (1988): Data structures and algorithms for approzimate string
matching. — J. Complexity, v.4, pp.33-72.

Gilbert E. and Kadota T. (1992): The Lempel Ziv algorithm and the message complexity.
~ IEEE Trans. Inform. Th., v.IT-38, pp.1839-1842.

Gray R.M. (1975): Sliding block source coding. — IEEE Trans. Inform. Th., v.IT-21,
pp-357-368.

Gray R.M. (1990): Entropy and Information Theory. — New York: Springer Verlag.

Jacquet P. and Szpankowski W. (1995): Asymptotic behaviour of the Lempel Ziu parsing
scheme and digital search trees. — Theoretical Computer Science.

Kac M. (1947): On the notion of recurrence in discrete stochastic processes . — Bull.
American Math. Society, v.53, pp.1002-1010.

Knuth D.E. (1981): The Art of Computer Science. Seminumerical Algorithms. — New
York: Addison-Wesley, v.2.

Landau G.M. and Vishkin U. (1986): Introducing efficient parallelism into approzimate
string matching and a new serial algorithm. — Proc. 18 Annual ACM Symp. Theory
of Computing, Berkeley.

Le Gall D. (1991): MPEG a video compression standard for multimedia applications. —
Communications of the ACM, v.34, pp.46-58.

Lempel A. and Ziv J. (1977): A universal algorithm for sequential data compression. —
IEEE Trans. Inform. Th., v.IT-23, pp.337-343.

Lempel A. and Ziv J. (1978): Compression of individual sequences via variable-rate coding.
— IEEE Trans. Inform. Th., v.IT-24, pp.530-536.

Luczak T. and Szpankowski W. (1995): A lossy data compression based on an approzimate
pattern matching. — Submitted for publication.

Manber U. and Myers E.W. (1993): Suffiz trees: a new method for on-line string searchers.
— SIAM J. Computing, v.22, No.5, pp.935-948.

McCreight E.M. (1976): A space economical suffiz tree construction algorithm. — J. ACM,
v.32, No.2, pp.262-272.

Ornstein D.S. and Shields P.C. (1990): Universal almost sure data compression. — The
Annals of Probability, v.18, pp.441-452. :

Ornstein D.S. and Weiss B. (1993): Entropy and Data Compression Schemes. — IEEE
Trans. Inform. Th., v.39, No.1.

Pittel B. (1985): Asymptotic growth of a class of random trees. — The Annals of Probabil-
ity, v.13, pp.414-427.

Plotnik E., Weinberger M. and Ziv J. (1992): Upper bounds on the probability of sequences
emitted by finite state sources and on the redundancy of the Lempel Ziv algorithm. —
IEEE Trans. Inform. Th., v.38, pp.66-72.

742 I. Sadeh

Rodeh M., Pratt V. and Even S. (1981): Linear algorithm for data compression via string
matching. — J. ACM, v.28, pp.16-24.

Padmanabha Rao R. and Pearlman W.A. (1991): On entropy of pyramid structures. —
IEEE Trans. Inform. Th., v.37, No.2.

Sadeh 1. (1993a): On approzimate string matching. — Proc. Data Compression Conference
DCC’93, Snowbird, Utah, USA.

Sadeh I. (1993b): Data Compression in Computer Networks. — Ph.D. Dissertation, Tel-
Aviv University, Israel.

Sadeh 1. (1994): Data compression as a partition and covering problem. — Submitted for
publication.

Sadeh I. (1995): Operational rate distortion theory. — Appl. Math. and Comp. Science,
v.5, No.1, pp.139-169.

Szpankowski W. (1993): A generalized suffiz tree and its unezpected asymptotic behaviours.
— SIAM J. Computing, v.22, pp.1176-1198.

Steinberg Y. and Gutman M. (1993): An algorithm for source coding subject to a fidelity
criterion, based on string matching. — IEEE Trans. Inform. Th., v.39, pp.877-887.

Storer J.A. (1990): Lossy On Line Dynamic Data Compression. — Berlin: Springer-Verlag.

Welch T.A. (1984): A technique for high performance data compression. — IEEE Trans.
Computers, v.17, No.6, pp.8-19.

Wyner A.D. and Ziv J. (1989): Some asymptotic properties of the entropy of a stationary
ergodic data source with applications to data compression. — IEEE Trans. Inform.
Th., v.35, pp.1250-1258.

Ziv J. (1978): Coding theorem for individual sequences. — IEEE Trans. Inform. Th.,
v.IT-24, pp.405-412.

Received: January 9, 1995

