Appl. Math. and Comp. Sci., 1996, vol.6, No.1, 137-157

COMPUTING A COVER FOR PROJECTED
FUNCTIONAL DEPENDENCIES FROM
A BOOLEAN EXPRESSION

WOoICIECH ZAWADZKI*

This paper gives the solution to a problem of finding an expression for a cover
for mr(F'), where F is a set of functional dependencies, using Boolean functions
as a formal tool. Another approach to represent a set of functional dependencies
. F' by a Boolean function ¢(R), where R = {4,B,...} stands for a relation
schema, is presented. The main result is an algorithm of transformation: ((R) —
o(rx(R)) — wx(F). It is shown that such a transformation is equivalent to
the decomposition of a Boolean function. The algorithm employs a number of
optimization steps to reduce its complexity and to avoid redundancies resulting
from the augmentation rule. A paper is being prepared (Zawadzki, 1995) in which
the algorithm will be implemented and some estimation of time complexity will
be given. It is conjectured that it may run in polynomial time unless the number
of non-redundant dependencies is itself an exponential function of |X|. To the
author’s knowledge, there is only one algorithm (Gottlob, 1987) for the above
problem, but it is not guaranteed to run in polynomial time.

1. Introduction

A relation scheme R is a finite set {A;, As,...,A,} of symbols called attributes
such that each attribute is associated with a domain dom(A;) which is the set of all
possible values for the respective attribute. We shall use the letters A, B, C in order
to refer to individual attributes and the letters X, Y, Z, V in order to refer to sets
of attributes. The union of X and Y will be denoted by XY

A relation (also called instance) on a relation scheme R(A1,A,...,A,) is a
subset of the Cartesian product dom(A;)xdom(4s) x --- x dom(A4,); relations will
be denoted by r;,72,---. The elements of a relation are called tuples and denoted
by t1,¢2,---. If t is a tuple on R, A € R, then t[4] will denote the value of ¢
with regard to A. Similarly, ¢[X] will denote the sequence of values t[4,], t[43],...,
where Aj, Az,... € X, dom(X) = dom(A;) x dom(Az) x---.

Let X,Y C R. A functional dependency (FD) X — Y is satisfied by a relation 7
over R iff for any tuple ¢1, o, whenever ¢[X] = t2[X], we have 4 [Y] = t,[Y].
A functional dependency holds in R iff it is satisfied by every relation over r. A set

* Kuwait University, Department of Mathematics and Computer Science, P.O. Box 5969, Safat,
13060 Kuwait

138 W. Zawadzki

of all FD’s for R will be denoted by F. The closure of F, denoted by F'T, is the set
of all FD’s that are logically implied by F. The cover of F, denoted by Fg, is the
set of FD’s such that F' logically implies all dependencies in F and vice versa.

If R is a relation scheme and p(R;, ..., Rx) is a decomposition, then 7g;(7) isa
projection of some r on R onto R;. The projection of F' onto a set of attributes Z,
denoted by 7z(F), is the set of dependencies X — Y in F* such that XY C Z.

In principle, it is easy to compute 7z(F)-just compute F* and project it
onto Z. In practice, however, this method is highly intractable, since the number
of dependencies in F* is often exponential in the size of F. Also, it is rather the
cover that we want to know than the closure of 7z (F) itself. And this issue, even
knowing F*, is not trivial. The main purpose of this paper is to construct an ex-
pression equivalent to a cover of projected dependencies for any set F.

2. Functional Dependency as a Boolean Dependency

The notion of Boolean dependency has been used by many authors, e.g. (Berman
and Blok, 1985; Demetrovics et al., 1991; Thalheim, 1987b). In this chapter, we shall
introduce another interpretation of a functional dependency as a Boolean dependency
and use it in the construction of the algorithm.

It is known (Fagin, 1977) that an FD can be viewed as a formula in propositional
logic. For instance, if R = {4, B,C}, then A — B can be expressed as the first-order
sentence

(V acchblbg) ((Raclbl A R(LCgbg) Oobh = bz)

where R is the predicate symbol referring to the relevant relation

Raciby A Racgby reads: for any two tuples A does not change

b1 = be reads: B does not change
Hence the whole formula reads:
for any two tuples, if A does not change, then B does not change
or, equivalently,
for any two tuples, if B changes, then A changes

Let ¢ : R — {0,1}. For any attribute A € R, for any two tuples t;,t3 €,

1 4] # 4]
‘p(A)"{ 0 if t[A] = t[A]

Computing a cover for projected functional dependencies from ... 139

If p(A) is denoted by A, then A — B can be written as a Boolean formula B D A
or, equivalently, AV B. We extend ¢ to give the truth assignment to attribute sets
by defining, p(X) = Z p(A), i.e. @ assigns 1 to X iff it assigns 1 to at least one

AeX
attribute in X. A functional dependency ABC — DEF' can thus be written as a

Boolean formula AVBVCVDEF. In general, X — Y (for sets of attributes) will
be denoted by X vY.

Given a set of functional dependencies F = {f1, f2,-.., fn}, & Boolean function
@(R) = fifa--- fn represents F in the following sense: (R) = 1 iff the relation
r on R satisfles all dependencies in F. If, for some combination of attributes in
R, o(R) = 0, then there exist two tuples in some relation r, which violate at least
one dependency in F. For example, AVB =0 for A =0 and B =1 means that
there exists a pair of tuples in some relation r on R(A4,B,C) in which the value
of attribute A does not change (A = 0), while the value of attribute B changes
(B =1). In the sequel, we shall refer to Boolean functions representing F' simply by
FD’s (functional dependencies).

The function ¢(R) can be regarded as a mapping from the set of F' of FD’s
into the set of Boolean expressions, so we shall also use notation ¢(F') to denote a

Boolean function representing F. Every Boolean function f(A4i,As,...,A,) can be
expanded along variables A;, As,..., Ak, where 1 < k < n, in the following way:
2k 1
F(A1, Ay An) = Y ATAY - A fiAkga, .-, An) (1)
1=0

where each A} is either A; or A; depending on the current value of index i, and
each f; is the value of f for such a combination of values of A1, Aa,..., A; (0,1)
that A}A}--- Agx = 1. Any form which is a disjunction of terms like in (1) is called
a disjunctive form.

Example 1. ¢(A4,B,C) = (AVB)(BVC) expanded along the variable B becomes
Bo(B=0)VByp(B=1)=BCV BA.

Definition 1. Let R = {A;, As,...,An}. A projection of function ¢(R) onto the
set X C R denoted by nx(yp) is the function f(X) = Zfi(X), where f; are the

terms of expansion (1) in which {41, A4s,...,Ax} =R - X.

Thus, to compute a projection onto X, one must expand a function along the
variables in R—X. In Example 1, m4¢(¢) = AVC. The name “projection” has been
chosen deliberately. A Boolean function can be presented in the tabular form, where
each column corresponds to one variable, and each row corresponds to one term f;
in (1), when the expansion is taken along all the variables. An entry is equal to O or 1
depending on whether the corresponding variable in A}, A3 --- A} is negated or not.
Then wx(y) is a function whose table is obtained from the tabular representation
of ¢ by simply deleting columns belonging to R — X and removing duplicate rows.
Some properties of wx (F) are given by Lemma 1.

140 W. Zawadzki

Lemma 1.
(a) Forany X CR, ¢ Cax(p).
(b) mx(e(¥))=¢ if XNY =0,0r1if X=Y.

(€) mx(pVy)=mx(p)Vrx(y)
(d) mxy (Y, X)(X, 2)) = mxy (@)7x (7), where Y' C Y.
(e) If @ is written in any disjunctive form, then mx(p) is obtained by deleting all

variables in R — X in the ezpression of . If some term is thereby ‘deleted, then
TI')(() =1.

Proof. We shall only prove property (d), because the proof of the others is straight-
forward.

To compute 7xy:(¢(Y, X)v(X, Z)), we must first represent it in the form (1) ex-
panding along variables in Y"Z, where Y" =Y —Y”, and then delete these variables.
The terms A}, A3--- A} in (1) denote now the variables Y and Z negated or not
(.8 Y17,U3Z122%3). Denote these terms by Y?Z7, where 0 <i < 2I¥"l -1 = N, and
0 < j <24l —1 =M. Then the expansion can be rewritten in the following manner
(functions ¢; and +v; depend on the variables XY’ and X, respectively):

M M
¥, X)¥(X,2) =Y%0 »_ Z'y; v Y? solzZz% VY Non > 7y,
=0 1=0 3

and

M
7rXY’(‘P(Y,X)) SDOZ%V%Z% “VoN Y

=0 =0

L= TXY ' (@)rx (v)

nMg

Example 2. The tables for ¢(A,B,C) = (A VE)(B VC)=ABVACVBC and its
projection onto AC which is the function AV C are shown below.

Table ¢ Table mac{p)

=R N
QIO =
Cl|lol=lo
o

[e=]

Computing a cover for projected functional dependencies from ... 141

It is interesting to notice that the projection obtained in Example 1 represents an FD
A — C which holds in the projection of R(A,B,C) with the set F' of FD’s equal
to {A — B, B — C}. This observation will be formalized in the next section. Also,
A — C does not belong to F—it belongs to F+. But ¢(F) C AV C and this fact
is generalized by the following theorem.

Theorem 1. If ¢ represents F, then it also represents FT, i.e. p(F)= p(Ft).

Proof An FD X — Y not contained in F, but contained in F*, can be derived
from F by a repeated application of Armstrong’s axioms (Armstrong, 1974). Let
¢ = fifo-fn and let f; = ZV V. Applying the reflexivity rule to Z — V we
get fay1 = ZV > V,ie. ZVV VV =1 and hence {f,11} U F is represented
by @(F), because @(F) = ¢fn+1- In the same way, we prove the theorem for the
augmentation rule (Z — V = ZW — VW) and transitivity rule (Z — V and
V - W = Z —» W). Thus any application of Armstrong’s axioms yields a new set
F, but every new set is represented by the same function ¢(F), which completes the
proof. [

Theorem 1 has an important consequence: a function @(F) can be used to derive
all members of F* if we are able to find a method of representing it as a conjunction.

3. Properties of Function ¢(F)

Not every Boolean function represents F'. One should rather say that most functions
do not represent any semantics of a relation schema. For example, p(A,B,C) =
A BC means that in any relation r over R(A4, B, C), the values A, B,C never change
and thereby are constants—a constraint that is unlikely to be imposed on any relation
schema. Similarly, ¢(A4,B,C) = AV BV C upon closer examination leads to the
same conclusion that, in any relation, one (or more) of the attributes may never
change. Below we give some primitive constructs which can be used to build valid
representations of FD’s.

a) Function ¢(R) = 1.
It represents a trivial FD. Indeed, a trivial FD is a statement R — R which is
equivalent to @(R) = Ay V Ay V---V A,V A; Ay -+ A,, which is 1 irrespective
of the values assigned to the variables.

b) o(R) =A; VA V.- Ay.
It represents a key dependency with {A4;, As,...,Ax} (k > 1) being the key. In-
deed, the above expression is a constraint saying that at least one of the attributes
of {A1,A,,..., Ar} must always change, which is a key constraint.

C) (p(R) = Al VA2 V"‘AkV§1.
It represents a dependency A;As --- Ay — Bj.

d) An expression of the form p(R) = A1 Ay -+ A, VA Ay -+ A,
It represents the following set of FD’s: {A; — Ag,...,Ap—1 — Ap, A — A1}
The validity of the above can easily be proven (the details are omitted) by induc-
tion (for k = 2 we have (4; V A3)(A2 VA;) = A1 43 V A; 4y).

142 W. Zawadzki

Lemma 2. If @(F) represents F, then o(F) does not represent any FD.

Proof. Since every ¢ can be represented as a conjunction of the formulae a), b) or
¢), its negation is a disjunction of terms such that each of them contains at least one
negated variable. This means that, in any relation r, at least one attribute never
changes which is not an FD constraint and hence is not in any F. []

From the above lemma we conclude that the function ¢(R) =0 does not repre-
sent any functional dependency since it is a negation of a trivial dependency.

Lemma 3. 7x(p(R)) always represents some set of FD’s (possibly trivial FD’s).

The proof will be given in the next section, where we introduce a more suitable
form of representing FD’s. Meanwhile, we notice that this lemma formalizes our
intuitive association of projections of relations and projections of Boolean functions
representing constraints on these relations.

Theorem 2. Let X1, Xo, ..., X, be subsets of R such that |JX; = R. If a Boolean
function* @(R) can be represented as ﬂ fi(X3;) for some functions f;, then it must

also be represented as a conjunction of 7x,(p) for all 4.

Proof. Suppose that ¢(R) =) fi(X;) for some functions f;(X;). We will show that
this implies ¢(R) = (\7x,(R). It is sufficient to consider decompositions of (k)
into two components, since ¢(R) = fi(X:) implies (R) = f1(X1) f2(X5) for some

(3

X1, Xs, or alternatively o(R) = f1(X,Y)f2(Y,Z) for some X, Y, Z of which one
(and only one) set can be empty. If this is the case, then 7xy(¢) = 7xy(fif2) =
7xy (fi)7y (f2) (property (d) from Lemma 1) and by property (b) from Lemma 1 we
get mxy(p) = fimy(f2). Similarly, 7yz(p) = fomy(f1). Hence, from property (a),
we get Txy ()Tyz(p) = finy (f2) fory (fi) = fifz = ¢. |

Thus any function f;(X;) that might be a part of the conjunction) fi(X;) is

implied by 7x, (). From Lemma 3, and from the fact that every ¢ is a conjunction
of FD’s, we may state the following.

Corollary 1. The projection of a Boolean function representing F onto the set X
implies all FD’s valid in the projection of F' onto X, and thus it is the cover for the
projected dependencies.

This statement is a well-known fact (e.g. Ullman, 1989) when talking about the
closure of F projected onto X. However, we avoid intractability of dealing with
closures by manipulating F' only, represented as a Boolean expression.

1 Not necessarily representing an FD.

Computing a cover for projected functional dependencies from ... 143

Example 3. We will find the projected dependencies holding in the projection of
R(A,B,C,D) onto {A,B} for F={A—B,B—C,C — D, D — A}.

w(F)=(AVB)BVC)CVD)DVA)=ABCDVABCD
TaB(p) = (deleting C,D) ABVAB = (AV B)(BV A4)

Thus {A — B, B — A} is the cover for FD’s holding in 7 4p(F). The dependency
B — A is redundant in F but is not redundant in 7w4p(F). This illustrates the
inclusion 74p(F) 2 {the set of functions of variables A and B that can appear in
the conjunctive decomposition of p(F)}.

This method, although simple, is unattractive from the computational point of
view. First, we must transform the function @(F') to the disjunctive form, from which
we immediately get mx(yp), but then we must transform it back to the conjunctive
form to pick up dependencies we are interested in. Both steps are highly intractable
and hence the question is raised if there exists an algorithmic way of overcoming at
least some of the difficulties. The solution is presented in the next section.

4. Algorithm to Compute wx(F)

At first we notice that rather than using ¢(F) we may just use the function o(F)
which is uniquely determined as @(F) = f; V fo V -+ V f,,, where each f, is now
of the form A; A, ---A.B, in which all but one variables are negated. For ¢ from
Example 3, ¢(F) = ABV BC Vv CD vV DA. This form is suitable for computing
projections. However, it is not true that nx () = wx(%). Thus we cannot just project
@(F) and take its negation to obtain wx(p). Indeed, 7x(p) = Po V@1 V-~V ON,
where each ¢; is from expansion (1) of ¢ along the variables R — X, and hence

Tx(p) =P 1PN (2)

Therefore, to obtain the projection of ¢ knowing %, we would need to compute N+1
functions @;, where N = 2!R=X| _ 1 which is of course intractable. We will show
that formula (2) can be computed in |R — X| steps only.

Lemma 4. Denote @y, %1,...,85 by fo, f1,..-, fn, respectively. The recursive
version of formula (2) is wx(p) = fEfE, where
a) f(gc =f(;c_1f1}c_1|Ak=D and fllc :f(;c—lflk_llAk:h (3)

b) k is the number of attributes in R — X = {A;,..., Ax},

¢) fOfY is the function ¢ (expansion along a variable Ay on which the function
does not depend).

Proof. If R~ X contains only one variable (k = 1), then 7x(p) = ¢} V ¢} = fLfi.

Suppose that, for some k, mx_a,,,(p) = fEfF, where f& = fE 1 ff7l 4, =0 and

fF =57 £ ap=1. Then expanding fFfF along Axs1 we get

W = Apy1 fE (A1 = 0) fE(Ars1 = 0) V A1 fE(Aky1 = 1) fF (A1 = 1)

144 W. Zawadzki

and
Tx(p) = fE(Aksr = 0) fF (kg1 = 0) V fE(Arr = D ff(Ap1 = 1)
= f8 (A1 = 0) fF(Art1 = 0) f(Arsr = 1) ff(Akgr = 1) = fg T £
which completes the proof by induction. |

In Example 3,

X={A,B}, A, =C, Ay=D, f°=ABVvBCVCDVDA, fl=f(C=0),
fi=Ff(C=1), f§=f(C=0)f(C=1)p=0, fi=Ff(C=0)f(C=1)p=1

Using formula (3), we must perform k iterations, where % is the number of attributes
in R — X to compute a projection. The function ¢(F) can be represented by a
table with columns A;, ..., Ay and only r rows, r being the number of terms in
the disjunctive form, where each entry is either 0, 1, or = depending on whether
the corresponding variable is negated, not negated, or does not appear, respectively.
Such a table represents dependencies given in the canonical form (Ullman, 1989), i.e.
with only single attributes on the right-hand side (e.g. A — BCD is rewritten as a
set {A— B, A— C, A — D} corresponding to ABV AC V AD). For example,
o(F) =A1A; VvV Ay A3V A3A, vV A4 A; is represented by

=8 |8 O
SHERE=2 L
8 |lo|—|8
ol |8 |8

From now on, we shall omit the symbol of negation in the function @ considering
it as a function representing F. Functions with subscripts 0 and 1 appearing in (3)
are selections made from the table, such that the value of the attribute is either 0
or 1. For example, ¢} is the first row of the above table (the variable A; is 0); ¢}
is the last row (the variable A; is 1). An informal description of projection onto X
is as follows:

1. Select the first attribute in R — X (current attribute).

2. Split the function table (current table) into three tables fy, f1, fx containing the
rows from the original table which have respectively 0,1, or = in the column for
the current attribute. These tables do not contain a column corresponding to the
current attribute.

Computing a cover for projected functional dependencies from ... 145

3. ‘Multiply’ (row by row) tables fo, f1 in accordance with the rules given in table (5)
(if one of these tables is empty, then the result is null; if one of the tables contains
a row of ‘z’, then the result is the other table?), where A means a null value
causing the result of the ‘product’ to be null. It is a Boolean conjunction of a
variable and its negation.

4. Append the resultant table to table f, and make it the current table. Make
the next attribute in R — X the current attribute and repeat steps 1-4 until
all attributes in R — X have been exhausted. The algorithm gives only trivial
dependencies if at some stage we get the table fy or f; only.

The last current table contains only columns for X and represents wx(F). If we
get a null current table at some stage, then the process is aborted, as the null table
corresponds to the function O representing trivial dependencies. Having introduced
another representation of functional dependencies and a method of obtaining the
projection we can now prove Lemma 3.

Proof of Lemma 3. It is sufficient to prove that by the above method we shall never
get a row that does not represent a functional dependency. Such a row should consist
of more than one ‘1’ or contain no 0’s. Since f; contains no 1’s and f; has only
one ‘1", the first possibility cannot occur. But a zero cannot be eliminated according
to (5), unless we eliminate an entire row. |

Example 4. (only trivial projected dependencies)

Let us take F' = {A; — As, A3A4 — Ay, Ay — As}. Clearly, no dependencies hold
in X = {4y, A3}. Attributesin R — X are A; and A4. The first run of the loop
will give the tables:

2 Such a row induces the function 1.

146 W. Zawadzki

The new current function becomes

and the next run will produce only table f§ indicating no dependencies in 74, 4,(F).

Example 5. Find 7a4,4,4,(F) for the following set:

A1 Ay — Az, A3 — Ay, AsAs — Ay, Ay — As, Ay — A,
AsAs — Ay, AgAs — Aj, AzAs — Az, A3As — A

fo
f
z
0 T T
fz
0 0 1 z T
z T 0 1 by
z T 0 T 1
0 1 T 0 T
1 0 T T 0
z 0 z 0 1

fofiviz

Computing a cover for projected functional dependencies from ... 147

split: fg
fi
f4
fefiv sz
split: f¢§
b
5
EVE

duplicate the row

The result is A;A3Ag V A3AgA; representing Ay As — Ag and AzAg — Ay. The
dependency A3As — Ap is in F, whereas A; A3 — Ag¢ can be inferred from
A2A3 - A4 and A4 — Ae.

148 W. Zawadzki

This method, although conceptually simple, is not guaranteed to run in polyno-
mial time. We will now rectify it by placing one term XY of ¢ in one row of the
table. Thereby, some rows will represent disjunction of several rows in the original
table. We call this representation an NC-form (non-canonical form) or NC-table. A
formal definition of an NC-row is now introduced.

Definition 2. Two rows r; and 75 are equivalent to one NC-row iff they agree on all
‘0’ values. In such a case, an NC-row is constructed by replacing all z’s in one row by
the corresponding values of the other row. Such an operation is called recombination.

The opposite operation (splitting one NC-row into a number of canoni-
cal rows) is called decomposition. We will also need partial decomposition, i.e.
breaking down one NC-row into a number of rows of which some may be NC-
rows. For example, (1,1,1,0,0,z,z) is equivalent to three canonical rows:
(1,z,z,z,0,0,z,2), (z,1,2,0,0,z,2), (z,%,1,0,0,z,z) (decomposition), but also to
the pair: (1,1,z,0,0,z,z), (z,2,1,0,0,z,z) (partial decomposition).

In Example 5, the table is as follows:

two NC-rows equivalent

to four canonical rows

T 1 0 T T 0

T T 0 T 0

For NC-tables, new rules of multiplication must be derived, as well as a new
structure of the table must be introduced. The algorithm of stepwise projection
tends to produce strongly redundant dependencies, thereby leading to exponential
complexity.

Example 6. Consider the set A; - X, X =Y for 1 <17 < m. Obviously,
Tay(F) = {Ai LY, 1<i< m}(A = UAi)
1

By rewriting these dependencies in the canonical form we shall obtain m|X| + |Y]|
dependencies. If we apply successively steps 1-4 of the original algorithm, the final
result will be strongly redundant with 2™ — 1 dependencies L — Y for every subset
L of {A;}. The NC-table shown below gives some hints regarding the direction in
which the modification of the algorithm should go: the table must be structured in
a way which provides more control over the multiplication of rows. Relying only on
one criterion of selecting the current attribute, and then processing rows at random

Computing a cover for projected functional dependencies from ... 149

—R-X—

surely leads to redundancies, and in consequence—to exponential complexity. Let us
introduce the following observations:

a) A table may have rows with only ‘z’ symbols in the columns belonging to R — X.
It represents projected dependencies which are already in F. All rows satisfying
this condition are written in RESULT.

In Example 5 a row of RESULT (A3As — A3) is shown below:

b) If there are no rows that can be written in RESULT, then the table which produces
non-trivial projected dependencies must have at least one row with only ‘0’ and
‘z’ symbols in the columns belonging to R — X and at least one ‘1’ in a column
belonging to X.

Indeed if there is no such row, the function @, in (2) is 0, and the whole expression
yields 1. Let fy = {ro} denote a set of such rows. A formal definition is as follows:

o fu is a set of rows that have at least one ‘0’ in the columns R — X and has
no 1’s in any column belonging to R — X. Rows having 1’s in the columns
R — X and X are subjected to partial decomposition: all 1’s in the columns
are replaced by ‘z’ and such a row goes to fy, and all 1’s in the columns X
are replaced by ‘z’ and such a row goes to a new table fp;. Hence the table
fo may contain all symbols in the columns belonging to X.

Table fy from Example 5 is shown below:

150 . W. Zawadzki

The algorithm must remove all zeroes from at least one row of f; to produce
non-trivial dependencies.

c) Every table which produces non-trivial projected dependencies must have at least
one row with only ‘1’ and ‘z’ symbols in the columns belonging to R — X and
at least one ‘0’ in a column belonging to X. Indeed, if there is no such row, the
function @y in (2) is 0, and the whole expression yields 1. Let f; = {r1} denote
a set of such rows. A formal definition is as follows:

e fi is a set of rows that contain at least one ‘1’ in a column belonging to R~ X
and has no ‘0’ in any column belonging to R — X. Rows having 1’s in columns
belonging to X are subjected to partial decomposition so that all 1’s in the
columns belonging to X are replaced by z’s and such rows are written in fi,
while all 1’s in the columns belonging to R — X are replaced by z’s, and such
a row is written in the RESULT. Thus f; contains only 0’s and z’s in the
columns belonging to X.

Table f; from Example 5 is shown below:

d) Every dependency X; — Y; € mx(p) must satisfy the condition
3(7‘1 € fl), Tl(A) =0=>A4€X; and 3(7‘0 € fQ)V (B € K), T‘Q(B) =1

To prove this assertion, we notice that B,@y in (2) is equivalent to
7x(fo) e mx(f1), where mx are projections (in the relational sense) of tables fy
and f; onto X, and e is a modified operation (5) applied to NC-rows. Fur-
thermore, %,y , implies the whole expression (2) and is an FD at all times,
whereas no other sub-expression (also implied by (2)) is guaranteed to be an FD.
In other words, the left-hand side of any dependency in 7x(¢) must contain all
attributes corresponding to a 0-column of some row of fi, all the right-hand side
attributes must be found in some row of f; (which is obvious as fp is the only
table containing 1’s in columns X). Hence the algorithm should always try to
‘remove’ zeroes of ry by ones of r; before ‘removing’ zeroes of fp1 (ref. (b))
in an attempt to produce more ones (i.e. producing more rows 7). Zeros are
“removed” by multiplication of rows. With canonical rows, we can ‘remove’ only
one zero (for the current attribute) at a time. With NC-rows, we can ‘remove’
multiple zeroes in one multiplication. Moreover, we never ‘produce’ new zeroes in
the columns R — X, which may happen in the canonical form. This is because
of the observation that the ‘removal’ of zeroes can be accomplished only by rows
in f1. In Example 6, it seems obvious that every row of f; is capable of ‘remov-
ing’ all zeroes from the row of fy thereby producing an outright result. The rule
1e0 = z for every pair of attributes in R — X is sound, as it results from the

Computing a cover for projected functional dependencies from ... 151

implication: X =Y, YZ -V = XZ — V. When multiplying f; e fo we may
face a pair (0,1) in a column belonging to X. Let 0e1 =0. Denote 70 = r; o7
and introduce an extrarule: r? = A iff V(4 € X), r}(A4) # 1. In other words, the
result is null if there is no ‘1’ in any column belonging to X. These two rules are
sound because of the following implications: XA Y, YZ - AV = XAZ -V
and if V =0, then the conjunction of r; and ry produces a trivial dependency.
Other rules for multiplying 7, e ry are summarized in table (6). The soundness
thereof can be proven in a similar manner.

e) A table may have other rows rq; (ref. (b)) which satisfy the following definition:

e fo.1 is a set of rows that have at least one ‘1’ and at least one ‘0’ in the columns
R—X, and has no 1’sin the columns X. Rows having 1’s in the columns R—X
and X are partially decomposed into tables f, and fo;. Hence table fq1
may contain only 0’s and z’s in the columns of X

There is no table fp,; in Example 7, whereas in Example 6, it looks as follows:

For every current attribute A of R — X, all rows of fy (such that r5(4) = 0) are
multiplied by all rows of f1 (such that r;(A) = 1) before multiplication f; e fy; for
the same current attribute commences, which is performed according to the following
table:

70,1

with an extra rule: 2! = A iff V(4 € R — X), r)"'(4) = g, i.e. the rows must have
at least one ‘1’ in the columns R — X. The rows of f; e fo,1 which have no 0’s in

152 W. Zawadzki

the columns R — X will be added to the rows of f; for the next current attribute.
Notice that 1’s covered by 1’s of 71 are not counted (they are replaced by ‘z’). This
mechanism coupled with the strategy ‘first fi e fo, then fi e fo,;1’ will contribute to
the reduction of possible redundancies from the one hand, and the number of rows in
f1, from the other. Therule 1e1 =1ez =z says that 1’sin r; can only contribute
to the creation of new 1’s which are not in 71, because 1’s in r; have already been
utilized to eliminate 0’s in ry. By definition, there is no combination (0,1) when
multiplying rows of fi and fo 1. The soundness of other rules (7) can be proven in
a way similar to rules (6). Rows of f; will be used throughout the algorithm upon
removing the current attribute (i.e. setting its value to ‘z’).

5. Implementation Issues

Tables fo, fi, foq and RESULT are represented as two-way lists of records whose
first element is a one-dimensional array. The other elements of the record will be
described. The attributes are mapped onto the set ATTR = {1,...,n} with first
k integers representing attributes of R — X. Let Ap, Ag1, and A; denote sets of
attributes A in R — X such that we have respectively

3I(ro),m0[A] =0, 3(70,1),70,1[4] =0 and 3(r1),m[4] =1

Define two arrays ARy and ARy such that ARg[i](ARp1[i]) =m if i€ R~ X is
equal to 0in m rows ro(ro,1). Similarly, the array AR; will store the information how
many rows r; satisfy 7 [¢] = 1. Such arrays and sets can be easily created /updated
when processing the rows. In Example 5, these sets are Ag = {1,4,5}, Ao1 = {4,5},
A; = {1,4}, and the arrays are AR;[1] = AR,[4] =1, ARy[l] = ARo[4] = ARy[5] =
1, ARy 1[4] = ARy 1[5] = 1.

The algorithm must have some strategy of selecting the current attribute A: if,
at some stage, A; N Ag # @, then

- A is an attribute in A; N Ag — Ag,; for which the value of AR;[A] x ARy[A] is
minimum;

— if the difference is an empty set, then A is an attribute in A; N Ag N Ag; for
which the value of AR;[A] x ARp1[4] is minimum.

In the presence of several attributes satisfying the minimum criterion, any of them is
selected.

Both criteria allow one to defer multiplication of f; e fo1 until it is absolutely
necessary (i.e. when A; N Ay = 0, in which case the criterion AR;[A] x ARy 1[4] =
min is used, or A; N Ag N Ao # 0, in which case the criterion AR;[A]x ARop1[A] =
min is used). In Example 5, current = {1}. If A; N Ag; = 0, then the algorithm
terminates (if A; N Ay = @) or continues without rows of fo1 (if A1 N Ao # 0).
Each row of f; will be identified by a serial number drawn from the pool of integers.
Initially, they are assigned successive numbers, starting with 1. The quantity max(f;)
will be stored so that a new row of f; (as a result of some product 71 e 7o 1) will be
assigned the first available number. The numbering system is a part of the strategy

Computing a cover for projected functional dependencies from ... 153

to avoid redundancies and unnecessary multiplications. Suppose that at some stage
Ty o9 € RESULT and 7/ erg = vy ¢ RESULT. The rows | and 7} may be
processed in some later step, and will definitely produce a redundant result because
if 7y e7g € RESULT, then | e (r{ er7g € RESULT. Assign to each row ry the
set S; containing serial numbers of all rows 7, that produced a result with r;. Two
rows 71,79 at some stage are subject to multiplication only if serial(ri) & Si(ro).
The set S will constitute the next element of the record. The same mechanism will
be used for multiplication f; e fo 1. Here, 71 e 7o ; can either produce a new row
(analogous to result), or a new row 7q,; (analogous to a new row 7o). Every row rg;
will be assigned the set S; containing serial numbers of all rows r;, that produced a
new row 7y with rg,. Two rows 7,7, at some stage are subject to multiplication
only if serial(ry) & S1(r0,1). Thus the lists will have the following structure:

table f;

PR | serial I array
l__> end of list pointer

table fp

<_, array o |S’1|<—>...
L_) end of list pointer

table fO,l

PN arrayr0,1| S1 l .
I__> end of list pointer

Initially, the above structure represents the set F' of functional dependencies to be
projected. While they are created, sets Aj, Ag, Ao,1 and arrays AR are built, serial
numbers generated, and a current attribute A selected. The attribute A is then
removed from each set A and its counter in the array AR is set to 0. Next, the lists
are traversed: rows {r|r1[A] = 1} are attached to the current list f¢ and deleted
from the list fi; in the same manner, the rows 79 and 791 are processed forming
current lists f§ and fg,, respectively’.

Each row of f§ is multiplied by all rows of f{ before the next row of f§ is
processed. In our example, (1,z,0,z,z,z) ¢ (0,0,1,z,z,z) gives a null result. A
product of two rows updates the corresponding array AR by decreasing the counters

1 The current lists are introduced to clarify the algorithm. Actually, they are lists of pomters to
elements of fo, f1, fo,1-

154 W. Zawadzki

of attributes that are replaced by ‘z’. Should the counter reach 0, the attribute is
deleted from the set A. Only after fi e f¢ has been completed, rows of f§, are
subject to multiplication (not the case in Example 5). However, it may happen that,
at this point, the list fy is empty (all rows of f; were copied to f§, but no product
of ff e f§ has been appended). This indicates the end of algorithm, because new
rows of f; which would possibly be created from rows ff and f§; cannot be used
any more. The rows of f{ which, except for the current attribute, have no more 1’s,
are deleted from the list f{ (row (1,z,0,z,z,z)). All other rows of ff are attached
to the list f; at the end of an iteration for the current attribute. Non-null products
r1 o 19 are appended to the end of lists RESULT or fy (the set S; of r¢ is copied
to the new row ry erg and rg is deleted); non-null products r; e7g; are appended
to the end of lists f, (their sets S; are nullified and the rows receive serial numbers)
or fo1 (the set Sy of ro,;1 is copied to the new row 7, e 7y and 79, is deleted).
The list fo,1 is deleted if at some stage 4; N Ag,; = 0.

When an iteration for the current attribute is completed, the memory occupied
by the current lists (more precisely, by the pointers to these lists) is released, the
new current attribute A (in our example A,) selected and an iteration for the new
attribute of R — X commences. The product (z,0,0,1,z,z) e (z,z,2,0,z,1) will
produce (z,z,z,0,0,1) € RESULT, the product of (z,0,0,1,z,z)e(z,z,7,0,1,2) €
fo,1 will produce a new row ; = (z,z,z,z,1,z) updating the set A;. The third run
for the attribute As will produce (z,z,,0,0,1) already in RESULT.

As already mentioned, the algorithm terminates if one of the following conditions
is met: (a) A1NAp=0 and A; N Ag1 =0, or (b) the list ff or f§ is empty. This
condition is always checked after f{e f§ is completed and before ffe f§1 commences.

If the list f{ is empty, then definitely condition (a) is met. However, we may

have an empty list f§ and A;NAg; # @ which would lead to unnecessary operations
generating dependencies which cannot belong to wx (F). :

Example 6 seems trivial for NC-tables: it gives a non-redundant cover after the
first iteration. Example 5 turned out very simple, too. Four multiplications (instead
of six in the canonical form) were enough to produce the result.

Example 7. R= {Al,...,Alo}, X = {A7,...,A10}, R-X= {Al,...,As}
F={A7— A1 Ay, Ag— A1 A3 A3As, Ag— A1 A3 Ay, A1 Ay Ar — A3Ay, A1 A3Ag — Ay,
A1AgAro — AsAs, A1AsAsAsAs — AgArg, A1As Ay — AgAg, A1A3As — A7}

This example will illustrate some optimization techniques aiming at reducing the
number of multiplications necessary to generate a result (we omit sets S; in f; and
fo,1 as they remain empty). We have

n,1,1,z,z,z,7,0,z,z,x 0,0,0,2,0,0,z,z,1,1
fi=4q [2,,1,1,z,z,1,2,0,z,z p, fo=<{ 0,0,2,0,z,z,2,1,1,z

@l,1,z,1,1,z,z,7,2,0, 0,z,0,z,z,0,1,z,7,x

Computing a cover for projected functional dependencies from ... 155

0,0,1,1,z,z,0,z,z,z
fO,l = 0,.’1),0,1,.’1),1‘,1‘,0,1‘,1‘

0,z,z,0,1,1,z,2,2,0
Ao =1{1,2,3,4,5,6}, A; ={1,2,3,4,6}, Ao, = {1,2,3,4}
ARy = {3,2,2,1,1,2}, AR, = {3,2,2,1,0,1}, ARy, = {3,1,1,1,0,0}
AN Ag ={1,2,3,4,6}, A NA— Ao, = {6} |

so the attribute Ag is selected for the first iteration. Consequently,

0,0,0,2z,0,0,z,2z,1,1
flc:{[2],1,1,1,.'5,37,1,1',0,(1:,1'}, f(;::{ ’ }

0,z,0,z,2,0,1,z,z,z

T,r,7,2,0,2,2,0,1,1
ff°f5={ }

T,r,z,%,z,T,1,0,z,2

The first result is Ag — A7 produced by row no. 2 with the second row of f5. The
new lists are (positions Ag replaced by ‘z’)

[1]117171;7:6::5:1"0;2:,3,1;
fi=<[2,1,1,1,2,z,2,2,0,z,z }, fD_—_{

8),1,z,1,1,z,z,2,2,0, 2

z,z,z,2,0,2,2,0,1,1
0,0,z,0,z,z,z,1,1,2

0,0,1,1,z,2,0,z,z,%

f011: 07:570;17-7;71:::1:;031:)1'

0,z,z,0,1,z,z,2,z,0

and the updated sets are Ag = {1,2,4,5}, Ao1 = {1,2,3,4}, A, = {1,2,3,4},

ARy = {1,1,0,1,1,0}, AR; = {3,2,2,1,0,0}, ARy, = {3,1,1,1,0,0}. We have
A1 N A = {1,2,4}, A1 N Ay — Ap1 = 0, so we select the attribute A4, because
4€A N4gn Ag,l and AR; [4]AR0’1[4] =1.

Apart from that, ff = {[3],1,2,1,1,%,2,2,2,0,2}, f§ = {0,0,z,0,z,x,z,1,
Lz}, f§1 = {0,z,2,0,1,z,z,2,2,0}, ff o f§ = {z,0,z,z,z,2,2,1,0,z} (a new
row of fo), ff e fs, = {z,z,z,z,1,7,2,2,0,0}. The last result will be appended to
table fi and receive serial no. 4. Consequently,

1),1,1,z,z,2,2,0,z,z,z
f [2]’1’171’$’$7x7x707x’x
1 —_

8],1,z,1,z,z,z,z,2,0,x

4], z,z,z,2,1,z,z,2,0,0

156 W. Zawadzki

z,z,z,1,0,2,2,0,1,1 0,0,1,1,z,z,0,z,z,x
fo= , Jop=

z,0,z,z,z,2,2,1,0,x 0,z,0,1,z,z,2,0,z,x

and the updated sets are Ay = {2,5}, Ao1 = {1,2,3}, A1 = {1,2,3,5}, ARy =
{0,1,0,0,1,0}, AR; = {3,2,2,0,1,0}, ARo;1 = {3,1,1,1,0,0}. Because A; N Ao =
{2,5} and A1NAg—Ao,1 = {5}, weselect As but the result of the only multiplication
{z,z,2,7,1,z,2,2,0,0} o {z,2,2,2,0,2,,0,1,1} is null. We are left with the initial
rows of

[1],1’112:’1"1‘, z,O, z’x’x
h = [2],1,1,1,1',1',.'13,.'1:,0,23,.’17

38],1,z,1,z,z,z,z,2,0,2

0,0,1,1, ’ >0> IS
a Single row fU = {I,O,z,az,x,z,x,l,o,x}, and f0,1 - { ne o }

0,z,0,1,z,z,z,0,z,z
The new sets are A = {2}, Aoa = {1,2,3}, 4 = {1,2,3}, ARy, =
{0,1,0,0,0,0}, ARy = {3,2,2,0,0,0}, ARo,1 = {2,1,1,0,0,0}. We have A; N A =
{2} and A; N Ag — Ag,1 = 0, so we must select Az. The first two rows of fi form
f¢ and produce A749 — Ag and a null row. The set fo is empty and the algorithm
terminates (no multiplication fi e fo,1 is required) giving

mx(F) = {As — A7, A7Ay — Ag}

6. Concluding Remarks

The paper presents a solution to an interesting problem how to compute projected
functional dependencies effectively without computing a closure. It gives yet another
application of Boolean functions in the dependency theory by finding equivalence
between projections of FD’s and decompositions of Boolean functions. The finding of
an algebraic expression for 7x(F) seems to be the main contribution of the paper.
To make this expression computable, a special tabular representation of FD’s has
been devised. The partitioning {fo, f1, fo,1} of the set F' is the first step towards an
organized way of performing multiplication of rows. Which rows are to be multiplied
in each step is primarily determined by the contents of the sets Ag, Ao,1, 41 which
are updated after each multiplication. To avoid unnecessary multiplications leading
to redundant results, the sets S; are introduced. While these two optimization
techniques are essential and do not seem to affect adversely the overall complexity,
the need for arrays AR may be questioned, and we leave this issue open. A further
study is needed to pick up cases that lead to the generation of redundant dependencies
causing exponential complexity. Also, an informal description of the algorithm must
be presented in some formal language. These issues will be discussed in a paper which
is being prepared. The main contribution of the paper seems to be the application of
the concept of a Boolean function to the problem of projected FD’s which still awaits

Computing a cover for projected functional dependencies from ... 157

a satisfactory algorithmic solution. It seems tempting to pursue a conceptually simple
idea ilustrated in Example 2 in order to find a more elegant and efficient method of
generating wx (F).

References

Armstrong W.W. (1974): Dependency structures of database relationships. — Proc. 1974
IFIP Congress, Amsterdam: North-Holland, pp.580-583.

Beeri C. and Vardi M.Y. (1981): The implication problem for data dependencies. — Lecture
Notes in Computer Science 115, New York: Springer-Verlag, pp.73-85.

Berman J. and Blok W.J. (1985): Positive Boolean dependencies. — Res. Report, Univ. of
Tllinois, C8S, No.5.

Demetrovics J., Rényai L. and Hua nam Son (1991): On the representation of dependencies

by propositional logic. — Lecture Notes in Computer Science, Math. Foundations of
Database Systems 91, Heidelberg: Springer-Verlag, pp.230-242.

Fagin R. (1977): Functional dependencies in a relational database and propositional logic.
— IBM J. Research and Development, v.21, pp.534-544.

Fagin R. (1982): Horn clauses and database dependencies. — J. ACM, v.29, No.4,
pp-952-985.

Fagin R. and Vardi M.Y. (1986): The theory of data dependencies-a survey, In: Mathematics
of Information Processing (M. Anshel and W. Gewirtz, Eds.). — Proc. Symp. in Applied
Mathematics 34, American Mathematical Society, pp.19-72.

Gottlob G. (1987): Computing covers for embedded functional dependencies. — Proc. 6th
ACM Symp. Principles of Database Systems, pp.58—69.

Gottlob G. (1987): On the size of nonredumdant FD-covers. — Information Processing
Letters, v.24, No.3, pp.355-360.

Nicolas J.M. (1978): First order logic formalizations for functional, multivalued and mutual
dependencies. — Proc. ACM-SIGMOD Int. Conf. Management of Data, pp.40-46.

Sagiv Y., Delobel C., Parker D.S.JR and Fagin R. (1981): An equivalence between relational
database dependencies and a fragment of propositional logic. — JACM, v.28, No.3,
pp-435-453.

Thalheim B. (1987a): Design tools for large relational database systems. — Design Tools for
Large Relational Database Systems, MFDBS 87, Berlin, Heidelberg: Springer-Verlag,
pp-210-224.

Thalheim B. (1987b): Dependencies in Relationdl Databases. — Leipzig: Teubner-Verlag.

Ullman J.D. (1989): Principles of database and knowledge-base systems. — Computer
Science Press, v.I, pp.376-445.

Zawadzki W. (1995): The complezity of computation of projected functional dependenciés.
— (in preparation).

Received: November 10, 1994
Revised: October 21, 1995

