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CREST FACTOR MINIMIZATION:
A NEURAL NETWORK APPROACH

Nikos E. MASTORAKIS*

In this paper, a state-space model is proposed for the minimization problem of
the crest factor in the case of a multisine signal. This state-space model provides
a stable neural network and it can be studied using computer simulation.

1. Introduction

The crest factor (CF) of a signal is defined as the ratio of its peak value and its root
mean-squared (RMS) value. The number of averages required to measure a signal
with specified accuracy is proportional to the square of the crest factor (Shoukens
et al., 1988). This shows the importance of CF minimization in measurement pro-
blems. Up to now, the exact solution for the CF minimization problem has not been
given yet. A survey of the existing techniques can be found in (Van der Ouderaa
et al, 1988b). Van den Bos (1985), Kahane (1980) and Overton (1982) presented
some very interesting results. In (Van der Ouderaa et al., 1988b), one can find a sum-
mary of the random method, the Rudin-Shapiro polynomial method (Rudin, 1959;
Shapiro, 1951), the Schroeder method (Schroeder, 1970), the Newman and Little-
wood methods (Littlewood, 1966; Newman, 1965), and the Van den Bos and Krol
method (Van den Bos, 1987; Van den Bos and Krol, 1979). Another algorithm is
that of Gerchberg and Saxton (1972). An extension of this algorithm in the time
domain of band-limited Fourier signals was given by Van der Ouderaa et al. (1988a).
Boyd (1986) uses some results from the mathematical literature in order to generate
signals with very low crest factors. In (Van der Ouderaa and Renneboog, 1988), the
Schroeder and random methods are compared with a time-frequency-domain swap-
ping algorithm for the crest factor reduction of logtones used in 1/3 octave analysis.
In (Guillaume et al., 1991), the minimization of the crest factor is attempted using the
L, error criterion and the Levenberg-Marquardt routine. The method of the present
paper is based on that of (Guillaume et al., 1991), but instead of the Levenberg-
Marquardt routine a neural-network (Zhang and Constantinides, 1992) is proposed
for the minimization of the CF.

Before presenting the state-space model for this neural network, the following
definition is given.
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Definition 1. The crest factor CF, of the function z(t) is defined as

t
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This number best represents the amount by which a signal is compressed. Apart from
that, the number of averages required to measure a signal with a specified accuracy
is proportional to the square of the crest factor (Shoukens et al., 1988).

CF; =

It is well-known that the £,-norm of a function z(t) defined on the interval
{0, T} is given by

T i/p
ep(w)=(% / Im(t)l"dt) . p>t (2)

For continuous functions, the uniform norm is also introduced

loo(z) = Dax, lz()|

In the notation above, one can write

_ L ()
CF, = B0 (3)

2. CF Minimization

A multisine signal is defined as

z(t) = Z Qy €OS (m —+ ¢u) 4)

where &, are the harmonic numbers, k, € IN; and 0 < k1 < k2 < ... < kn, = k.
The £3-norm (i.e. the RMS value) is dependent only on the amplitudes «, and thus,
in the special case of a given «,,, the CF minimization is actually the minimization
of £ (z). Following the approach presented in (Guillaume et al., 1991), in order to
minimize £« (z) with respect to ¢,, we minimize the corresponding ‘discrete’ norm
Ly(z) with respect to ¢, and then we let p — co. We recall that

i/p
Ip(2) = ( va’) , Lw(e)= _max |z (5)

1oty

where z, = 1'(7;31)
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n (Guillaume et al., 1991), it is proved that £,(z) = Ly(z) if p = 2r (r €
IN), N > pk + 1, and the interval [0,7] is divided into N equal subintervals. If
these conditions are not satisfied, the discrete norm is only an approximation of the
continuous one.

It is obvious that the L,-minimization problem reduces to the minimization of
Ap =LE, 1e.

1 N-1
M= 23 feal 0
n=0

We minimize A, with respect to ¢, with p even and for an increasing sequence
of p’s with p — oco. Therefore, we have to solve the problem of minimizing A, =

Enom

Here, a neural network is proposed for the above non-linear programming pro-
blem. The transient behaviour of the proposed neural network is defined by the
following vector equation:

dé _
where ¢ = [¢1, . ..,d)Nu_l], since it is supposed, as a result of normalization, that
¢n, = 0.
The state-space equations for this network are
dé; A, .
—_— = —— =1,...,Ny_ 8
dt 5(/5; ) i ) ) 1 ( )

The stability of this network is proved as follows. The function A, is selected as a
Lyapunov function of the system. It is differentiable, positive-definite, and dA,/dt =
—(VA;)? < 0. Therefore the proposed network is stable. In the equilibrium point,
we have

OA,
0¢;
which constitutes the first-order conditions of the minimization problem under consi-

deration. Therefore the minimum of A, is easily obtained by this network equilibrium
point.

=0, t=1,...,Ny—1 9)

An improved version of eqns. (8) is

T
dt “”#Z%—O) 1—1)-‘-yNu—1

where p; = 1/7; > 0 are referred to as learning rates of the neural network, and 7; are
proper time constants. In general, each differential equation has its own learning rate.
By their suitable choice we can provide an appropriate scaling and therefore reduce the
stiffness of the differential equations and improve the convergence rate of the system.
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For well-scaled problems all learning rates could be identical (y; = pg = 1/7 for
all 7). By the chain rule, one can find

N-1
d(ﬁi 1 a.'L‘n
W: ”iﬁ 27'1:3[ la¢z, 1:1) 1N‘u—1
n=0
Note that
g:;" —sin (21rk + QS,) ; (10)

Thus, we have the following system of N, — 1 differential equations

dqs, _ Z 9 [Z ry €08 (zwk -+ ¢u)]2r—1 o [— sin (27”“ +éi )]

i=1,...,Ny—1 (11)

The system of differential eqns. (11) is suitable for hardware implementation
(Agranat et al., 1990; Kennedy and Chua, 1988; Rodriguez-Vazquez et al, 1990;
Yanai and Sawada, 1990; Zhang and Constantinides, 1992) as well as for computer
simulation. This system was simulated on a computer (IBM compatible, 486 DX2,
66MHZ) using the fifth-order Runge-Kutta-Fehlberg method. The results are the
same as those of (Guillaume et al., 1991), see Fig. 1.

Ep=4
T mp=s
1 ;62 M p=16
1,55 % p=32
154 B p=64
1,45 : p=128
14 Wp=256
1,35 ¢
1,34
1,25

Crest Factor

Fig. 1. Crest factor minimization of a multisine signal with N, = 31,
ay =1, ky=u,u=12,...,31.
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Fig. 2. Implementation of ‘cell 15°, 7 =0,1,2,...,N — 1.

from y*" ! of ‘cell 15’

to z-th adder

sin(27k: §/N + ¢:)

Fig. 3. Implementation of ‘cell 75°, 1 =2,..., N, — 1,
j=0,1,2,...,N —1.

3. Hardware Implementation

In this paragraph, a hardware implementation of the proposed neural network is
presented. The neural network consists of elementary cells. In Figs. 2 and 3, the
quantities ‘cell 5’ are shown, where 1 =1,2,..., N, ~1 and j=0,1,...,N—1. The
input for the elementary ‘cell 15’ consists of the variables ¢1,...,¢n,_1, which, for
brevity, are denoted by ¢ (note that ¢n, = 0). Each cell 1j is composed of N,
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phase modulators (PM). To the input of each PM, we connect a frequency shifting
circuit which, in Fig. 2, is denoted by a small box before the box of the PM. So,
in the ‘cell 15°, the output of each PM is x;u(t) = cos (27rku j/N + ¢u(t)), where
v =1,2,...,Ny. The box after the adder gives the (2r — 1)-th power of the input
signal. In the sequel, multiplication by another sin(-) is required and the signal is
fed to the first (general) adder. The triangles denote various amplifiers. A simplified
structure of the ‘cells 75° ( > 1) is given in Fig. 3.

The complete implementation is shown in Fig. 4, where one should notice that
finally the necessary feedback to the initial variables ¢1,...,¢n,—1 is created. Each
integrator is supplied with an appropriate initial condition which is actually the initial
value of the corresponding variable ¢;, i =1,2,..., N, — L.

$= bl Initial Condition ¢ (0)
cell 11 2 s JN
J-st adder | Feedback to ¢;
cell 12 —|— |
]
~ cell IN-1 Integrator

to ‘cells j1°, 7> 1

to ‘cells 72°, 7 > 1

to‘cells ) N -1, 3> 1

b

Initial Condition ¢, (0)

cell N,—11 Sran,pn, /N
(Nu—1)-th adder l Feedback to ¢n
cell Ny—12 —+ |
cell Nyl N—1 Integrator

Fig. 4. The proposed network.

Remark. Many research papers have been devoted to optimization via neural net-
works techniques recently. One can see (Agranat et al, 1990; Bouzerdoum and
Pattison, 1993; Kennedy and Chua, 1988; Lillo et al., 1993; Rodriguez-Vazquez
et al, 1990; Yanai and Sawada, 1990; Zhang and Constantinides, 1992).
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In particulaf, for the CF minimization, the advantage of the hardware imple-
mentation is that for many cases we have to solve the same problem for different a,
or ky. Thus, in this case, it is advantageous to have a permanent circuit structure

for evaluation of optimal ¢i,...,4n,-1. On the other hand, the neural network,
compared with other discrete methods, offers a rapid computation of ¢1,...,éx, ;.
The reason is that, in this case, the variationin ¢1,...,¢n,—1 always follows directly

the direction of the vector —V4A,. The same is not true, in general, for the discrete
methods (see e.g. the method of steepest descent in any standard textbook on optimi-
zation techniques, (Luenberger, 1972; Murray, 1972)). A geometrical interpretation
of the above ideas in a special case where N, =3 is shown in Figs. 5 and 6.

4. Conclusion

A stable neural network is proposed for the minimization problem of the crest factor
of a multisine signal. Computer simulations are used and the results are compared
with those of (Guillaume et al., 1991). It should be noticed that the laboratory imple-
mentation offers a real, efficient, and fast computation of the optimal ¢4, ..., ON,—1-
Thereafter, computation of the crest factor is reduced to eqns. (3)—~(6). Since the
problem always includes a multisine signal with different «, and k,, the hardware
implementation of a neural network is of great importance. Some other relevant stu-
dies can be found in (Agranat et al., 1990; Bouzerdoum and Pattison, 1993; Kennedy
and Chua, 1988; Lillo et al., 1993; Rodriguez-Vazquez et al., 1990; Yanai and Sawada,
1990; Zhang and Constantinides, 1992).
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curves:

Alr (K 2) = constant

Fig. 5. The neural network leads the state variables directly to a (local)
minimum.
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Fig. 6. The classical method of steepest descent (Luenberger, 1972).
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