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APPROXIMATE RELATIVE CONTROLLABILITY
OF RETARDED DYNAMICAL SYSTEMS

JERzZY KLAMKA*

In this paper, linear abstract retarded dynamical systems defined in infinite-
dimensional Hilbert spaces are considered. Using frequency-domain methods
and spectral analysis for linear self-adjoint operators, the necessary and suf-
ficient conditions for approximate relative controllability are formulated and
proved. The method presented in the paper allows one to verify approximate
relative controllability for abstract retarded dynamical systems by considering
approximate controllability of simplified abstract dynamical systems without de-
lays. Moreover, as an illustrative example, approximate relative controllability
of a retarded distributed-parameter dynamical system is investigated. The pre-
sented results generalize to an infinite-dimensional class of retarded dynamical
systems some controllability theorems which are known in the literature only
for the finite-dimensional case.

1. Introduction

Controllability is one of the fundamental concepts in mathematical control theory
(Bensoussan et al., 1993; Klamka, 1992). Roughly speaking, controllability generally
means that it is possible to steer a dynamical system from an arbitrary initial state
to an arbitrary final state using a given set of admissible controls. In the literature,
there are many different definitions of controllability which depend on the particular
class of dynamical systems (Bensoussan et al., 1993; Klamka, 1991; 1993b; Nakagiri,
1987; Nakagiri and Yamamoto, 1989; Narukawa, 1982; 1984; O’Brien, 1979; Park
et al., 1990; Triggiani, 1975a; 1976; 1978). For infinite-dimensional dynamical sys-
tems it is necessary to distinguish between the notions of approximate and exact
controllability (Bensoussan et al., 1993; Klamka, 1982; 1991; 1992; 1993a; 1993b;
O’Brien, 1979; Triggiani, 1975a; 1976; 1978). This follows directly from the fact
that in infinite-dimensional spaces there exist linear subspaces which are not closed.
Moreover, for retarded dynamical systems there are two fundamental concepts of
controllability, namely relative controllability and absolute controllability (Bensous-
san et al., 1993; Klamka, 1991; 1993b; Manitius, 1982; Nakagiri, 1987; Nakagiri and
Yamamoto, 1989; Park et al., 1990). Therefore, for retarded dynamical systems de-
fined in infinite-dimensional state spaces, the following four kinds of controllability
are considered: approximate relative controllability, exact relative controllability, ap-
proximate absolute controllability, and exact absolute controllability.
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However, in the case of a finite number of scalar controls a dynamical system
with infinite-dimensional state space cannot be exactly relatively or exactly abso-
lutely controllable (Triggani, 1975b; 1977). On the other hand, the assumption of
approximate controllability is essential in construction of an optimal control sequence
in the minimum energy control problem for infinite-dimensional distributed-parameter
systems without delays (Kobayashi, 1978). Therefore, combining the results given in
(Klamka, 1991; Kobayashi, 1978), approximate relative controllability may be used
in formulation and construction of the solution to the minimum-energy control prob-
lem for infinite-dimensional systems with delays. This is an open problem for future
investigations.

Hence, the present paper is devoted to a study of approximate relative controlla-
bility for linear infinite-dimensional retarded dynamical systems. For such dynamical
systems direct verification of approximate relative controllability is a rather difficult
and complicated task. Therefore, using frequency-domain methods (Bensoussan et al.,
1993; Kobayashi, 1992; Nakagiri and Yamamoto, 1989) it is shown that approximate
controllability of a linear retarded dynamical system can be checked by the approx-
imate controllability condition for a suitably defined simplified infinite-dimensional
dynamical system without delays. General results are then applied for approximate
relative controllability investigations of distributed-parameter dynamical systems with
one constant delay in the state variable.

The results presented in the paper extend controllability theorems given in
(Bensoussan et al., 1993; Klamka, 1982; 1991; Kobayashi, 1992; Nakagiri, 1987;
Nakagiri and Yamamoto, 1989; O’Brien, 1979; Triggani, 1976; 1978) to a more general
class of abstract retarded dynamical systems.

2. System Description and Basic Definitions

We begin with the basic notation and terminology used throughout the present paper.
Let X be a separable Hilbert space. For a set £ C X the symbol ClE denotes its
closure. For a given real number h > 0 we denote by Ls([—h,0},X) the separable
Hilbert space of all strongly measurable and square integrable functions from [—#,0]
into X. Moreover, let us introduce the space M2([—h,0],X) = X x (L2([-h,0], X)
(Bensoussan et al., 1993; Klamka, 1991; Nakagiri, 1981, 1987, 1988; Nakagiri and
Yamamoto, 1989) shortly denoted as M, which is a separable Hilbert space with
standard scalar product

: 0
<g>f>M2 = <go,f0>X+<gl7f1>L2 = <907f0>x+/;h (gl(s)7f1(3)>xds

for f=(f% f!) € M, and g = (¢°,¢*) € M>.
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Let Ap: X D D(Ag) — X denote a linear, in general unbounded, self-adjoint,
and positive-definite operator with domain D(A4p) densein X and compact resolvent
R(s; Ao) for all s in the resolvent set p(Ag). Then the operator 4y has the following
properties (Chen and Russell, 1982; Klamka, 1991; Triggiani, 1976, 1978):

1) The operator Ay has only the pure discrete-point spectrum o,(Ap) consisting
entirely of isolated real positive eigenvalues

0<s1<89<...<8;< ..., lim s; = 400

11— 00
Each eigenvalue s; is of finite multiplicity n; < o0, i = 1,2,3,..., equal to the
dimensionality of the corresponding eigenmanifold.

2) The eigenvectors z; € D(Ap), for : =1,2,3,... and k = 1,2,3,...,n;, form a
complete orthonormal set in the separable Hilbert space X.
3) The operator Ao has the spectral representation

i=o00 k=n;

Aoz = Z S; Z (z,zik)x i for z € D(Ap)

i=1 k=1

4) Fractional powers Ag, 0 < o <1 of the operator Ay can be defined as follows:

1=00 k:'n,,-
0L = Z 85 Z (z,zit)x zax for z € D(AF)
=1 k=1
i=00 k=n;
where D(Ag) = {l‘ €EX: Z S?Q Z |($,.’Bik)xl2 < oo}
; =1 k=1

5) The operators Ag, 0 < a < 1, are self-adjoint and positive-definite with domains
dense in X and —A§ generates analytic semigroups on X. In particular, the
operator —Ap generates an analytic semigroup T'(t) : X — X for ¢ > 0.

We shall consider a linear abstract retarded dynamical control system described
by the following functional differential equation (Nakagiri, 1981; 1986; 1987; 1988;
Nakagiri and Yamamoto, 1989):

T=p j=m .
&(t) = —Aox(t) + Y e, Ay z(t — hy) + Y bju;(t) (1)
r=1 7=1
with the initial conditions
2(0)=¢"€ X and z(t) = g*(t) € Ly([~h,0], X) (2)

where 0 < h; <hy <...<h, <...<h, are constant delays, ¢, € R, r =1,2, ..., p,
are given constants, 0 < o, < 1, r = 1,2, ..., p, are fractional powers of A, bj € X,
i=12,...,m.

The hereditary dynamical system (1) belongs to a special class of general dynami-
cal systems with delays presented e.g. in the papers (Nakagiri; 1981; 1987; Nakagiri
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and Yamamoto, 1989). Frequently in applications, the operator Ag is an unbounded
differential operator and in this case the dynamical system (1) represents a hereditary
distributed-parameter control system. Hereditary partial differential equations of the
form (1) arise in population modelling, where z represents a population density which
varies in space as well as in time, and the delay may result e.g. from the incubation
period of a disease or the growth time of a food source (Memory, 1991).

It is generally assumed that the admissible controls wu;(t) are elements of
Ly([0,00),R) for j = 1,2,..,m. It is well-known that the retarded system (1)
with initial conditions (2) and control u € L2([0,00),IR™) has for ¢t > 0 a unique
mild solution z(t;g,u) € X (Nakagiri, 1981; Travis and Webb, 1974; 1976; Webb,
1976).

In the dynamical system (1), the space of control values is finite-dimensional and
the control operator B : IR™ — X is given by

j=m
Bu=Y bju(t) (3)
j=1
The adjoint operator B* : X — IR™ is defined as follows:

Bz = ((bl,:l,‘)x,<b2,z‘)x,...,(bj,m)x,...,(bm,m)X) (4)

For brevity, let us introduce the operator 7(t) defined as follows (Nakagiri, 1981;
1987; 1988; Nakagiri and Yamamoto, 1989):

7)== 3 X(oorn)(DerA™ (5)

r=1

where yp is the characteristic function of the interval E.

In what follows, we shall give short comments on spectral decomposition of the
retarded dynamical system (1). A thorough analysis of this problem can be found in
(Nakagiri, 1987; 1988; Webb, 1976).

First of all, for each z € € we introduce the closed, densely-defined, linear
operator

T=p
A(2) = A(z;40) = 2T + Ay — ) _ crexp (—zhn) A . (6)

r=1

where I denotes the identity operator on X. By the retarded resolvent set p(4g,7n)
we mean the set of all values z € € for which the operator A(z;Ag,7n) has a bounded
inverse with domain dense in X. In this case, A(z; Ag,n)™ ! is the so-called retarded
resolvent and is denoted by R(z; Ag,n). The complement of p(Ag,7) in the complex
plane is called the retarded spectrum and is denoted by o(Ag,7n). It is well-known
that the retarded resolvent set p(Ag,n) is open in € and the retarded resolvent
R(z; Ag,n) is an analytic function for z € p(Ag,n). Moreover, let us denote by
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po(Ag,n) the connected component of the resolvent set p(Ag,n) which contains the
right half-plane of the complex plane.

Let z(t;g,0) for g € M2([—h,0], X) denote the mild solution of the homogeneous
dynamical system (1) with u = 0. Define the family of linear bounded operators
S(t): M; —» M, for t >0 by

S(t)g = (a(t;9,0),z.(519,0))  for ge M, )

where z4(s;9,0) = z(t + s;9,0) for s € [—h,0]. Then S(t) is a strongly continuous
semigroup of bounded linear operators on M,. Let A be the infinitesimal generator
of the semigroup S(t). Since A has the compact resolvent, the spectrum o(A) is a
pure discrete-point one consisting entirely of at most countable set of eigenvalues. In
fact, we have

= o (8)
1=1

where

r=p
oi = {z €EC:Ai(z)=2z+3s;— Zcr exp(—zh,)si" = 0} (9)

r=1

Now, we shall introduce various concepts of controllability for the retarded dy-
namical system (1). It is well-known that for retarded dynamical systems there exist
two fundamental notions of controllability, namely related controllability and absolute
controllability. In the present paper, we shall concentrate on the relative controlla-
bility. Since the dynamical system (1) is defined in the infinite-dimensional space X,
it is necessary to distinguish between exact relative controllability and approximate
relative controllability. However, since the control operator is finite-dimensional and
therefore compact, the dynamical system (1) cannot be exactly relatively controllable
for the infinite-dimensional space X (Triggiani, 1975b; 1977). Thus, in the sequel, we
shall concentrate on approximate relative controllability. First of all, let R,, t > 0,
and R, denote attainable sets given by

Ry = {x(t;O,u) €X :ue Lz([O,t],]R'")} and Reo=|JR (10)
t>0

Definition 1. The dynamical system (1) is said to be approzimately relatively con-
trollable in time t > 0 if C1(R;) = X

Definition 2. The dynamical system (1) is said to be approzimately relatively con-
trollable in finite time if Cl (Ry) = X.

Several others definitions of controllability for retarded dynamical systems can be
found in the monographs (Bensoussan et al., 1993; Klamka, 1991).
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3. Approximate Relative Controllability

In this section, we shall formulate and prove criteria for approximate relative con-
trollability in finite time of the retarded dynamical system (1). First of all, we shall
introduce the following notation (Bensoussan et al, 1993; Klamka, 1991; Triggiani,
1976):

[ (b1, zi)x  (bo,za)x ... (b5, Ti)x oo (bmyTa)x |
(bi,zi2)x (b2, zi2)x ... (bj,zi2)x ... (bm,Ti2)x
B = (1)
(biyzi)x (b2, zix)x ... (bj,Zak)x .o (bm,Tik)x
. (bl)xi'rh')X (bZax’ini)X (bjyxin{)x (bmyxin,-)X J

for i=1,2,....
Now, let us recall a modified version of some necessary and sufficient condition

for approximate relative controllability in finite time.

Lemma 1. (Nakagiri and Yamamoto, 1989) The dynamical system (1) is approzi-
mately relatively controllable in finite time if and only if

U KerB*R(z; 40,n) = {0} (12)
2€po(Ao,n)

Using methods similar to those given in (Nakagiri, 1986) we can prove the nec-
essary and sufficient condition for approximate relative controllability in finite time.

Theorem 1. The dynamical system (1) is approzimately relatively controllable in
finite time if and only if

rankB; =n; foreach i=1,2,... (13)

Proof. (Necessity) Suppose for the proof by contradiction that there exists at least
one index ip > 1 such that

r.':l.nkB,‘O < My, (14)

Therefore, since the rows of (11) are linearly dependent, there exist real coefficients
k:n"p 9

Yok =1,2,..,n50, Y b1 ” Ve > 0, such that

k=nio k=n;q k=nio

> wlbiTiokdx = Y (i Wk Tiok)x = (b D Ve Tiok)x = (bj, %), =0 "(15)

k=1 k=1 : k=1
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where 20 = Y F=7° 74 &0k is a nonzero element. Therefore, by formulae (4), (6), (9)
and (15) we deduce that there exist an eigenvalue 29 € 0;, and a non-zero element
z° € Ker A(zo; Ag,n) such that

Bz’ = ((bl,mo)x,(bz,m())Xa---a(bjax0>Xv""(b'"’xu>x) =0 (16)

Let z € p(Ag,7). Since all the operators A for 0 < a <1 are self-adjoint, by
formula (6) the bounded operator A(z;Ag,7n) is normal and, moreover, its inverse
A(z;Ag,n)™! = R(z; Ag,n) is also normal for all z € p(Ag,n). Furthermore, by
formulae (6) and (9), for a given z € p(4q,n) the eigenvalues of retarded resolvent
R(z; Ag,m) are equal to A;(2)"t € C, i =1,2,... . Therefore, for z € X we have

r=p

-1
R(z; Ag,m)x = A(z; Ag,n) "tz = (zI — Ay — ZCT exp(—zhr)Ag‘") x
r—1
r=p 1 i=o00 k=n;
= (ZI — Ao - Z cr exp(-zhr)ASF) (T, Tik) x Tik
r=1 i=1 k=1
i=00 T=p _q k=n,
I SICET R R,
=1 r=1 k=1
1=00 k=n;
=) (Az)? (T, Tk ) x Tik (17)
1=1 k=1

Therefore, from (5), (6) and (7) it follows directly that
B*R(z; Ao, n)z° = B*(Adg(20)) " 2° = (Aig(20)) ' B*z® = 0 (18)

forallz € p(Ao,n). This contradicts (2) and therefore, by Lemma 1, the dynamical

system is not approximately relatively controllable in finite time. Hence the necessity
follows.

(Sufficiency) Since the operator Ao generates an analytic semigroup T'(t) for ¢ > 0,
condition (3) is the necessary and sufficient one for approximate controllability in
any time interval for the dynamical system without delays (Klamka, 1991; 1993a;
Triggiani, 1975a; 1976; 1978)

z(t) = —Aox(t) + ]il bjUj(t) (19)
j=1

Since attainable sets for the dynamical systems (1) and (19) are the same for ¢ €
[0, 1], from Definitions 1 and 2 approximate relative controllability in finite time for
the dynamical system (1) follows directly. Hence Theorem 1 follows. |
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Corollary 1. Suppose that all eigenvalues s;, 1 = 1,2, ..., are simple, i.e. n; =1 for
i1 =1,2,.... Then the dynamical system (1) is approzimately relatively controllable in
a finite time interval if and only if

j=m

D (b, m)k £0 fori=1,2,.. (20)

i=1

Proof. From Theorem 1 it follows immediately that, for the case when the multi-
plicities n; = 1 for 7 = 1,2..., the dynamical system (1) is approximately relatively
controllable in finite time if and only if

By = [(br, 2 x (b2, @idx o (b, i)x oo (bmy3i)x] # 0 (21)
for i=1,2,... . Since the relations (20) and (21) are equivalent, Corollary 1 follows
immediately. |

Corollary 2. The dynamical system (1) is approzimately relatively controllable in
finite time if and only if the dynamical system without delays

i(t) = APz(t) + Jf bjuj(t), 0<fB<o (22)
i=1 :

is approzimately controllable in finite time for some 8 € (0, 00).

Proof. Comparing approximate controllability results given in (Bensoussan et al.,
1993; Klamka, 1991; Triggiani, 1976) with (13) it follows that the retarded dynamical
system (1) is approximately relatively controllable in finite time if and only if the
dynamical system without delays (22) is approximately controllable for § = 1. On
the other hand, by (Narukawa, 1982) approximate controllability of the dynamical
system (22) for § = 1 is equivalent to its approximate controllability for each g €
(0,00). Hence Corollary 2 follows. |

4. Example

Let us consider the retarded dynamical system with distributed parameters described
by the following partial differential equation:

j=m

wi(t,Y) = —Wyyyy(t,y) + wyy(t — h,y) + Z b; (y)u;(y) (23)

j=1
defined for ¢ > 0, y € [0, L], with homogeneous boundary conditions

w(t,0) = w(t,L) = wyy(t,0) = wyy(t,L) =0 (24)
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and with initial conditions
w(0,y) = ¢°(y) € Lo([0,L},R) =X and w(t,y) = g'(t,y) € L2([~h,0], X) (25)

where b;(y) = b; € Ly([0,L],R) = X, j = 1,2...,m, are given functions, u;(t) €
Ly([0,00),R), j = 1,2, ...,m, are scalar control functions, h > 0 is a constant delay.

The retarded linear partial differential equation (23) can be expressed in the
abstract form (1) substituting w(t,y) = z(t) € X and using linear unbounded differ-
ential operator Ag : X D D(A4p) — X defined as follows:

Aoz = Aow(y) = Wyyyy(y) (26)
D(40) = {& = w(y) € H*([0, L, R) : w(0) = w(L) = wyy (0) = wyy(L) = 0} (27)

where H*([0, L],IR) denotes the fourth-order Sobolev space.
The unbounded linear differential operator Ay has the following properties (Ben-
soussan et al., 1993; Klamka, 1991; Triggiani, 1975a):

1. Ao is a self-adjoint and positive-definite operator with domain D(A4q) dense in
the Hilbert space X.

2. There exists a compact inverse A7 and, consequently, the resolvent R(s; Ag) of
Ap is a compact operator for all s € p(Ay).
3. Ap has a spectral representation

Apz = Apw(y) = Z si{z,zi)xzi for z € D(4y)

=1

where s; > 0 and z;(y) € D(Ao),i = 1,2,..., are simple eigenvalues and eigen-
functions of Ay, respectively. Moreover,

wi\4 2\% . [Ty
8 = (-L—) , Ti(y) = (Z) sin (T) for ye|[0,L]
and the set {z;(y),%=1,2,...} forms a complete orthonormal system in X.

4. Fractional powers A§, 0 < @ <1, can be defined by
i=00
Afr = Afw(y) = Z si(z,z;)xz; for z€D(A]) and 0<a<1

=1

which is also a densely defined, self-adjoint, and coercive operator domain in X. It
should be noted that Ay being a differential operator does not ensure at all that Ag
is also a differential operator. However, for a = 1/2, we have

Ay = AP w(y) = —wyy(y)
(28)
D(AY?) = {z = w(y) € H*(10, L], R) : w(0) = w(L) = 0}
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Therefore the linear unbounded differential operator defined by (26) and (27) satis-
fies all the assumptions of Section 3 and hence eqn. (23) has the following abstract
representation:

(8) = —Aoa(t) — AY 2t~ )+ 3 brus(t) (29)

7=1

Hence, using results presented in Section 3, it is possible to formulate the necessary
and sufficient condition for approximate relative controllability of the abstract linear
retarded dynamical system (23).

Theorem 2. The dynamical system (23) is approzimately relatively controllable in
finite time if and only if

?j </0L \/%bj(y)sin (W—ég) dy>2 #0 for i=1,2,.. (30)

Proof. Let us observe that the dynamical system (23) satisfies all the assumptions of
Corollary 1. Therefore, taking into account the analytic formula for the eigenvectors
z;(y) € L2([0, L},R), ¢ = 1,2..., and form of the inner product in the separable Hilbert
space Lo([0, L],IR), we obtain inequalities (30) directly from relation (11). |

5. Final Remarks

In recent years, we have witnessed considerable progress in the development of mathe-
matical tools of population dynamics (Memory, 1991). The theory of linear differential
operators and semigroups of bounded linear operators seems to be the most important.
It can be applied to analysis of retarded differential equations. Retarded functional
differential equations with delays in the state variables often arise in modelling pop-
ulation dynamics. Many population models containing time delays are described by
retarded partial differential equations of the form (1) (see (Memory, 1991) for de-
tails). Such models are more realistic by allowing the population density to vary in
both space and time.

In the present paper, controllability problems for linear abstract retarded dy-
namical systems have been considered. Using frequency-domain methods and spec-
tral analysis of linear unbounded operators the necessary and sufficient conditions for
approximate relative controllability have been formulated and proved. These condi-
tions allow investigation of approximate relative controllability for abstract retarded
dynamical systems by checking approximate controllability of abstract dynamical sys-
tems without delays.
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