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ON CONVEX COMBINATIONS
OF HURWITZ POLYNOMIALS'

Jiki GREGOR*, JaArRosLAV TISER*

The zero set of a convex hull of two polynomials is investigated with special
attention to the class of Hurwitz polynomials. New necessary and sufficient
conditions are given for a convex hull of these polynomials to belong to the same
class. An algorithm of construction of Hurwitz interval polynomials containing
a given Hurwitz polynomial is formulated.

1. Introduction

Location of roots of a polynomial is an age-old problem of mathematics. System-
theoretical considerations focused attention on qualitative decisions on the set of zeros
of a given polynomial. The result of Hurwitz more than a century old is certainly one
of the most important mathematical achievements of this type.

The classical setting of the Hurwitz problem has been solved by three equivalent
approaches. Let p be a polynomial; the validity of the implication

p(20) =0 = Rez; < 0

can be checked in terms of the coefficients of p or in terms of the behaviour of
arg p(jw) orin terms of the zeros of the polynomials @ and b in p(s) = a(s?)+s b(s?).
All these found their appropriate field of applications.

A renewed interest in Hurwitz polynomials during the last years has been in-
voked mainly by studies of sensitivity of linear systems to small perturbations of their
parameters. First of all Kharitonov’s well-known result (Kharitonov, 1979) has to be
mentioned here together with an ever growing number of subsequent results. Robust
stability has become an exciting and important field of research for both mathemati-
cians and engineers. Recently the book (Barmish, 1993) has given an up-to-date
summary of these efforts.

One of the important achievements is the so-called Edge theorem, given in (Huang
et al., 1987). Its application demands an answer to the following question: Given
two Hurwitz polynomials p and ¢, under which conditions can it be guaranteed
that their convex hull consists of Hurwitz polynomials only? The solution to this
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problem has been given in terms of the coefficients in (Bialas, 1985) and in terms of
arg p(jw), argq(jw) in (Rantzer, 1992).

In this paper, we solve the convex hull problem in terms of the even and odd parts
of p and q. Our results are based on a generalization of the well-known interlacing
property of zeros of polynomials possessing real and simple zeros only (Theorem 2).
For convex hulls of polynomials we prove the necessary and sufficient conditions in
terms of the even and odd parts of the polynomials involved. Our Theorems 3 and 4
complete the results of (Bialas, 1985) and (Rantzer, 1992) in the above-mentioned
sense and, similarly as in the classical setting, enable us to obtain constructive results
in some robustness problems, e.g. construction of stable interval polynomials from a
fixed given polynomial. Our theorems also strengthen some results of (Bose, 1985)
and generalize those in (Bialas, 1985). In our opinion, they also make the solution to
some decision problems in this context easier.

We summarize the notation and basic facts in Section 2. Here the relevant
subclasses of Hurwitz polynomials are considered and the concept of a convex pair
of Hurwitz polynomials is discussed. In Section 3 new results on polynomials with
real and simple zeros are given. These results include the necessary and sufficient
conditions for convex combinations of these polynomials to belong to the same class.
Section 4 contains new results on convex combinations of Hurwitz polynomials and
Section 5 shows some applications to problems of robust system theory.

2. Notation and Basic Facts

Notation and basic facts will be presented here mainly for future references.

In what follows, p,q,... will denote polynomials with real coefficients. We denote
the classes of Hurwitz and related polynomials as follows:

pEH 4=>(p(zo)=0:>Rezo$0)
peH = (p(z0)=0:>Rezg<0)

pEM = (p(zo) =0= (Rezo =0, p'(20) # 0))

Note that any polynomial p € M has either only even or only odd powers.

If p and ¢ are polynomials, then for the function f = p/q we shall deal with
the following classes of positive real functions:

feB 4=>(Rez>0=>Ref(z)>0)

feR<=>(feB,f(z)+f(—z)=0)

Functions from B (R) are often called Brune (reactance) ones. It is well-known
that both classes are closed under addition and multiplication by a positive constant.
Moreover, f € B(R) iff 1/f € B(R).
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With e,(z) = 3(p(2) + p(—2)) and 0,(z) = 3(p(z) — p(—z)) we will summarize
some known facts:

p € H(H®) = p' € H(H®) (1)
peHS = -zﬁ eER (2)
f€BR), f=p/e¢= p,qg e H(M) (3)
p € HM®) = %l € B(R) (4)

Here, (1) is a specialization of the Lucas theorem (see Householder, 1970), while
in (2) e, and o, are supposed to be coprime. The remaining relations follow from
the principle of the argument. These relations are important tools in investigating
Hurwitz polynomials.

Our main concern is with pairs of polynomials. Since Hurwitz polynomials have
coefficients of equal sign, only linear combinations with positive multipliers have to
be considered.

Definition 1. If p,r € H(H®), then we call (p,7) a convex pair if
Ap+(1—=NreH(HY) forall 0< A< 1.

If the corresponding convex combination belongs to a larger class C, we shall say that
(p,7) forms a convex pair in C.

Combining (1)—(4) above, we easily obtain the following facts.
Fact 1. If p € HS, then (p,p') and (p,p") are conves pairs.

Fact 2. Let p, r € H°. Then (p,r) is a convez pair‘iﬁ (ep,br) is a convex pair for
all positive real a and b.

To see the last statement, observe that for any A € [0, 1]

Aa + (1 - Ab)
X+ (L=N0" " Xa+ (1= Nb

Aap + (1 — A\)br = (Aa-i—(l —)\)b) ( r) €HS

Fact 3. i) Any two polynomials in HS of degree less than or equal to two form a
CONVET Pair.

ii) If p/r € B, then (p, ) is a convez pair.
Note that (ii) can be deduced as follows: for any A > 0

g+/\:p+/\r
r T

€EB

By (3) p+ Ar € H, and using Fact 2 we obtain the desired result.
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More interesting is the following known result:

Theorem 1. If (p, r) is a convez pair in HS, then
|degp — degr| <2
A simple proof of this statement is a corollary of Theorem 2.

Example 1. i) For p(z) = 428 +4224+52+4,p € 1% none of its indefinite integrals
belongs to 5. (cf. (1))

ii) Two polynomials in H° may form a convex pair in ‘H but not in HS. Take
p(2) =22 +622+112+6 and r(z) = 22 + 24+ 17+ 4V/15. For g =p+ Ar we
obtain g € H for all A > 0 but g ¢ HS for A = 2¢/15. Indeed, p+ 271V/15 =
23 + (6 + 24/15) 22 + (11 4+ 2/15)z + 126 4 344/15 has a pure imaginary zero z,
with 2% = —11 — 24/15.

Some polynomials of equal degree form convex pairs. The corresponding neces-
sary and sufficient conditions have been formulated in (Bialas, 1985) as follows. If
p,r € H%,degp = degr = n, then (p, r) is a convex pair iff all the real eigenvalues
of the matrix W = —H,,(p) H,1(r) are negative. Here H,(p) stands for the square
matrix forming the Hurwitz determinant of the polynomial p.

3. Convex Pairs

Denote by @ the set of even polynomials with real and simple zeros only and with a
positive value at the point 0. The class @ consists of those polynomials that can be
expressed as

dg(d1 - wz)(dz - w2) . (dn - wz)

for some positive mutually different do, dy,...,dn. I p € H, then p = e, + 0,
where e, and o, are even and odd parts of p, respectively. It is well-known that
ep(jw) € Q and 0,(jw)/jw € Q.

Definition 2. Two finite subsets A, B C R are called interlacing if for any two
points in A there is a point in B lying between them and vice versa. The sets A

and B are called complementary if there exists a finite set C that is interlacing with
both A and B.

Note that the cardinality of two complementary sets A and B can differ by at
most two. Also, the positioning of the sets A and B on the real axis is considered
to be of no importance: a shift does not change the complementarity, nor the inter-
lacing of the configuration. The notion of complementarity is similar to Weinberg’s
double alternating configuration as introduced in (Weinberg, 1962). Two polynomials
in @ will be called interlacing (complementary) iff their zero sets are interlacing
(complementary).
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The following theorem motivates the concept of complementarity.

Theorem 2. Let p and v be polynomials belonging to Q. Then they form a convez
pair in Q if and only if they are complementary.

To prove this theorem, some specialized notation and a lemma will be used. Be-
cause of symmetry we shall consider the behaviour of the polynomials on [0, c0). The
positive roots of p and r aredenoted by a;,7=1,2,...,n,and b;,1 =1,2,...,m, re-
spectively, in the increasing way. We may also assume that degp = 2n < 2m = degr.

For A > 0 and ¢ = 0,1,...,n we define the function N;(\) as the number
of roots of Ap + r lying in the interval (a;, a;4+1), where ap = 0 and any; = oo.
Similarly, we can define M;()), j =0,1,...m, to be the number of roots of A\p + r
in (b;, bj+1). Then the following lemma holds.

Lemma 1. If p, 7 € Q form a convex pair, then the functions N; and M;, i =
0,1,...n, =0,1,...m are constant in (0,00).

Proof. We prove that all N;’s are constant. The same argument can be applied to
M;’s. For a given ¢ consider the sets {A > 0| N;(A) = k} for £ =0,1,...,degp/2.
They are clearly disjoint and since Ap + 1 € Q, the derivative of this polynomial
at any of its root is non-zero. It follows that the sets defined above are also open
(possibly empty). Further,

degp/2
U {)\ > 0] Ni(\) = k} = (0, o)
k=0

Since (0,00) is connected and the sets {A > 0 | N;(A) = k} form a disjoint open
cover, there is one kg such that

(0, 00) = {,\ >0 N;(\) = ko}

and the lemma follows. [ ]

Now we are ready for the proof of Theorem 2.

Proof of Theorem 2. Let A={a;|i=1,...,n} and B={b;|j=1,...,m} denote
the positive roots of p and r, respectively. We shall construct a set C interlacing
both A and B. Put 0 € C. Look at the two smallest elements of A U B. They
cannot belong to the same set A or B. Indeed, suppose that 0 < a; < as < b;. It
follows that Mg(A) > 2 for some A > 0. But for a sufficiently small A all but one
roots of Ap+r in (0,b;) disappear. This contradicts Lemma 1. The same argument
applies to the case where 0 < b; < by < a;. Hence there is a ¢; > 0 such that it
separates {a;, b1} and the rest of AU B. Now we continue in a similar way. Look
at the two smallest elements of AU B\ {a1, b1}. It cannot happen again that they
belong to the same set A or B. If so, then either 0 < ¢; < a2 < a3 < by or
0 <e <bz <bs <ap. Both p and r have the same sign at ¢;. In the former case,
p and 7 have opposite signs on (a3, az). So for A decreasing to 0 the polynomial
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Ap+r loses at least two roots in (by, b2), which is a contradiction to Lemma 1. In the
latter case, the polynomials p and r have opposite signs on (bs, b3) and for A — oo
the polynomial Ap+r loses at least two roots in (a1, az). We can therefore conclude
that there is a ¢; > ¢; such that it separates {asz, bp} from all larger elements of
AU B. Proceeding in the above manner we get a set ¢; < ¢g < --+ < ¢, With the

property

max(az, b1) < ¢; < min(ag, b2),

max(az, bs) < c2 < min(ag, bs),

max(an, bn) < €n < bpya

(Recall that if degr = n, then b,41 = c0.) At this point all positive roots of p
have been used. Moreover, we notice that both p and r have the same sign at every
€1,...,Cn. Owing to a, the polynomial p does not change sign. Our already familiar
argument reveals that there cannot be more than one remaining element of B. Thus
C U (—C) is the required set interlacing the roots of both p and r.

To prove the converse we assume that C with the elements 0 = ¢p < ¢; < -- < ¢y
is the set interlacing positive roots of both p and r. The values of the polynomials
p and 7 at the points of C' have the same sign, namely

sign p(c;) = signr(c;) = (=1)*
for i =0,1,...,n. It follows that for any combination Ap 4+ r we have
sign (Ap +7)(ci) = (=1)°

for i = 0,1,...,n. If degp = degr = 2n, the proof is complete because the above
combination has exactly 2n (symmetrical) roots. It remains to consider the case
when degr = 2n + 2. Since the interval [0,c,] contains already n roots of the
combination Ap + r, it suffices to show that there is another root greater than cx.
On [cn,o0) the polynomial p has the sign (—1)™ while

lim signr(z) = (-1)"*!
Since degr is greater than degp,
lim sign (Ap(z) +r(z)) = (-1)"*!

But sign (Ap(cn) + 7(¢s)) = (=1)". Thus, the polynomial Ap 4 r has to possess a
root in [c,, 00). [ |

The proof of Theorem 1 follows now from Theorem 2. Indeed, if two polyno-
mials form a convex pair in H°, then their even (odd) parts are complementary
(Theorem 2). Hence the degrees of even (odd) parts may differ by at most two.
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4. Convex Pairs of Hurwitz Polynomials

For polynomials in #° the following necessary and sufficient condition has been
proved (Huang et al., 1987):

Theorem 3. Polynomials p, v € H® form a convez pair if and only if
arg [p(jw)/r(jw)| # =

for all w > 0.

Verification of this condition might be computationally inconvenient.

Some necessary conditions follow easily from Theorem 2. As already mentioned
before Definition 2, if p € H?, then e,(jw), 0,(jw)/jw € Q. Therefore we shall call a
pair (ep, e;) (or (0p, 0,)) complementary iff e,(jw) and e,(jw) (or op(jw)/jw and
or(jw)/jw) are complementary. Similarly, we shall use the term interlacing.

Lemma 2. If p, 7 € HS form a convex pair, then the pairs of polynomials (epser)
and (0p,0:) are both complementary.

This condition is not sufficient, as shown by the following example.

Example 2. Put p(z) = 52° + 1022 + 112+ 20, 7(2) = 102° + 1022 + 62 + 3. We have
p, 7 € HS and the conditions of Lemma 2 are satisfied, which can readily be verified.
On the other hand, 2p+r ¢ HS.

To examine the sufficient conditions we shall reformulate one of the implications
of Theorem 3, introducing

D(w) = (epor — €,0,)(jw)

Lemma 3. If p,r € HS form a convez pair, then (eper + 0por)(jwo) > O for all
wo >0 such that D(wg) = 0.

Proof. From Theorem 3, it follows that p(jw) + Ar(jw) # 0 for all A > 0 and for
all w >0, since p,r € H¥. Rewrite this condition as (e, + Ae, + 0, + Ao, )(jw) # 0.
Since the first two summands are real and the remaining two are pure imaginary, it
follows that if (p, r) is a convex pair, then e, + e, and o, + Ao, have no common
roots for any A > 0. Consider some wg > 0 with D(wp) = 0, and the system

ep + de, =0, 0p + Ao, =0

at the point jwg. Since p, r € MY, this system has no positive solution for A. If
ep = e, = 0 at jwg, then both o, and o, are non-zero. Now the impossibility of
solution yields o,0, > 0. The case when exactly one of the numbers e, and e,
equals zero is excluded by the condition D(jwg) = 0. It remains to consider the case
where both e, and e, are nonzero at jwg. If eye. > 0, then D(jw) = 0 implies that
also 0,0, > 0. The last possibility epe, < 0 is not allowed since it would imply the
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existence of a positive solution of the system above. Finally, we get epe, 4+ 0,0, > 0
at jwg. ||

Theorem 4. Polynomials p, r € H° form a conver pair if and only if both (e,, e,)
and (0p, 0r) are complementary pairs and epe, + 0,0, > 0 for all pure imaginary
solutions of the equation epo, — erop = 0.

Proof. The conditions are necessary, as has been proved in Lemma 2 and Lemma 3.
We shall prove that they are sufficient. If (e,, e,) and (op, 0r) are complementary
pairs, then according to Theorem 2 they form a convex pair in Q. Let us introduce
the polynomials P()\,w) and R(A,w) of two real variables by the requirements

P\, w) =dep(jw) + (1 — A er(jw)
RO\, w) = A6,(jw) + (1 = X) 6, (jw)

where 6(z) = o(z)/z. Then for all A € [0,1] both P(A, w) and R(A, w) have simple
positive zeros. We show that for all A € (0,1) the polynomials P(), w) and R(}, w)
are interlacing. Each of the sets {[(A, w)] : P()\, w) = 0} and {[(A, w)] : R(A, w) =0}
consists of finitely many curves that start for A = 0 at the interlacing positions. If
for some A € (0,1) the polynomials P(A, w) and R(A, w) are not interlacing, then
there must exist such [Ag,wp] that 0 = P()q, wo) = R(Ag, wo), i.e.

Xoep(jun) = ex(jwo)] + ex (o) = 0
. . . (5)
Ao [o,,(]wo) - or(on)] + 0r(Jwo) =0

If we consider the following system of equations
u[ep(jwo) - er(jwo)] + ve,(jwy) =0
u[op(jwo) - or(jwo)] +vo,(jwe) =0

we see from (5) that the pair (Xg,1) is one of its solutions. Therefore the determinant
of this system, namely e, o0, — e, 0p, equals zero at the point jwp. Also, we have
ep(Jwo) er(Jwo) + 0p(jwo) 0r(jwo) > 0. Hence at least one summand is positive. We
may assume that it is the first one. Then from (5)

er (jwo)

Ao = — .
° 7 ex(jwo) — ep(iwo

)¢[0,1]

which is a contradiction. Since for any A € [0,1] the polynomials P(A,w) and
R(\,w) are interlacing and, according to Theorem 2, both of them also belong to Q,
they compose a polynomial in H?. ]

The positions of the zeros of the even and odd parts of two polynomials may
not be sufficient for the characterization of the Hurwitz property of their convex
combination. But the following stronger notion is completely characterized by the
positions of the roots.
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Definition 3. Let
P(s) = ep(s) + 0p(s) € H(H?)
7(s) = e,(s) + 0,(s) € H(H®)
Denote for A, p € [0,1]

Po(s) = Aep(s) + pop(s)
To(s) = (1 — Aer(s) + (1 — p)or(s)
Then (p, 7) will be called a strongly convez pair if po+ro € H(HS) forall A, 1 € [0, 1].

Note that a convex pair need not be strongly convex. When reducing the requirements
of Definition 3 so that A = p the strongly convex pairs become convex. The concept
of strong convexity, although not explicitly, has been used in (Basu, 1990).

Strong convexity is characterized by the zeros of the even and odd polynomials
involved, as shown by the following result.

Theorem 5. Let polynomials p,r € H® be as in Definition 3. They form a strongly
convez pair if and only if (ep, 0,) and (e, 0p) are interlacing pairs.

Proof. For the necessity of the condition of strong convexity put A =1 and p = 0.
According to Definition 3 we have e,+o, = pg+79 € ‘HS. Recall now that formula (2)
yields that (ep, o;) is an interlacing pair. Similarly for (e, op).

The converse statement is easy to prove. Due to the interlacing property all the
functions o,/ep, 0p/ep, 0p/er, o, fe, are reactance functions and remain in this class
when multiplied by arbitrary positive constants. Since f € R iff 1/f € R, we also
have

€p _ 1
pop+ (L —plop  pk+(1-p)e

€p

ER

Similarly
er
——— €R
pop + (1 — p)or
Therefore
Aep + (1 — Ne, cR

1op + (1 — p)or

Again with equivalence (2), po + 70 = Aep + (1 — Ne, + pop + (1 — p)o, € HS, ie.
the polynomials (p, r) form a strongly convex pair. [ |

Example 3. The polynomials p(s) = s®+s%+16 s+7.29 and q(s) = s3+52+1.69 s+1
in H® form a convex pair which is not strongly convex.

Theorem 4 improves the result of Proposition 4 in (Bose, 1985), since we give
an equivalent condition for polynomials to form a convex pair. Also Theorem 5 is an
improvement of Theorem 2 in (Basu, 1990), when specialized to polynomials of one
variable.
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5. An Application to Interval Polynomials

Probably one of the most important examples of strongly convex Hurwitz pairs are
the pairs of polynomials derived from the four polynomials known as Kharitonov
polynomials.

The set
P= {p(z):a02n+alzn—1+-"+a‘n:ai Sai Sbi7i=0)17"‘7n}

is called an interval polynomial. Note that we also allow a; = b;. The following
statement is known as the famous Kharitonov theorem (Kharitonov, 1979):

All polynomials p € P belong to the class H® iff all four so-called Kharitonov
polynomials k; € H%,i = 1,2,3,4, where

ki1(2) = ao + a1z + baz? + b32® + aszt + . ..
ko(2) = ap + b1z + b22? +az2® +agz +. ..
k3(z) = bp + a1z + a22® + b32® + bazt + . ..
ky(2) = bo + bz + asz? + azz® + b2t + . ..

(6)

Denoting the even and odd parts of these polynomials by e; and o;, respectively,
we can see immediately that

€1 = €2, 01 = 03, €3 = €4, 02 = 04, (7)

and therefore the pairs (e;,01) and (e4,04) determine uniquely the four Kharitonov
polynomials. Recalling Theorem 5 it is easy to see that the conditions of Kharitonov’s
theorem will be satisfied if and only if two of the Kharitonov polynomials k; and k4
form a strongly convex pair. The converse statement needs some additional condi-
tions.

Lemma 4. A strongly convex pair of Hurwitz polynomials (g, 7),q(2) =g + 12 +
@2 +...,7(2) =0+ 112+ 71222 + ..., generates an interval polynomial P C HS iff

(-1)'qai < (-1)'rz  and  (~=1)geiy1 < (=1)*r2i41, $=0,1,...
Proof. Writing r =e, + 0., ¢ = €4+ 0, we set
Pr=¢€ +0,, pPr=€ +0;, P3s=¢€g+0r, Ds=¢€q+0, (8)

‘These four polynomials are in H° since all (even and odd) pairs are interlacing.
Comparing the definition of p; with he four Kharitonov polynomials (6) it becomes
clear that the assumptions in Lemma are exactly those, that make the intervals for
the coefficients nonempty. | '

The condition in Lemma 4 is evidently equivalent to the following inequalities:

(9)

eq(jw) < er(jw) for all real w
<o

0,(jw)/jw < or(jw)/jw  for all real w # 0
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Since zeros of the even and odd parts of polynomials in H* are simple, there is only
one possible configuration of the zeros of eg, e,, 04, 0, if they are supposed to compose
a quadruple of Kharitonov polynomials. Denoting the positive imaginary part of these
zeros by er;, eg;, or;, og; this configuration must be

O<eqr <eri<oq <ory <ery<eqs <ory<ogs <... (10)

Indeed, in view of (9), eq1 < ery,ers < eqa,...,0q1 < ory,or2 < oga,... . Also
the pairs (e, o,) and (eq, 0;) are interlacing since p and r are in HS. Moreover,
(er, 04) and (eq, o) are interlacing by Theorem 5. So (10) is the only possible
arrangement of zeros.

This reasoning implies also a procedure for the construction of an interval polyno-
mial for a given Hurwitz polynomial, i.e. to find intervals, in which the coefficients of a
given polynomial may vary while remaining in the class H°. The continuity argument
obviously gives for any p € H° an interval polynomial P such that p € P C ‘HS.
We would like, however, to obtain at least some quantitative estimates concerning P.

The corresponding algorithm can be described as follows:

Step 1. Let a polynomial p(z) = ag+a1z+...+a,2™ € H® be given. Denote by s;
and [; theimaginary parts of the zeros of its even and odd parts on the imaginary axis,
respectively, with ordering 0 < s; < s;41,8 =1,...,m, 0 < lx < ly1,k=1,..., M,
and find the value

d= mikn|si — U

1‘!

Fix a real value A such that 0 < A < min(sy,d/2).

Step 2. Set Fo(s,d) = [T, (s: — (~1)idy), Go(l,) = IT2%, (1 + (~1)*cx) with the
values d = (d;),c = (¢x) to be determined. Define

U]
Fip1 = _5_ Bs. Fy
i=1 '

and similarly

Gry1 = ' %Gk
i=1
for £k =0,1,...,n. Solve for d; and c; the following two sets of inequalities
Fo(s,d) > Fo(s,—d) . Go(l,¢) > Go(l,~¢)
Fi(s,d) < Fi(s,—d) Gi(l,c) £ Gi(l,—¢)
Fy(s,d) > Fi(s,—d) Ga(l,c) > Ga(l,—¢)

sothat 0<d; <X 0<¢ <A
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Step 3. Form the polynomials e,,eq, 0,04 as follows:

mﬁ( . )Jd))
mﬁ(w — (85 +(-1)d )2)

]:

—

M
or(@) = (1™ [ («* = (4 - (-1Ves)?)

M
o) = ()" [T (o = (5 + (-1)%e;)°)

Note that the inequalities in Step 2 guarantee that the inequalities among coef-
ficients, as formulated in Lemma 4, will be satisfied.

Step 4. The four normalized Kharitonov polynomials can now be obtained as
pa(z) = (aer + Bo,)(—jz)
p1(2) = (aeq + Bog)(—32)
p2(2) = (aeq + Bor)(—32)
p3(z) = (ae, + fog)(—j2)

where a and f are the leading coefficients of the even and odd parts of the given
polynomial, respectively.

We include an example as an illustration.

Exémple 4. For the polynomial
p(z) = 2(22 4+ 4)(2?2 +16)(2% + 36) + 2(2% + 1)(2* + 9)(2* + 25)
=27 + 225 4 562° + 702" + 7842° + 51827 + 23042 + 450
the first set of inequalities reduces to
di +ds3s > ds
8d; —6dy +4d3 <0

15d; — 5da + 3d3 > dydqds
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and the second one to
c1+e3 2 e
10¢; — 8¢y + 6¢3 <0
24c1 — 12¢o + 6¢3 > c1c0c3

Since d = 1, we have to find d;,c; € (0, 7). Some simple algebra suggests that e.g.

¢; = 0.16, c2 = 0.35, c3 = 0.2
dy = 0.14, ds = 0.31, d3 =0.18

Hence we obtain
e, = 2% + 35.36812% + 238.43742° + 252.3328
eq = 2° +34.92812* + 279.822327 + 188.2552
or = 2" + 56.42° + 753.62° + 2389.3z

0g = 2" + 55.92° 4 814.52% + 2155.12

The originally given polynomial p belongs to the interval polynomial P (degen-
erate interval coefficients are allowed)

P = {z7 +22° +[55.9, 56.4]2° + [69.8562, 70.7362]2* + [753.6, 814.5]23
+[476.8748, 559.6446]2% + [2155.1, 2389.3]z + [376.5104, 504.6656]}

With another possible choice of ¢; and d;,

¢ =0.16, ¢ =04, cs = 0.25
d1 = 0.1, d2 = 0.42, d3 =0.42

we obtain the following interval polynomial

P = {z7 +22° + [55.8081, 56.6881]2° + [66.9656, 74.4856]2*
+(748.9662, 817.5716]2° + [478.2815, 543.6267]2>

+[2167.0887, 2361.96]z + [397.4644, 473.2094]}

Robustness considerations might prefer intervals of maximal length. No decision -
of this type can be made between the two polynomials given here. However, the
algorithm implies that among the admissible solutions of the inequalities formulated
in Step 2 there exists one solution yielding the interval polynomial with maximal sum
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of lengths of intervals. The interval polynomial with such a maximal sum of lengths
could be considered as an optimal solution.

In our case this sum equals 507.405 and 412.9669 for the first and second choices
of d; and ¢;, respectively.

In case we want to enlarge the interval corresponding to the (2k)-th power in the
polynomials obtained above, we may proceed as follows. Since multiplication with
positive constants of either the odd or the even part of a Hurwitz polynomial retains
the polynomial in the Hurwitz class, we may design a procedure which changes the
length of any interval in the definition of the interval Hurwitz polynomial.

With e; and es multiplied by o and B, respectively, the length of the (2k)-th
interval of the even part of the interval polynomial P will be

abay, — Pagg for odd k&
o=
Bbaor — aasy for even k

(11)

We want to find values o and 3 such that ¢ attains its maximum value under the
following constraints

abaj — Pag; >0 for odd jand j#k

. . (12)
Bba; — aaz; >0 for even jand j #k
Evidently, if such a@ and f§ exist, then the pair ae,, Be, exhibits the same
pattern of coefficients as required for Kharitonov polynomials in Lemma 4. If we set
max; a2;/b2; = p, then inequalities (12) are satisfied iff
1 _«a
-2 =24
b= p
To obtain an interval [8aqk, abak] (resp. [aaak, Bbax] ) if k is even (resp. odd) of
maximal length, we choose 8 = ap (8 = /). The remaining free parameter can
be used to locate suitably the centre of the k-th interval.

A similar procedure can be applied to the odd parts of the polynomials.

Example 5. The first interval polynomial in the previous example has intervals of
zero length as coefficients with two highest powers. This restriction can be removed
as follows. For its even part we have k =3 and

i = max(69.8562/70.7362, 476.8748/559.6446, 376.5104/504.6656)

0.98756

Il

With o = 1,8 = 1/u = 1.10126 we obtain a ‘new’ even part of the polynomial and
in a similar manner also a ‘new’ odd part (here p = 0.991135). Finally,

P = {[1, 1.0089]27 + [2, 2.0252]2° + 56.42° 4 70.73622* + [760.31, 814.5]2°

+[482.88, 559.6446]2% + [2174.28, 2389.3]z + [381.25, 504.6656]}



On convex combinations of Hurwitz polynomials 47

A similar technique has been used by (Zeheb, 1988). The concept of strong
convexity seems to give more transparency to his procedure.

6. Conclusions

It has been shown that complementarity and interlacing of zeros as defined here
is an effective tool in characterizing properties of polynomials important in system
theory. The core of the paper is formulated as Theorem 2. The results obtained here
emphasize synthetical approaches. They enable us to construct models (polynomials
and rational functions) with some prescribed robustness properties rather than decide
on given ones. Examples seem to motivate further investigations in this direction.
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