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VOLTERRA SERIES EXPANSION FOR STATE
QUADRATIC SYSTEMS

MoHIEDDINE JELALT*, HELMmuT SCHWARZ*

A review of two methods to compute the kernels of a Volterra series expansion
via flow and by the Carleman bilinearization for non-linear analytic systems with
linear control is presented. We give explicit formulae especially for state quadratic
systems. Furthermore, illustrative examples are given, and the two methods are
briefly compared.

1. Introduction

A large number of plants of interest in many engineering applications have non-linear
dynamics and may be modelled by ordinary differential equations of the form (SISO-
case):

(t) = a(m(t)) + b(m(t))u(t) ‘ (1)

y(t) =cT=z(t), = ==z(to=0) (2)

where z(t) € R™ denotes the state vector, u(t) the control, and y(t) the output of
the system. The quantities @ and b are analytic vector fields of . The theory of such
systems has been well established in recent years. Many important properties for the
analysis and design of control systems like observability, controllability, realization,
as well as the observer and controller design were also examined and solved in a very
general form (Isidori, 1989; Nijmeijer and van der Schaft, 1990; Schwarz, 1991). In
practice however, it is convenient and useful to consider more simple subclasses of the
general non-linear systems (1)—(2), e.g. linear, bilinear and quadratic systems.

The contribution of this paper is to show how the Volterra kernels can be com-
puted explicitly. To this aim, two effective methods are presented. The Volterra series
expansion represents the input-output behaviour of a non-linear system. It has found
applications in optimal control, stability theory, stochastic control, identification, etc.
The Volterra series are well studied in the literature. However, most studies give
representations only in a very general form and ignore the structural features of the
systems found in practice. In this paper, state quadratic systems as a specific class
of non-linear systems are considered.
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The motivation to consider quadratic systems is that they have a traditional place
in the mathematical literature and are of increasing importance in the field of systems
theory. Many natural processes, e.g. rigid bodies, adaptive control systems and prey-
predator phenomena (Frayman, 1974; Kang and Krener, 1991) can be described by
quadratic models. We propose three methods by which non-linear dynamic technical
systems may be approximated by state quadratic models, see (Jelali and Schwarz,
1995). Furthermore, the application of linear state feedback to a bilinear system
results in a quadratic system. Thus, it is necessary to study quadratic systems in
order to properly understand the feedback theory of bilinear ones.

2. Non-Linear State-Space Description and Volterra Series

The Taylor series expansion of the vector fields a(z) and b(z) in (1) may be repre-
sented using multiple Kronecker products

ePt)=z@t)@z(lt)®...® =(t) (3)
T idme
in the form
a(z) = Az(t) + Apz@ + ...+ Ayz™ + .. (4)
b(z) = By + Biz(t) + Bax™® + ...+ By_1z¥ "D 4+ . (5)

Retaining the first 7 terms of a(z) and s of b(x) yields the polynomial systems
with linear control

@(t) = Z AzO(t) + Z B,z (t)u(t) (6)
y(t) =cT=(t),  xo==(0) (7)

For r = s = 2 the state quadratic systems

#(t) = Aiz(t) + Asz(t) ® =(t)
+[bo + Biz(t) + Baa(t) @ z(t)] ut) ‘ 8)

y(t) = cTa(t), zo = z(0) (9)

are obtained. Those systems can also be described using conventional matrix notation
as follows:

2(t) = Awx(t)+ ) e (H)Qix(t)
=1

+ [bo + Bia(t) + an e,-a:T(t)Ria:(t)] u(t) (10)

=1
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y(t) = cTz(t), @0 =2(0) (11)

where Q;, R; are n x n-matrices and e; is the standard basis vector in the i-th
direction. For A, =0, B2 = 0 (8)—(9) is reduced to a bilinear system.

The input-output behaviour of (1) can be represented by a Volterra series expan-
sion

y(t) = wo(t)-i-i/ut/n.../Tu_lw,,(t,n,...,r,,)
v=1 0 0

xu(m)...u(r,)dr, ...dn (12)

The kernels w, in (12) may be regarded as a generalization of weighting functions.

3. Computation of Kernels via Flow

The kernels are given, using Lie derivatives, by the following expressions (Isidori,
1989):

wy(t) = cTS¢(x) |w0

w (t, Tl) = ‘C-Pq CT¢?($)|m0

wa(t, 71, 72) = Eprzﬁprl CT@?(:B)LDO (13)
wi(t, TlyeeosTi) = EP-q .. .[:p_rl chsf'(:l:)Lo
where
ope
Pi(z) = 22240, g2 (a) (14)
_90)
te,()= 2P @) (15)

‘o’ denotes composition w.r.t. the argument x, and $¢(x) is the flow of the drift
vector field a(z), i.e. the solution of

&(t) = a(a:(t)), o = z(0) (16)

Of course, not every system (1)-(2) admits a convergent Volterra representation. For
a detailed background regarding the problem of existence and convergence of Volterra
series, the reader should consult (Czarniak, 1984; Isidori, 1989; Sandberg, 1985).
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Accordingly, the computation of the Volterra series expansion requires the fol-
lowing steps.

1. Find the general solution x(t) = f(t,C;) of the differential equation #(t) =
a(x(t)) as a function of the time ¢ and the integration constants Cj;.

2. Eliminate the C; by considering the initial condition @(0) = x¢. Then one has
the solution 2(t) = f(t, zo)-

3. Set the flow as D¢ (xzo) = x(t) or P%(x) = f(t,x).
4. Compute the kernels from (13).

5. Compute the Volterra series expansion from (12).

In general, it is very difficult to compute the flow &% (x). For quadratic systems
the general solution of the quadratic vector-differential equation

&(t) = Arz(t) + Arx(t) @ =(t)

= Ajz(t) + En: eixl (1)Qiz(t), zo = z(0) (17

=1

has to be found. In the literature, only special classes of linear and bilinear systems
are considered. For these systems the flow is given by

&% (x) = el P,(z) = e A1th (18)

However, we have presented the following analytic solutions for special structures
of (17) in (Jelali, 1994; Schwarz and Jelali, 1994).

Structure 1. For A4; = 0 in (17) the quadratic differential equation

z(t) = Azz(t) @ z(t)

n (19)
= ($eam0Q)a,  z=20
1=1
has the general solution
n -1
(l:(t) = {In — (Z ei(l:g‘Q,) t] X9
=1
= [In - SQt]—l Xy (20)

C1) for any xp for which Sq is symmetric and commutes with each Q;
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or

C2) for all x, iff the conditions

Ary(Az ®@z)®@x = Az ® (Arz @ ) (21)
and

A, [AQ(A2-'B®E)®:E] @z =A(A2x Q)R (A ® ) (22)
are satisfied. Of course, the property that matrices are commutable is a strong con-
dition. However, if this is not satisfied, one can try to check C2) which complements

C1), see Example 1.

Example 1. For a state quadratic system of the form (19) with

0 1 1 0 0 1 -1 0
A2=[_1 0 0 1] =>Q1=[1 0}>Q2=[ 0 1] (23)

one can write

2
Se=) exlQi= [ T o } (24)
=1

—Zo1 To2

and therefore

. “or (25)
(1 = mo2t)? + 23,12 | 1oy — (23, +z3,)t
Thus, Sq is symmetric and commutes with @, and @, for zo; = 0. However, it is
easy to check that the conditions (21)—(22) are satisfied such that the solution (25)
holds for all z, € IR2.
Structure 2. If the following relationship
Ag.’lﬁ(t) ® :l:(t) = l(:L')Alili(t), l(.’l:) =hri+brs+...+ 1z, (26)

between the linear and quadratic term in (17) exists, the solution of

&(t) = [1 + l(m)] Arz(t) (27)
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is
a:(t) = €A1’1(t)20 ’

where the function ~y(t) satisfies

3(t) = 1+1(eA Oy

Structure 3. The differential equation (17) with

[(¢gT 0 0 ... ... 0 0
0 ¢gT 0 ... ... 00

A2=

0 0 0 0 q7

or

o

g7 | « i-th row
Q=1|0 , geR”

| 0 |

has the general solution

2(t) = —S 20
1—q7T fg eA17 dr zg

If A, is non-singular, then (32) can be rewritten as

eAlt:Bg

T 14+ ¢TATNI, — eMit)zg

z(t)

(28)

(29)

(30)

(33)

Example 2. Consider the quadratic system with the following state and output

equations:

&1 (t) = —21 (£) + 1 (£)z2(t) + u(?)
$2(t) = —za(t) + 22(t) + u(t)
y(t) =z1(t), =0
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and calculate the first two Volterra kernels using the foregoing method. Since this
system has the structure of (30), a short calculation with (33) shows that

621:

1 e 2, 1-(1—e Nz,
a = — P, =
i (=) 1—(1-et)x, [ e~2tz, } » Pi(z) el
[1-(1~e")aa]?
Applying (13) leads to
wilt,m) = e M, () = (1 67 e 4 o)

4. Computation of Kernels by the Carleman Bilinearization

Another method to construct the Volterra kernels consists in using the truncated
approximation (6)—(7) and defining the new state vector

2(t) = [ = ] (34)
o)
With the truncated time derivative of z(?
%m@) = (AR, +I,®A)z? + [(b0 ® I, + I, ® bo)
+(B1 @I, + I, ® Bl):c(2)(t)] u(t) (35)

the quadratic system (8)—(9) can be transformed into a bilinear one of the type

(1) = Acz(t) + [Nez(t) + boJu(t) (36)
y)=T=(t), 2= 2(0) (37)
where
&:[Al Az], 1%=[Bl B ] (3®)
0.24n Az B, Bs 5

bcz[bo, onz], cf=[cT, or] (39)
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The matrices Az 2, By and B s are respectively given by

Ao =A1QL,+I1,Q® A, (40)
BZ,l = bO I, + In ® by (41)
Byo=B1®I1,+ 1,8 B (42)

where I, denotes the identity matrix of order n. The type of approximation illustrat-
ed here is called the Carleman bilinearization and can also be applied to other classes of
analytic systems with linear control (1). For more information see e.g. (Brockett, 1976;
Rugh, 1981).

Assuming that the Volterra series for (8)—(9) exists, the first two terms and the
truncated Carleman bilinearization must agree (Brockett, 1976). Thus, the Volterra
kernels (zo = 0) can be computed by

i1
wi(t,m,...,7) = cleAlt=m) (H NCeA°(T"_T’“+1)> b, (43)

k=1

Vi>nn>...21: 20

One can make the change of variables ¢; = t — 7; in order to yield the triangular
kernels

Witri(01,...,04) = cTeAemt (H NCeA“(""_""“I)) b, (44)

k=2

Yo, 20;12...20120

One possible difficulty is the computation of the matrix exponential which, as is well-
co

known, is denoted by e4<t = Z(k!)_l(Act)k. The theoretical and computational
k=0

properties of the matrix exponential function have been treated extensively in (Moler

and van Loan, 1978).

Example 3. Calculate the first two Volterra kernels for the quadratic system
3'3'1 (t) = —I (t) + U(t)
Zo(t) = —2o(t) + 21 ()u(t) + z3(t)u(t)

y(t) = z2(t), x0o=0
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The bilinear approximation is of the type (36)—-(37) with

1 0 0 0 0 0 000 0 0 0
01 0 0 0 O 1 0 0 0 0 1
00 0 0 0 O 1 00 0 0 O
Ac:_ ) NC:
00 0 0 0 O 01 1 0 0 0
00 00 0 0 01 1 0 0 0
|0 0 0 0 0 O 000 0 1 1 0]
b.=[1,1,0,0,0, 07, ef'=11,0,0,0,0, 0]

Thus, some calculations lead to the Volterra kernels
w(t, 1) = ccTeA”(t‘”)bc =0

wy(t,11,75) = el eI N eAln=m)p, = =(t-72)

5. Conclusion

The computation of kernels via flow requires the solution of autonomous quadratic
vector-differential equations which cannot be found for all quadratic systems. But
if this solution exists, then the Volterra kernels can be quite easily computed. The
computation could be done effectively using symbolic software packages like Maple,
Macsyma, Mathematica, etc.

The computation of kernels by the Carleman bilinearization works well in most
cases. It takes advantage of the fact that bilinear systems form a class of systems for
which the Volterra kernels are relatively easy to compute. However, the disadvantage
of this method is that the dimension of the obtained bilinear system increases more
than proportionally to the dimension of the examined system such that the bilinear
system, in general, does not represent a minimal realization. In order to reduce the
dimension of the Carleman bilinearization and the complexity of the terms of the
Volterra kernels, it is very efficient to use the reduced Kronecker product since it
contains no redundant information.

The results presented here may be useful in a number of areas of systems theory
such as correlation analysis and identification. The results presented for the SISO-
case may be extended to the MIMO-case in future research. In addition to that,
computation time and computation accuracy of both methods will be discussed.
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