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TWO-STAGE IDENTIFICATION OF INTERCONNECTED
STEADY-STATE SYSTEMS WITH CASCADE
STRUCTURE: A PARAMETRIC APPROACH

PART 1: BACKGROUND

ZYGMUNT HASIEWICZ*

The paper deals with selecting, within a stochastic framework, an approximate
system model from a parametric candidate model set for a composite steady-
state system with cascade structure, assuming mean-squared model output error
as a measure of the model accuracy. With applications in mind, particular
emphasis is laid on computational simplicity of the model search routine and
an easy-to-use but suboptimal two-stage approach is proposed for solving the
corresponding identification task. In the first part, a theoretical background
for the method is given and the degree of suboptimality of the resultant model
is analysed under full probabilistic knowledge of the system. Some illustrative
examples are included to inquire into applicability of the method. The empirical
counterpart of the algorithm, employing the measured input-output data from
the plant, is investigated in Part 2.

1. Introduction

Since the early 1970s, a considerable interest has been drawn to the development of
decentralized techniques for the steady-state optimization control of interconnected
complex industrial processes, see e.g. (Brdy$ and Roberts, 1986; Brdys$ et al., 1980;
1986; 1990; Chen et al., 1986; Findeisen et al., 1980; Lin et al., 1988a; 1988b; 1989;
1991; Michalska et al,, 1985; Shao and Roberts, 1983; 1985; Tatjewski et al., 1990;
Zhang and Roberts, 1991) and the earlier papers cited therein. In general, such studies
require respective static mathematical models that preserve the ‘structural’ properties
of the processes, i.e. retain the coupling effects of the interconnected process at hand
and are in a sense sufficiently accurate to bring proper analysis or control design tools
into efficient use. Since the real processes are typically characterized by substantial
complexity, limited prior knowledge and uncertainties in the process equations, some
gap between the true description and a model of the process is unavoidable in practice,
and only approximate models of reality can be gained in most cases. Then, as a
rule, identification of subprocesses consists in selecting, within suitably chosen sets of
models, those approximate models which, combined together, ensure the best fit to
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the process as a whole (in the sense of some global performance index), maintaining a
particular structure of the process. Unfortunately, methods for the ‘exact’ solution of
the complex identification problems of such kind, developed until now, turn out to be
complex and computationally expensive (Hasiewicz and Stankiewicz, 1984a; 1984b;
1986a; 1986b). Accordingly, for systems of even moderate complexity, it can be quite
difficult to find an optimum mathematical model in some given set of models. A
solution can be a trade-off between the model accuracy and computational complexity,
resulting in identification algorithms relevant for practical applications, Wthh will
however produce in general suboptimal models only.

In this study, we are concerned with the problem of determining an approximate
model for a noisy serially interconnected complex system operating in a steady-state
when the global mean-squared model output error (MSE) is assumed as a measure
of approximation accuracy, and a two-stage scheme for computing the cascade model
is introduced. First, optimum models of suitable aggregated parts of the system
are independently established and then the models of component subsystems are
derived in such a way that the overall complex model can in effect be obtained in
an easy decentralized manner by solving only standard optimization tasks. However,
computational efficiency of the method is obtained at the cost of an undesirable side
effect of causing the final model to lose optimality (the auxiliary optimum models of
system aggregates are anyhow available in the method as a by-product). A thorough
analysis of applicability of the approach is the purpose of the work. The considerations
are split into two parts. In this part, the background of the method is given and the
‘theoretical’ version of the two-stage algorithm, based on the use of full probabilistic
knowledge of the system, is examined. In Part 2, an empirical counterpart of the
scheme, employing only measured data from the system, is presented and analysed.

The present paper is organized as follows. In Section 2, general assumption-
s about the cascade system and the set of candidate models, referring to the main
body of the research, are collected and the system identification problem is formulat-
ed. A solution to this problem is discussed in Section 3, and a two-stage identification
strategy is proposed in conclusion. The degree of suboptimality of the resulting model
is then investigated in Section 4 under some additional ‘regularity’ restrictions on sub-
system models, and respective sufficient conditions for achieving the required relative
precision by the model (a prescribed suboptimality index) are provided together with
specific conditions which guarantee optimality of the identification results. Next, in
Section 5, simple illustrative examples are studied to give an insight into applicability
of the method and to explain the statistical meaning of basic factors occuring in the
analysis.

2. Problem Statement

Consider an interconnected static system with cascade structure, composed of a col-
lection of n subsystems Sy, Ss,...,Sn (see Fig. 1), whose genuine input-output be-
haviour is described by the equations

ylel*(cluzl)J yi=F¢*(C1‘,Ui;Zj), Ui = Yi—1, ’l:=2,3,...,7'l (1)
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Fig. 1. Series system under consideration and its complex model.

where y; € Y; CRRY, u; € U; CIR™, and ¢; € C; C IR% denote respectively outputs,
non-manipulable interaction inputs, and external excitations (e.g. control inputs) of
the component S;, while vector z; € Z; C IR% represents unmeasurable disturbances
affecting the subsystem. It is assumed that the true descriptions of subsystems S,
i.e. the mappings F}* : C; xU; x Z; —» R, i = 1,2,...,n, are completely unknown
and there is a need for a mathematical model of system (1) reflecting the composite
structure of the system. The corresponding system identification task consists in
determining a complex structural model of system (1), including models of individual
system elements and reproducing interactions existing within the complex system.
Here, we shall discuss the problem when the search for a suitable model is conducted
over a parametric set of candidate models, i.e. the admissible models of individual
subsystems S; are defined in the parametric form—by parameter sets 4; C IRP
and the corresponding parametrized mappings ®; : R% xIR™ x 4; — IR% for 4 =
1,2,...,n. Then the resultant parametric structural model of a series system as a
whole is as follows (see Fig. 1):

nim = (e, a1), yimr = Rulci uing, @), wing = YoM, 1=2,3,...,m  (2)

with a; € A;, where y;»r € R* and u;pr € R™ are respectively the outputs and
interaction inputs of the i-th submodel in the complex model, corresponding to exter-
nal excitations cj, cs,...,¢; used in the system. With parameter a = (a1,a2,...,a,)
ranging over the set A = Ay x A2 x ... x A, this is just a collection of feasible com-
plex models in the case under consideration.

Such a situation arises typically when structural models are intended to be es-
tablished for real-life industrial processes. Most of them are arranged in some techno-
logical lines, with specific order of operations, i.e. serially structured. Let us consider
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e.g. the process of ore concentration (being a part of ore dressing line in a typical ore
mine). This is a large-scale complex industrial process, poorly recognized due to the
complexity of the phenomena and thus unfit to be described in the form (1). Usually
n = 4 consecutive stages are distinguished: ore milling and next the preliminary,
main, and final (purgative) ore flotation, each stage of considerable complexity. The
sub-processes in such a cascade have the following external (control) inputs: for the
mill block (subsystem S; in Fig. 1)-—the intensity of water inflow (¢, ), for the flotation
blocks (subsystems S;, i = 2,3,4)—the intensity of water, wetting agents, foaming
agents, and compressed air inflow (c;1, €2, ¢i3, and ciq, respectively). Interaction
inputs u; and outputs y; are in turn composed of basic descriptors characterizing the
feed and product material on the corresponding block input and output, and include
such quantities as e.g. the granulation (classified by the number of grain classes), the
content of the useful mineral in the ore-pulp, and the intensity of ore pulp flow. This
results in vectors of multiple dimensions. The process operates moreover in a steady-
state. This is due to the steadiness of chemical composition of the ore and physical
ore body parameters over long time intervals.

It should be emphasized here, and this is essential for our considerations, that—
due to the minor prior knowledge of the system (see the above example)—the selected
model structure (2) is not assumed to contain the correct description of system (1),
i.e. we admit in general that ®; # F} for any choice of a. Therefore the system
identification task is now that of approximation of unknown system characteristics
within the parametric set of models (2), with an acceptable non-unique solution and
most likely arbitrary choice of the approximate class of models, and not a parameter
estimation problem in the true description of static series system (1). The latter
important problem for serially connected systems and other more general structures,
as well as the related question of parameter identifiability for complex static systems,
were discussed separately in (Hasiewicz, 1987; 1988a; 1988b; 1989).

In the usual stochastic framework, when c¢;, z; and hence also u; and y; are
random variables in system (1) (e.g. the inflow intensities in the above example due
to the inaccuracy of controlling devices (feeders)), the following mean-squared model
output error

Qi(ai | a1,a2,...,ai—1) = Elly: — ®i(ci, uinr, a:)||? (3)

can be taken as a measure of accuracy of the i-th submodel within the complex model
for 7 > 2, and respectively

Qi(a1) = Elly1 — ®1(c1,a1)|? (4)

for 7 = 1 (as for a single-element system), where the parameters a1,as,...,a,-1
of the preceding submodels in the cascade (2) are considered as being fixed, |||
is the Euclidean vector norm in IR*, and E denotes the expectation with respect
to (e1,¢a,...,¢i,y;) provided that such an average is well-defined for the problem
at hand. Accordingly, the quality of the overall complex model (2) may be quite
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naturally estimated by using the cumulative index

il

Ql((u) + ZQi(ai | a1,09,.. .,(Li_l)
= (5)

Eliy1 — ®1(c1, 1)l + ) Ellyi — Bilci, wanr, a:) |2
=2

Q(ay1,a2,...,a,)

which represents the global mean-squared approximation error of composite system
outputs (the global mean-squared model output error) for given ¢;,cs,...,c, , applied
in parallel to the system and the model.

The evaluation of the series model minimizing the index (5) over the model set (2)
is the objective of this work.

Though, if (5) is used, the summands are standard mean-squared loss functions,
the entire system identification task (determination of optimum a* = (a},a},...,a%),
minimizing the error (5) on the set A = A; x Ay x ... x A, subject to the con-
straints (2)) is nevertheless not standard due to the interconnections inherent in the
complex model. In particular, it cannot be simply solved by separate minimization
of the indices @; ((3)—(4)) with respect to a; € A; (setting u;pr = u;), i.e. as a set
of n independent identification tasks of individual system components S; treated as
autonomous objects. (Notice that interactions w;ps in the complex model (2) differ
in general from those in the real system, wip # u;, and for the i-th submodel they
depend on the choice of parameters a;,as,...,a,—1 in the preceding components of
the composite model (2), cf. Fig. 1.) On the other hand, when the series system is
actually large (as in our example), the ‘exact’ solution—it is the strict minimization
of the global index (5) on A with regard to the constraints introduced by the complex
model (2)—is not a good choice for practical implementation because, even exploiting
the nested modular structure of the problem, it generally leads to severe optimization
tasks which require much computation (cf. for instance (Bubnicki, 1975) where the
dynamic programming approach was applied). A remedy can be an ‘approximate’
solution to the problem, where the amount of computation is reduced at the cost of
accuracy of the model.

The objective of this paper is to introduce a computationally efficient and con-
venient in implementation method of finding a suboptimal solution to the considered
system identification task, and to examine when the algorithm is applicable to the
series system identification in the sense that it provides a reasonable approximation
of the optimum model.

Let us denote
C=(Cl,02,...,cn), z=(z1,22,...,zn), 3/2(1/179%---,?/11)
We shall assume throughout the paper that

a) the external excitation ¢ of the system is a random vector with finite variance;

b) the disturbance z is a c-independent vector random variable of independent com-
ponents with zero mean and finite variances;
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c) the composite parametric model (2) is well-posed, i.e. for 4 = 1,2,...,n the
following mappings are well-defined:
yinr = Kin (G, b:) (6)
with
Kim(Ci, b)) = ®i(ci, Kim1,m (i1, bi—1), a5) (7)
and
bi = pi(bi—1,a;) (8)

for + > 2, where
G = (Cim1,¢:) = (C1,C2y .+, Cim1,Ci)
and by = a1, &1 =c1, Kim(C1,b01) = ®1(e1,a1) for i =1,
d) ®;(ci,uin,a;) are continuous for 1 =1,2,...,n;
e) the sets of admissible model parameters A; C IRP!,i =1,2,...,n, are compact.

Assumptions (a) and (b) are standard in the system identification framework. As
regards assumption (c), it formally means that the models of individual subsystems are
compatible, i.e. they can be joined in a cascade giving well-defined models (6) of the
aggregates AG; = {51, 52, .., S}, composed of subsystems Sy, Sa,...,S; (cf. Fig. 1).
These aggregate models are assembled recursively due to (7) and the function (8)
describes the way of composing (‘glueing’) the aggregate AG; model parameter b;
based on the parameters b;—; and a; of the models of the aggregate AG,_.; and
the subsystem S;. Mappings (6) and (8) are for instance well-defined for the usable
class of models (2) being linear in the interactions and parameters (see examples in -
the following). In turn, under assumption (d) it follows that the functions K,
and ¢; in (6)-(8) are continuous with respect to both arguments and therefore,
including assumption (e), the sets of admissible aggregate model parameters B; =
i(Bi-1 x A;), By = A; are compact, which will be essential in what follows.

Note that under the assumed conditions the reference ‘theoretical’ mean-squared
optimum series model does exist.

3. Two-Stage Identification Algorithm

From this point on, full probabilistic knowledge of the system is supposed, i.e. we act
as if the expectations in (5) could be theoretically computed.

Denote B = By x By x ... x B, and let By (C B) be defined as follows:

By = {b: (b1,ba,...,bn) € B:3a = (a1,as,...,an) € A
such that b; = @;(bi_1,as), i € 2"72}

By applying (6), the cumulative model quality index (5) can be replaced with the
index of the form

g(d) =Y ai(bs) (9)
1=1
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where
:(b:) = Elly: — Kin (€, 5:)|| (10)

and the identification task from Section 2 may be restated as the minimization prob-
lem of ¢(b) on the set By. Let us denote the solution by by = (b%,,b3,...,b%;). The
desired optimum model parameters a} can then be immediately obtained as a} = b},
for i = 1, and for ¢ > 2 by solving the equations

wi(bi_; 0, a:) = by, 1=2,3,...,n (11)
in the sets A,. Noticing in turn that

be By iff be B and p;(b;—1,b;) =0, 1=23,...,n
where

pi(biz,bi) = min b — pi(bi—y, ai) (12)

we ascertain that the latter optimization problem is, in fact, an optimization task
on the set B with additional non-linear equality constraints p;(b;_1,b;) = 0,
i =2,3,...,n and implicit constraint functions y; given by (12). In general, an-
alytical solution is not possible, but the optimal b} can in principle be obtained
numerically, by applying e.g. the standard penalty function approach, i.e. by penal-
izing the quality index ¢(b) with complementary constraints (12) as follows (g¢; and
i are continuous and By is a closed set—cf. assumptions (d) and (e) and further
remarks in Section 2):

ap(b,0) = q(b) + p > _ i(bi1,b:)
1=2

and implementing a numerical minimum search routine to gp(b,p) on the set B,
with b; varying independently over the sets B; and gradually increasing the penalty
coefficient p > 0.

Such a strategy for optimum model computation, in the ‘pure’ form, is however
inconvenient to employ, mainly due to the necessity of computing in each step (itera-
tion) of the algorithm the value of penalty function components (12), i.e. determining
step by step the minimizers

ai(bi-1,b;) = arg min [b; ~ i(bi-1, a:)| (13)

for © = 2,3,...,n (the computations necessary to find the optimal model are then
arranged hierarchically in a three-level structure—cf. (Hasiewicz and Stankiewicz,
1986b). A conceptually simple way of overcoming this difficulty and simplifying com-
putations follows from the observation that at the optimum point b3 it holds

Zﬂi(b:—l,m b;,o) =0
=2
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Motivated by this fact and owing to (9), the form of g,(b, p), and (12)—(13), one can
naturally think of the following approximate two-stage algorithm:

Stage 1. Compute b} minimizing the indices g;(b;) in (10) on the sets B;, indepen-
dently for 7 =1,2,...,n.

Stage 2. Using b} from Stage 1, determine the submodel parameters as
a; = arg min || — ¢i(bi_y, ) ' (14)

for 1 =2,3,...,n, taking &, = b} for ¢ =1 (in what follows, a;(b}_;,b})
is briefly denoted by d,).

The main idea behind the above two-stage approach consists thus in progressive
aggregation of the cascade system and its complex model in the first stage, i.e. in stack-
ing the succeeding subsystems and their models in evolving complexes (aggregates;
cf. Fig. 1), for which optimum model parameters are then determined independently,
as for the set of independent objects (with inputs ¢; and outputs y;). Afterwards,
in Stage 2, the respective parameters for the component submodels of the series
model, maintaining the structure of the system, are derived in a decentralized manner
according to (14), i.e. the models from Stage 1 are disaggregated and a structure
preserving the complex model is assembled as a final result.

The advantage consists now in the fact that calculations needed by the algorithm
are standard and can be accomplished at both stages in a completely decentralized
way. In Stage 1, to compute b} common minimization methods can be adopted,
separately for ¢ = 1,2,...,n, and in Stage 2 only the solution, in the least-squares
sense, of the equations

wi(bi_q1,0:) = b} (15)

with respect to a; (in the sets A;) is additionally required for i = 2,3,...,n. They
can be solved in turn by applying general-purpose optimization techniques (&; is then
treated as the minimum point (14)) or specialized methods of solving non-linear least-
squares problems (Dennis and Schnabel, 1983; Forsythe et al., 1977).

The algorithm is however heuristic and therefore only a suboptimal model can
be expected. The formal reasons are twofold. Firstly, the vector b* = (b7,b5,...,b%)
composed of bf obtained in Stage 1 minimizes the performance index ¢(b) in (9) on
the set B D By. Since most likely the minimum point of ¢(b) on B differs from that
on By, b* # b}, one has

q(b") < q(b5) (16)

and in general &; # a} (cf. (15) and (11)). Secondly, for the series model (2) with the
parameters @; following from (14) the corresponding aggregate model parameters (8)
are b; = b;, where

by =05, bi=qi(bi1,a:), i=2,3,...,n (17)
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and obviously b= (51,52, e ,i)n) € By. Hence

q(b3) < q(b) (18)

Thus, the key problem is evaluation of the loss g(b) — q(by) occuring in the model
accuracy when the two-stage approach is used.

4. Accuracy Analysis

For rating the loss g(b) — ¢(b%) in the model quality one may implement as a test
quantity the following relative (normalized) error:

A 2 90) _:I(bo)
q(bg)
or, alternatively,

a q(b) — q(b)
A= q(b*)

checking the discrepancy g(b) — ¢(b§) against the optimum (minimum in the set By)
or the least possible (minimum in the set B) value of the quality index ¢ in the
candidate model set, respectively, the latter being attainable in the complex model
when b* € By. Since by (16) and (18) we obtain

Ag < ALA* (19)
where

we shall further examine the dominant A*, and it will be considered as the sub-
optimality index of the model provided by the two-stage approach (in brief: of the
two-stage approach). To enhance the clarity and interpretation of the results, apart
from Ez; = 0 (assumption (b) in Section 2), we assume here that also Ec; = 0 for
1=1,2,...,n. Then E¢ =0 and

- A _ A
Elal? 252, <00, Bllal? 202, < oo (21)

are simply cumulative (aggregated) variances of the components of & and z; for
1 = 1,2,...,n. More general cases can be analysed in a similar manner with an
obvious extension of notions.

Let 672 be the minimum value of the index (10) in Stage 1 (minimum mean-
squared model output error), i.e.

«2 A * - * . = d
812 2 qi(b}) = Ellyi — Kam (&, b7)|* = Juin Blly: — Kim (i, bs)|I? (22)
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and let
~ A * * N .
& S 110 - wi(bi_y, i)l = min (|5} — i(b_y, ai)ll (23)

stand for the equation error of (15), i.e. the mismatch arising in Stage 2, for 1 =
1,2,...,n. Denote next

82 = min §? §%2 = max 62 24
m 1<i<n i M 1<i<n T . ( )
and
€M = max §; 25
1<i€n * (25)

and assume that %2 > 0. Statistical interpretation of the quantities (21)—(25) is
given later, in Example 2 of Section 5.

To gain an insight into the quality of complex models, namely the ‘desired’ op-
timum and the ‘approximate’ one, resulting from the two-stage approach, and to
evaluate explicitly suboptimality of the latter, some more specific regularity condi-
tions have to be imposed on parametric system models. To the end of this section we
shall assume in addition to (¢) and (d) of Section 2 that K (i, b;) and wi(bi—1,a;)
in (6) and (8) are Lipschitz with respect to b; and b;_1, respectively, i.e.

|| Kine (8, 0) — King (€, 07)|] < ka(@)|bj = B, Vb3, b2 € B; (26)
and
lpi(bioy, ai) — wi(bi_y, @)l < deilad)llbioy — b1 ll, Wbi_,, b8, € Biox (27)
for each 7 =1,2,...,n and that
ki(C:) a

sup —= = q; < 00, sup de;(a;) 2 D; < (28)
z,eC; “C"-” a;€A;

where C; = C; xCq x ... xC;. Such requirements are satisfied e.g. for a linear set of
models, as in (41) of Example 1 in Section 5. In addition to (22)-(23), let us denote

2 (29)

Zg,M = lfél?-sxn 23,1’ (30)
Dy = max D; (31)
1<i<n
and
1 [Dn -1 .

- fDy#1

1 _ Dy -1 [DM—l n] M (32)
&p(n) -1
ﬂ%rl if Dy =1

where n is the number of subsystems. The following theorem holds.
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Theorem 1. In the case specified above, if for some p > 0 the mazimum equation
error (mismatch) €y in Stage 2 (cf. (23) and (25)) satisfies the relation

ém < eo(p) (33)
where

«(p) = £ (n) l ;;l " zﬁl ) ;MM] (34)
then the suboptimality index A* (cf. (20)) does not exceed p, i.e.

A*<p (35)
Proof. Denote

Yo £ B{ri(@) 1 Kune (@, b) - Ko (2,591 }
and

iz 2 E||Kin (i, b:) — Kina (&, 7)1
where

7i(C:) = By, llyi — Kin (@, b7) | (36)

is the conditional expectation with respect to y; given &;. The following bound is
valid

—q(b") <2 Z i + Z iz (37)
i=1 i=1
Now the upper bound for the index A* is derived as follows. By (26) we obtain
Ya < b= 51 B{r@) k(@) |
and
$io < b - BIPE{K() }

Next, by the Schwartz inequality and (28)—including moreover (21), (22), (29), and
(36)—some simple calculations give

B{r@)ki(e)} < 8%es,  B{k(@)} <52,

Hence, owing to (9), (20), (22), and (37), and using (24) and (30) it is concluded that

. O e, M " *
S ( ZHb bu) = ( leb-blP) (38)
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On account of (17) and (23) one can notice in turn that
16: = b} < & + llpi(Bimt, ) — @ilb}_y, 84)]|

which, owing to (27) and (28), yields the following recursive formula
[1B: = bl < & + Diflbi—y — b}, |

This gives immediately

[ S&‘*‘S( H Dy

r=2 k=r+1

Hence, by applying (25) and (31), after some simple algebra we obtain the bound

i1 _
. Ear [9—1‘4——1] if Dis #1
6, b7l < Du -1

w(i = 1) if Dy =1

Thus, making use of (32), it can be readily verified that

Z]w -8l < s

and

2

L ¢
lIb: — b7 |I° < 5%
; I ()

The above and (38) results in

1 (. 6% Zcn/ ém Y2007 Em \2
A* < = 9 M“c, <,
~n [ 0x2 (KD(’IZ)) + 6*2 (nD(n)) (39)
and provides (33)—(34) and (35) as a simple conclusion. [

Remark 1. From (39) it follows that, for a given approximation accuracy in Stage 1
(evaluated by means of the errors 622 and &3%; cf. (22) and (24)), the degree of sub-
optimality depends critically on the maximum equatlon error (maximum mismatch)
énr ((23) and (25)) occuring in Stage 2 and, as expected, the smaller the value of &y,
the better relative accuracy A* is guaranteed. The rate of deterioration of A* in
the neighbourhood of éys = 0, for éy, tending to zero, is at least as fast as O(éy).

Remark 2. If éy = 0, that is to say, the equation errors ¢; in Stage 2 vanish
for © = 1,2,...,n (ie. for a given collection of b} minimizing the indices g;(b;)
(eqn. (10)) on the parameter sets B; (a result of Stage 1) there exist exact solutions
to the equations (15) in the parameter sets A;), then A* = 0 (cf. (39)) and the
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corresponding complex model resulting from the two-stage approach is optimal (in
this case b* € By—see Section 3). Obviously, the conclusion is valid in general, not
only under the assumptions of the theorem.

Remark 3. For €; # 0 the degree of suboptimality depends on the choice of the ac-
ceptable threshold €4, in the requirement é; < €;4,, 1 = 1,2,...,n, i.e. on specifying
the range of admissible equation errors €;, 1 = 1,2,...,n, in Stage 2. From (39), if
the equation errors €; do not exceed the given threshold value €, then the subop-
timality index A* is

A* S PO(Ethr:n)

where
— 1 67\120,M €thr E%,M €thr 2 .
po<ah,,n>_ﬁ[z T (e T (o) (w0)

is the maximum relative inaccuracy of the model, guaranteed for given e;,. If in
particular €;n. = €9(p), where €y(p) is as in (34) with p > 0, then we have A* < p
(see Theorem 1).

Notice that for n = 1 (a single-element system) 1/xp(1) = 0 (cf. (32)) and hence
Po(€thr, 1) = 0 for each choice of €, which confirms that the two-stage approach is
then optimal (certainly, in such a case d; = a] = b}). For n =2 (a tandem system)
we have 1/kp(2) = 1 and for the respective €, the warranted maximum relative
error is

XM [5}[ 12e,m

6:n (5:;1 2 5.’;(" E'l!hr:| €thr

Pol€thr, 2) =

The correspohding test threshold eo(p) which guarantees A* < p is then

[ 812 5*2 8
= 2 m — M
€o(p) 2, + Eﬁ,Mp S

Summarizing, from the obtained ‘theoretical’ (derived under the assumption of
full probabilistic knowledge of the system) bounds on A* ((33)-(35) and (40)) it
follows that for moderate values of equation errors €; in Stage 2 and properly ‘regular’
system models (in the sense of the fulfilment of conditions (26)—(28)) the relative
error A* may not exceed a reasonable limit (Remark 3) and then the ‘approximate’
model, obtained by the two-stage approach, and the ‘desired’ optimum system model
are almost equivalent. It should be here emphasized (which can be important for
applications) that in realistic conditions, when only measurements from the system are
available, the actual value of the suboptimality index A* can be estimated empirically
based on the appropriate set of measurements at hand, in each particular case, not
only in that specified for the purposes of the theorem (see Section 2 in Part 2 of the
paper).
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5. Examples

The special cases examined in the following two examples are to gain some insight
into the question of the existence of solutions to eqns. (15) (Remark 2) and to provide
a clear statistical interpretation of the quantities 32, 637 and X2 ), appearing in the
bounds (34) and (40) in Section 4. They will be further developed in Part 2 of the

paper.
Example 1. Assume that the components of the complex model (2) are linear, i.e.
nim = Bier,  yim = Aiuiyg + Bici, 1=2,3,...,n (41)

and the constraints on model parameters (A;, B;) are negligible (i.e. the set of ad-
missible model parameters can be arbitrarily large). Then eqn. (15) takes the form

[Aif_qq MaBi] = —i*M (42)

where K}, ;, and K, denote optlmum, i.e. minimizing (10), parameters of the
linear aggregated models {(cf. (6) in Section 2)

Yi—1,m = Ki—1,MCi—1, yin = KimG

of the aggregates AG;_; and AG; of the system (with inputs ¢;—1 and & = (Ci—1,¢;),
and outputs y;—1 and y;, respectively), i.e

K:—I,M = (Eyi—léf—1)(E5i*15?—1)_1
= (Ey.c; )(Ecz ) -1
provided that the respective inverses exist. Obviously, a solution to (42) with respect
to (A;, B;) does exist if
BT i)+T T 7
rank [ =1, M,K ] = rank K | p (43)

where K()* is the block of K2, related to the vector ;1. If external excitations c;
of consecutive subsystems S; are stochastically independent, we have

= [(Byel )(Beiaely) ™, (Byicl ) (BeweD) ™|
that is

llll)l*—’(Eyl z 1)(Ecl 1Cl 1) -t

and one can easily ascertain that the rank condition (43) is satisfied when the vectors
y;—1 and y; are linearly dependent in the cascade system, i.e. the true descriptions
F* of the elements S; are linear in the interaction inputs (cf. (1)). Then the linear
series model provided by the two-stage approach is optimal (cf. Remark 2).
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Example 2. Let the cascade system (1) be described as follows (a linear-in-the-
interactions system):

v =Fr(e,21) = fi(a) + 21
vi = Fr(ei,ui,2:) = file) +wi+ 2z, wi=yi1, ©=2,3,...,n

which means that the respective aggregates AG; are now represented by the mappings
Y = F,;*(Ei)‘“l‘ Z;

where

Fi*(ai)zzf:(cr)a Zi’—“zzr
r=1 r=1

and let us assume exceptionally in this example (for an easy interpretation of factors)
that in the absence of noise (z; = 0) the exact descriptions F}* of AG; are accessible
within the model sets (cf. (6) and further discussion in Section 2)

{yiM = Kim(Ci,bi), bi€ Bi},, i=1,2,...,n

corresponding to the preassumed collection of models (2). Since Ez; = 0 (cf. as-
sumption (b) in Section 2), the mean-squared optimum model, minimizing (10) in
Stage 1, is as follows:

Kim(8:,b7) = F (&)

i

and in effect (cf. (22) and (21))
52 =E|zl? =Y Ellzl* =02, 252, (44)
r=1 r=1

i.e. the discrepancy 672 becomes actually equal to the aggregated (cumulative) vari-
ance of the noise z; disturbing the aggregate AG;. Therefore we have (cf. (24))

n
*2 _ 22 _ 2 A _2 *2 _ o042 _ 2 Ao
6m - 61 =01 = Oz,15 6M - 611, - Zaz,r =0:n
r=1
i.e. the errors 632 and 632 from Stage 1 are in this case cumulative variances of
the corresponding noises z; and Z, influencing the two extreme aggregates of the

cascade, AG, and AGn. Denoting, analogously to (21), o2, & El|le.]|?> one can
recognize that in (21) we have now

i
- A —
62 = EBlal* =) a2,
r=1
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Hence (cf. (29))

; .
2 __ 2 Z 2 Ao
Z:c,‘i =ay Uc,’r - Uc,a,i

=1

is, for E¢; = 0, simply the weighted cumulative variance of the external input vec-
tor &; of the aggregate AG;, with the squared weighting coefficient a; given by (28).
Hence (see (30))

represents now the dominant scaled variance in the set of external excitations ¢;
applied to the aggregates AG; in the complex system. In the particular case when
for each subsystem S; the respective variances o2, and af,i are as follows:

ER)
af,i=af, af’i=af, i=1,2,...,n (0;,0,>0)
and simultaneously
am <o < am, 1=1,2,...,n

for some a.,,ap > 0, we obtain that plainly:

2

z

éjfzaf, . 6}}:1@0

and

2

2 2 2 2
na;,o. < Xg y < nayo;

In this case, the threshold value €(p) in (34) and the maximum relative inaccuracy
po(én,n) for a given €y in Stage 2 ((40) for einr = €pr) are such that

(2 G V-1 sat < (22) () V-1 @

QN (o) [0 77%% Te

and

20m (Z—z) (szzin)) +a2, (%)2 (nf;?n))z < po(énm,m)

<2a(2) (o) + o4 (59) (o) (46)

Moreover, the degree of suboptimality of the two-stage approach depends then on
the ratio ac/az. The smaller the value of g./c,, the less restrictive the requirement
(33) on the equation error €y becomes to attain A* < p for given p > 0 ((45) and
Theorem 1) and the better the relative accuracy of the resulting ‘approximate’ model
can be for the given error (mismatch) €y in Stage 2 (cf. (46) and Remark 3). Such a
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conclusion is not surprising since for large noise (large o) the reference value q(b*)
in the suboptimality index (20), actually of the form (cf. (9)-(10), (22) and (44))

1
o) = 220+ D)
2
is large and thus the loss ¢(b) — q(bg) in the model quality, associated with the two-
stage approach, may be less significant. For a tandem system, i.e. for n = 2 (then
ém = €2,kp(2) = 1), the bounds (45) and (46) take the special form

GG V-1 <at < () (%) [Vive-1]

apf O¢

and

Oc R O R N Oc¢ o Oc "
oc J(amea) |2+ (2% )(ams)| <po(es,2) < (22 (ame) |2+ ()
(az)(a €) [ + p (a ez)] < po(és,2) < - (anréa) |2+ o (anrés)
and the extent of the influence of the ratio o./0, on A* depends on the size'of
weighted equation errors a,,€> and o sés.

6. Final Remarks

A new two-stage ‘approximate’ algorithm for series system identification has been
introduced as an alternative to the ‘exact’ approach. The motivation was to pro-
vide a more handy procedure for complex system identification, taking into account
interconnections existing in the system. The proposed scheme exploits in a very nat-
ural fashion the particular series structure of the system and is based on progressive
aggregation (in Stage 1) and disaggregation (in Stage 2) of the models assumed for
individual system components, reducing in this way the usually hard problem of in-
terconnected multicomponent system identification to a set of independent standard
identification tasks of single-element systems (aggregates), solved at Stage 1, and a set
of complementary local optimization (disaggregation) tasks, solved in a decentralized
manner at Stage 2. As a result, a decomposed structural model of a series system is
obtained as the main solution and a set of auxiliary (optimum) aggregated models
of subsystem complexes (aggregates) as a by-product of the identification procedure.
Taking into account the structure of the algorithm, on the one hand it can be included
into the class of indirect multistage identification methods (Hsia, 1977; Séderstrém
and Stoica, 1989), since the identification routine is in fact indirect and identification
in Stage 1 produces merely the data for the final identification of the system model
in Stage 2. On the other hand, the identification task within the approach is as if
it was split into two layers, and at the higher layer (Stage 1) the models of large,
aggregated parts of the system (subsystem complexes) are established determining in
this way the targets for identification at the lower layer (Stage 2); in turn, the models
of more detailed system components are computed there so as to achieve the reference
(target) model set by the upper layer (a kind of ‘follow-up’ identification). From this
point of view, the approach can thus be traced back to basic concepts of multilayer
theory.
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In this paper, a theoretical background for the method has been given together
with the discussion of accuracy of the resulting ‘approximate’ complex model—all un-
der the idealistic assumption of full probabilistic knowledge of the system. As regards
realistic conditions, in Part 2 an empirical counterpart of the two-stage algorithm is
considered, making use only of measurements obtained in the system.
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